Dynamic Photonic Structures: Stopping, Storage,
and Time Reversal of Light

By Mehmet E Yanik and Shanhui Fan

The use of dynamic photonic structures opens fascinating new possibilities for
controlling the properties of light. The general idea is to create a coupled
resonator array such that a light pulse can be held in the structure for a
sufficiently long time, and to modulate the refractive index of the system while
the pulse is in the system. Doing so allows the spectrum of the pulse to be
molded almost arbitrarily with small refractive index modulations, leading to
highly nontrivial information-processing capabilities on chip. As examples of
such capabilities, here we show that light pulses can be stopped, stored, and
time-reversed with these dynamic systems.

1. Introduction

The developments of photonic nanostructures, including photonic crystals [1]
and optical microcavities [2], have generated great interest recently. These
structures can create optical resonances that confine light within a small modal
volume for a relatively long photon lifetime. The strong localization of light
has led to very important new applications in quantum and nonlinear optics,
such as zero-threshold lasers [3, 4] and low-power optical switches [5—8] and
memory elements [9].
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In this paper, we point out the fascinating new possibilities when dynamic
behaviors are introduced into the microresonator systems. By creating a
coupled resonator array, a light pulse can be held in photonic structures for
sufficiently long times. When a pulse is in such a system, the spectrum of
the pulse can be molded almost arbitrarily with a small refractive index
modulation, leading to highly nontrivial information-processing capabilities
on chip. As examples of such capabilities, here we show that the bandwidth of
a light pulse can be compressed to zero, resulting in all-optical stopping and
storage of light. We also demonstrate that the spectrum of a light pulse can be
inverted to give a time-reversal operation.

A fundamental difficulty in integrated optics has been that different optical
functionalities tend to require different material systems. For example, the
traditional way to accomplish time reversal through phase-conjugation requires
nonlinear optical materials such as LiNbO; [10]. And light stopping has been
demonstrated only in atomic gases under extreme conditions [11, 12]. On the
other hand, small refractive index modulations can be readily incorporated
into photonic crystal or microresonator systems to create dynamic photonic
structures. Thus, the use of dynamic photonic structures, as we envision here,
may provide a unifying platform for diverse optical information-processing
tasks in the future.

2. Tuning photon spectrum

Here we provide a simple example to show how the spectrum of electromagnetic
wave can be modified by tuning a structure while the wave is confined in the
structure. Consider a linearly polarized electromagnetic wave in one dimension,
the wave equation for the electric field can be written as

2 9’E
Iz —(80+8(f)),u0ﬁ =0. (1)

Here, &(¢) represents the modulation and &, is the background dielectric
constant. We assume the index modulation &(¢) to be translationally invariant.
Hence, different wavevector components do not mix in the modulation.
For one such wavevector component at k,, with electric field described by

E(t) = f(t)e!®ox—»0D) where wy = ko//Io€o, We have
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With a slowly varying envelope approximation, i.e., by ignoring the a;T{ term,

and by further assuming that the index modulations are weak, that is, e(¢) = ey,
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Equation (2) can be simplified as
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which has an exact analytic solution
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where f is the starting time of the modulation. Thus the “instantaneous
frequency” of the electric field for this wavevector component is

w(t) = wy (1 — ?—;j) . ®)]

We note that frequency change is proportional to the magnitude of the
refractive index shift alone. Thus, the process defined here differs in a
fundamental way from traditional frequency-conversion processes such as sum
or difference frequency generation. In a sum or frequency-conversion process,
to convert the frequency of light from w; to w,, modulations at a frequency
wy — w; needs to be provided. In contrast, in the process described here,
regardless of how slow the modulation is, as long as light is in the system, the
frequency shift can always be accomplished.

The existence of the frequency shift in dynamic photonic crystal structures
has been first pointed out by Reed et al. in their studies of photonic crystals in
the presence of shock waves [13, 14]. The shock waves, effectively speaking,
induce a large refractive index shift. In practical optoelectronic or nonlinear
optical devices, on the other hand, the accomplishable refractive index shift is
generally quite small. Thus, in most practical situations the effect of dynamics
is prominent only in structures in which the spectral feature is sensitive to small
refractive index modulations. This motivates our consideration of the dynamic
resonator structures, and our design on Fano interference schemes, which
further enhances the sensitivity of such structures to the index modulations.

The translational invariance of refractive index modulations is also important
in the application of dynamic systems. By preserving translational invariance,
different wavevector components do not mix with each other. Thus, it is far
easier to create reversible processes that maintain all the coherent information
encoded in the original pulse while the spectrum of the pulse is changed.
Below, we use these considerations to demonstrate two remarkable effects:
stopping and time reversal of light [15-18].
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3. Stopping and storing photons with tunable photonic structures

The ability to drastically slow down the propagation speed of light, and to
coherently stop and store optical pulses, holds the key to the ultimate control
of light, and has profound implications for optical communications [19] and
quantum information processing [20, 21]. To reduce the group velocity of light
coherently, there are two major approaches, employing either electronic or
optical resonances. Dramatic slowdown or even complete stop of light pulses
can be accomplished by converting the optical signal into coherent electronic
states [11, 12, 22-29]. The use of electronic states, however, imposes severe
constraints on the operating conditions. As a result, only a few very special
and delicate electronic resonances available in nature possess all the required
properties. All the demonstrated operating bandwidths are far too small to
be useful for most purposes. The wavelength ranges where such effects can
be observed are also very limited. Furthermore, while promising steps have
been taken for room temperature operation in solid-state systems, it still
remains a great challenge to implement such schemes on-chip with integrated
optoelectronic technologies [28, 29].

Consequently, it is of great interest to pursue the control of light speed using
optical resonances in photonic structures including dielectric microcavities [30]
and photonic crystals [31-33]. Photonic structures can be defined by lithography
and designed to operate at any wavelength range of interest. Ultra-high quality
factor cavities have been realized on semiconductor chips [34], and group
velocities as low as 10~2¢ for pulse propagation with negligible distortion have
been experimentally observed in photonic crystal waveguide band edges [35]
or with coupled resonator optical waveguides (CROW) [36—38]. Nevertheless,
such structures are fundamentally limited by the delay—bandwidth product
constraint [39]—the group delay from an optical resonance is inversely
proportional to the bandwidth within which the delay occurs. Therefore, for
a given optical pulse with a certain temporal duration and corresponding
frequency bandwidth, the minimum group velocity achievable is limited. In a
CROW waveguide structure, for example, the minimum group velocity that
can be accomplished for pulses at 10 Gbit/s rate with a wavelength of 1.55 um
is no smaller than 10~2¢. For this reason, up to now, photonic structures could
not be used to stop light.

Here we present a set of general criteria to overcome the fundamental limit
imposed by the delay—bandwidth product in optics [15-18]. These criteria
enable one to generate arbitrarily small group velocities for optical pulses
with a given bandwidth, while preserving all the coherent information entirely
in the optical domain. These criteria can be achieved in optical resonator
systems using only small refractive index modulations performed at moderate
speeds, even in the presence of losses [15]. In addition, because the bandwidth
constraints occur in almost all physical systems that use resonance-enhancement
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effects. The underlying principles are applicable to a wide range of systems
and applications.

To coherently stop an optical pulse with a given bandwidth in an all-optical
system, the following criteria must be satisfied.

1. The system must possess large tunability in its group velocity. To allow for
an optical pulse with a given bandwidth to enter the system, the system
must possess an initial state with a sufficiently large bandwidth (i.e., a large
group velocity as required by the delay—bandwidth product) to accommodate
all the spectral components of the pulse. We design a system such that a
small refractive index shift can change the group velocity by many orders
of magnitude, and that the group velocity reduction is independent of
losses.

2. The tuning of the system needs to be performed in a manner such that
the bandwidth of the pulse is reversibly compressed. Such bandwidth
compression is necessary to accommodate the pulse as the system bandwidth
is reduced. Thus, the tuning process must occur while the pulse is completely
in the system, and must be performed in an adiabatic [40] fashion to
preserve all the coherent spectral information encoded in the original pulse.
The modulation accomplishes a coherent frequency-conversion process for
all spectral components, and reversibly compresses the bandwidth of the
incident pulse.

To implement the general criterion, we consider a translationally invariant
system (Figure 1), in which a waveguide is coupled to two side cavities in
each unit cell. The cavities have resonant frequencies w, and wg, respectively.
This system represents an all-optical analogue of atomic systems exhibiting
electromagnetically induced transparency (EIT). Each optical resonance here
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Figure 1. Schematic of a tunable waveguide system used to stop light. The disks and block
represent the cavities and the waveguide. The arrows indicate available evanescent coupling
pathways between the cavities and the waveguide. The system consists of a periodic array of
two side cavities coupled to waveguide, with a coupling rate of 1/7. The distance between the
nearest neighbor side cavities is /;, and the length of the unit cell is / =1/, + /,.



238 M. F. Yanik and S. Fan

is analogous to the polarization between the energy levels in the EIT system.
Initially, we assume that the cavities couple to the waveguide with equal rate
of 1/t, and we ignore the direct coupling between the side cavities. The
transmission matrix for a waveguide side coupled to a single resonator with
resonance frequency w; can be calculated using the Green’s function method
[41] as

1+ j/(w—w)t j/(w—w)T
7, = .J/( ]/(. ) . ©)
—Jj/(@—w)t 1 - j/(©—w)t
The transmission matrix through an entire unit cell in Figure 1 can then be
determined as

T = TClTllTClezv (7

e—./ﬂli 0
T, = 0 o/Bl

is the transmission matrix for a waveguide section of length /;. Here, 8 is the
wavevector of the waveguide at a given frequency w.

Because det(7) = 1, the eigenvalues of T can be represented as e/, e=*,
where [ =1/, + [, is the length of the unit cell, and £ (when it is real)
corresponds to the Bloch wavevector of the entire system. Therefore, we obtain
the band diagram of the system as

where

C. C_

(0 — wa) * (w — wB)’

%Tr(T) = cos(kl) = f(w) = cos(B!) + (8)

where

2 sin(Bl;) sin(Bl,) = sin(BI)
L= + .

(C()A - C()B)‘L’2 T

In the frequency range where |f(w)| < 1, the system supports propagating
modes, while | f(w)| > 1 corresponds to the frequency ranges of the photonic
band gaps. For a large frequency separation A = |wa — wg|t, the band diagram
is shown in Figure 2a. In the vicinity of the resonances, the system supports
three photonic bands, with two gaps occurring around ws and wg. Such a
band diagram is similar to that of EIT systems [42].

The width of the middle band depends strongly on the resonant frequencies
wpa, wg. Importantly, when the resonant frequencies satisfy the following



Dynamic Photonic Structures 239

1.02 ,a
1.01 - B
\g 1.00 / bandwidth =0
| | slope of the band flips
0.99 large bandwidth 1 B
O s 1 / 1 /

.98 . ! .
-0.50 -0.25 0-0.50 -0.25 0 -0.50 -0.25 0
K (2n)

Figure 2. The photonic bands of the system of Figure 1 for three different choices of
A = |wp — wgl|T. (a) A = 3.277, the bandwidth of the middle band is large. (b) A ~ 0.341, the
bandwidth goes to zero. (¢) A = 0, the slope of the band flips its sign. The cavity resonance
frequencies are given by wap = w, £ A/2t, where w. = 0.357(27¢/a) and 1/t = w./235.8.
Here, a is a length unit. The distances between the cavities are £; = 2a and ¢ = 8a. The
waveguide has a dispersion of 8 = [0.278 + 0.327(wa/2mwc — 2.382)]/a, which is actually a
fit for the photonic crystal waveguide in Figure 3.

conditions, the width of the middle band becomes zero (Figure 2b), with the
frequency of the entire band pinned at wa:

2sin[B(wa)l1] sin[f(wa)l] . sin[f(wa)l]

Ci(wa) = (0n — o)1 .

~0 )

—( A)

cos[ploa)l] + ———"=| > 1. (10)

(Alternatively, the band can be pinned at wp with a similar condition.) To
prove these conditions, we note that f(w) in Equation (8) has a singularity at
® = wa. The frequency width of this singularity is controlled by C;(w4), and
approaches zero when Equation (9) is satisfied. Satisfying Equation (10), on
the other hand, ensures that the solutions to | f(w)| < 1 in the vicinity of wa
occurs on the same branch of the singularity 1/(w — wa), and thus forms
a continuous band. When both conditions are satisfied, as the width of the
singularity approaches zero, a band (the middle band in Figure 2b) always
exists in the vicinity of wa, and the width of this middle band vanishes. Upon
further decrease of A, the group velocity of the band changes sign (Figure 2c¢).
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Furthermore, the sign of the group velocity for the middle band can be
designed by choosing appropriate /; and /5.

In the presence of direct coupling due to photon tunneling between the two
cavities in the same unit cell, one could still describe the system in terms of two
resonant eigenstates within each unit cell. The dispersion can be expressed in
the same functional form as of Equation (8) with wa and wg in the denominator
replaced by the frequencies of the eigenstates. And bandwidth compression to
zero still occurs when A satisfies conditions analogous to that of Equations
(9) and (10). This is also supported by our numerical observations that the
sign of the band flips. In addition, in photonic crystals, the direct coupling
constant decreases exponentially with the distance between the cavities, and
can, therefore, be reduced to any desired value in our system because the
cavities are not across each other along the waveguide. Our simulations also
indicate that even in the presence of loss, extremely flat band is obtainable,
and the sign of the band still flips, which is consistent with our previous
finding in a different system [15]. In general, it appears that the group velocity
becomes independent of the loss when the losses of different subsystems are
matched [15, 18]. In this case, the storage time is limited only by photon
lifetime and can be rather long.

The system presented above satisfies the general criterion required to stop
light [15]: the system is translationally invariant, and the width of one of the
bands can be reversibly compressed to zero. Thus, the dynamic process in [15]
can also be applied here to stop a light pulse. We start with large A, such that
the middle band has a large bandwidth, and wa, wg are chosen such that this
band can accommodate the incoming pulse, with each spectral component
of the pulse occupying a unique wavevector (Figure 2a). After the pulse is
completely in the system, we vary w, and wp until the bandwidth of the band
is reduced to zero (Figure 2b), at a rate slow compared with the frequency
separation of the middle band from other bands.

The system presented above can be implemented in a photonic crystal of
a square lattice of dielectric rods (n = 3.5) with a radius of 0.2a, (a is the
lattice constant) embedded in air (n = 1) (Figure 3) [15]. The photonic crystal
possesses a band gap for TM modes with electric field parallel to the rod axis.
A single-mode waveguide is generated by removing one row of rods along the
pulse propagation direction. Decreasing the radius of a rod to 0.1a and the
dielectric constant to n = 2.24 generates a single-mode cavity with resonance
frequency at w. = 0.357(2wc/a). The nearest neighbor cavities are separated
by a distance of £; = 2a along the propagation direction, and the unit cell
periodicity is £ = 8a. The waveguide—cavity coupling occurs through barrier
of one rod, with a coupling rate of 1/t = w./235.8. The resonant frequencies
of the cavities are tuned by refractive index modulation of the cavity rods.

We simulate the entire process of stopping light for N = 100 pairs of
cavities with finite-difference time-domain (FDTD) method [43], which solves
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Figure 3. Propagation of an optical pulse through a waveguide-resonator complex in a
photonic crystal system as the resonant frequencies of the cavities are varied. The photonic
crystal consists of 100 cavity pairs. Fragments of the photonic crystal are shown in part (b).
The three fragments correspond to unit cells 12—13, 55-56, 97-98. The dots indicate the
positions of the dielectric rods. The black dots represent the cavities. (a) The dashed green
and black lines represent the variation of wa and wp as a function of time, respectively. The
blue solid line is the intensity of the incident pulse as recorded at the beginning of the
waveguide. The red dashed and solid lines represent the intensity at the end of the waveguide,
in the absence and the presence of modulation, respectively. (b) Snapshots of the electric field
distributions in the photonic crystal at the indicated times. Red and blue represent large positive
and negative electric fields, respectively. The same color scale is used for all the panels.

Maxwell’s equations without approximation. The computational cell is truncated
by uniaxial perfectly matched boundary layers (UPML) [43]. Furthermore,
we have used a large enough computational cell such that the result is free
of any parasitic reflection from the right end of the computational boundary.
The dynamic process for stopping light is shown in Figure 3a. We generate a
Gaussian pulse in the waveguide. (The process is independent of the pulse
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shape.) The excitation reaches its peak at 7 = 0.8f,5, Where f,5 is the
traversal time of the pulse through the unmodulated waveguide. During the
pulse generation, the cavities have a large frequency separation. The field is
concentrated in both the waveguide and the cavities (Figure 3b, t = 1.0fp,),
and the pulse propagates at a high speed of v, = 0.082c. After the pulse is
generated, we gradually reduce the frequency separation A to zero. During
this process, the speed of light is first reduced to zero, and then changes its
sign and the pulse starts propagating backward slowly. (The sequence of the
corresponding band structure is shown in Figure 2.) As the bandwidth of the
pulse is reduced, the field concentrates in the cavities (Figure 3b, 1 = 5.2¢,,).
We use an index modulation with a form of exp[—%/t2 ;], where Tmoq = 5t.
However, almost any modulation pattern and rate would satisfy adiabaticity in
this system, as long as the instantaneous rate is small enough compared with
the frequency separation between the bands at that particular instance. When
zero group velocity is reached, the photon pulse can be kept in the system as a
stationary waveform for any time duration. In this simulation, we store the
pulse for a time delay of 5.0y, and then release the pulse by repeating the
same index modulation in reverse (Figure 3b, t = 6.3%,,). The pulse intensity
as a function of time at the right end of the waveguide is plotted in Figure 3a,
and shows the same temporal shape as both the pulse that propagate through
the unmodulated system, and the initial pulse recorded at the left end of the
waveguide. Thus, the pulse is perfectly recovered without distortion after the
intended delay. In the FDTD simulations, we choose an index modulation
of 1% and a modulation rate of 1.1 THz only to make the total simulation
time feasible. The use of such extremely fast modulation demonstrates that
adiabaticity requirement in this system can be achieved easily. The simulation
demonstrates a group velocity reduction to zero for a 4-ps pulse at 1.55 um
wavelength.

This system represents an optimal implementation of the general criterion
for stopping light.

1. Only two resonators per unit cell are needed for the bandwidth to be
compressed to absolute zero.

2. The same system can be used for time reversal. The slope of the band can
change sign as one modulates the resonant frequencies, which results in a
time-reversal operation on the pulse [16].

3. This system can operate with fast modulation rates while maintaining
adiabaticity, which enables the use of the shortest waveguide. The total
length of the waveguide L is determined by the initial bandwidth of the
pulse, which sets the maximum speed in the waveguide vy, and by the
duration of the modulation t,,,4, Which sets the distance that the pulse
travels before it is stopped (i.., L ~ vg0Tpulse + Vg0Tmod>» Where Tpyise 18
the length of the pulse). Due to the delay-bandwidth product, veoTpulse
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is a constant independent of the signal bandwidth Sw, and the length of
the system can thus be estimated as L ~ (10 4+ §@wTmoq)! . In this system,
the gaps surrounding the middle band have sizes of the order of the
cavity—waveguide coupling rate 1/t, and are approximately independent
of the slope of the middle band (Figure 2). Thus, by increasing the
waveguide-coupling rate of the cavity, this gap can be made large, which
enables the use of fast modulation while satisfying adiabaticity [15] and
significantly reduces the length requirement of the structure. To accomplish
the entire process of stopping and recovering a 100-ps pulse, for example,
a waveguide with a length less than 30 microcavities modulated at a
maximum speed of 20 GHz is sufficient.

4. This system can compress the largest possible pulse bandwidth for a given
refractive index modulation strength én . For a resonance with frequency
w, the largest frequency shift possible for a given index modulation is
about wdén/n. Therefore, the largest compressible system bandwidth is
approximately [15]

dw >~ wén/n, (11)

which sets the largest bandwidth of a pulse that can be stopped. The
introduced system can achieve this optimal utilization of the system
bandwidth. The dispersion over most of the bandwidth is small compared
with typical CROW band due to existence of long-range through-waveguide
coupling between the cavities. Such reduction in dispersion is particularly
prominent when the bandwidth is smaller than 1/7. In the band structure of
Figure 2a, because we used large index shifts to make FDTD simulations
feasible, the band exhibits large dispersion. In practice, by operating in
a regime where n = 1/7w,., the dispersion over most part of the band
is practically negligible. Furthermore, all dispersive effects scale with the
second or higher orders of the system bandwidth, while the pulse delay
(~1/vg) scales inversely with the system bandwidth. The dispersive effects
integrated over time approaches zero in the limit of vanishing bandwidth.
In this system, the presence of a zero-width band thus significantly reduces
the effects of dispersion, and also results in a more efficient utilization of
system bandwidth.

The all-optical EIT-like system represents dramatic improvement over the
atomic/electronic schemes for stopping light. For a small refractive index
shift of 8n/n = 10™* achievable in practical optoelectronic devices [44], and
assuming a carrier frequency of approximately 200 THz, as used in optical
communications, the achievable bandwidths are of the order of 20 GHz,
which is comparable to the bandwidth of a single wavelength channel in
high-speed optical systems. In comparison, the atomic stop-light schemes
have experimentally demonstrated bandwidths less than 100 kHz [11, 12, 28,



244 M. F. Yanik and S. Fan

29]. The storage times are limited only by the cavity lifetimes. The loss in
optical resonator systems might be counteracted with the use of gain media in
the cavities [45], or with external amplification. Such capabilities could be
important for the use of such schemes in optical communication systems. The
loss in principle can also be suppressed with the use of three-dimensional
photonic crystals. In such 3D crystals, the loss is only limited by intrinsic
material losses. By using high-quality semiconductors or insulators, and by
operating at wavelengths below the mid-electronic band gap, the material loss
might be quite low, and one might speculate that the lifetime of optical
resonators might eventually exceed that of atomic resonances. For example,
the material loss lifetime in fused silica is in fact of the order of 1073 s,
and cavity quality factors (Q ~ 8 x 10°) approaching this limit have already
been measured in quartz microspheres [46]. Furthermore, optical modes with
quality factors approaching 5 x 10® with large spectral spacing have also been
demonstrated in integrated resonators [47]. In addition, materials with losses
lower than silica for microresonators are foreseeable. With such long lifetime
resonators, optical pulses can be stopped for durations sufficient for quantum
information-processing purposes.

4. Time reverse of light with tunable photonic structures

The capability to reverse a wave in time has profound scientific and technological
implications. Examples of applications include detection through random
media, adaptive optics, subwavelength focusing, and dispersion compensation
[48-56]. In acoustics or electronics, where the frequencies are low, time
reversal can be accomplished by electronic sampling, recording, and playing
back [49, 50]. For optical waves, on the other hand, because fields oscillate at
higher frequencies, all the mechanisms for time reversal up to now required
nonlinear processes such as near-degenerate four-wave mixing [56]. Such
nonlinear processes can phase conjugate a monochromatic wave. However, for
a pulse, phase matching needs to be satisfied over the entire pulse bandwidth,
which presents a challenge to the development of nonlinear materials. In
addition, such processes require high-power lasers, which limit on-chip
integration.

Here we present a dynamic photonic system that can be used to time reverse
optical pulses by only linear optics and electro-optic modulators [16]. No
knowledge of the time-dependent phase or amplitude of the light is necessary.
Thus, electronic or optical sampling at optical frequencies is not required.
Moreover, no nonlinear multiphoton process is required here, which greatly
broadens the choices of materials.

Consider a pulse ¥(t) = A(t, x)e! @~ 4 c.c., where e@/~%%) js the
carrier wave with frequency w. and wavevector k.. A(f, x) is the complex
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envelope that carries information. The envelope A(¢, x) can be decomposed
into its Fourier components as

At x) =Y Agem /b eitent, (12)
k

Here k is a wavevector component, and Aw(k) = w(k) — w, is the frequency
detuning. The time-reversed pulse envelope A(—t) has a Fourier decomposition
of

A(—f, X) — Z Akefi(kfkc)xefiAwkt‘ (13)
k

Thus, time reversal can be achieved if the frequency of a Fourier component
with detuning Aw; is converted to a new frequency with detuning —Awy, and
if such frequency conversion is performed for all Fourier components of the
pulse [56]. To preserve wavevector information, such a conversion process
should be translationally invariant. Therefore, the pulse should be inside the
system during the time-reversal process.

To achieve such frequency conversion, we consider a system consisting of
two translationally invariant subsystems A and B (Figure 4). Each subsystem
is a CROW structure [36, 37], with nearest-neighbor evanescent coupling rates
of aa and ap, respectively. The subsystems also evanescently couple to each
other with a coupling rate of 8. The system is translationally invariant. The
dynamics of the field amplitudes a; and b; for cavities A and B in the ith unit
cell can be expressed using coupled mode theory

da,-

= iwaa; +iaa(ai—1 + aip1) +ifb; — yaa; (14)

Svsi

System A

Figure 4. Schematic of a tunable microcavity system used to time reverse light. The disks
represent cavities, and the arrows indicate available evanescent coupling pathways between
the cavities. The system consists of two subsystems A and B represented by blue and red
colors, respectively. Each subsystem A and B consists of a periodic array of coupled cavities.
Within each subsystem, the cavities couple to their nearest neighbors with rates as and ag,
respectively. The two subsystems are also coupled with rate S.
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1 i+ ion(by1 + bis) + iBas — by (15)
Here wa and wp are the resonance frequencies, and y, and g are the loss
rates for the cavities A and B, respectively. For time reversal, we choose
ap = —ap = —a such that the two CROW waveguides have opposite dispersion
relations. The eigenfrequencies w. j of the system with a wavevector k£ can be
derived as

1
Wik =5 |:CUA,k +wpi+i(ya+ys) £ \/(a)A,k —wp i +i(ya — v8))* + 4132i| ,

(16)
where wa = wa — 2acos(kf) and wp x = wp + 2acos(kf) are the frequency
bands of the subsystems A and B by themselves, respectively. £ is the distance
between the nearest neighbor cavities in subsystem A or B. The shapes of the
bands become independent of losses when y4 and yg are equal, which can be
adjusted externally.

In this system, a pulse can be time reversed by the following process. We
start with ws — wp < —| B/, such that the lower band exhibits the characteristic
of the subsystem A (Figure 5a). By placing wa at the pulse carrier frequency
w, (Figure 5a), the lower band can accommodate the pulse, with each spectral
component of the pulse occupying a unique wavevector. After the pulse is in
the system, we vary wa and wg until wa — wg > |B| (Figure 5c), at a rate that
is slow compared with the frequency separation between the lower and the
upper bands. (The frequency separation reaches minimum 2|8| when wa = wg,
Figure 5b.) The modulation of the cavity resonances preserves translational
symmetry. Therefore, cross talk between different wavevector components of
the pulse is prevented. Also, the slow modulation rate ensures that each
wavevector component of the pulse follows only the lower band, with negligible
scattering into the upper band (i.e., the system evolves in an adiabatic [40]
fashion). Consequently, an initial state with a wavevector k& and detuning Awy
evolves into a final state with the same wavevector but an opposite detuning
of —Awy. The spectrum of the incident pulse is thus inverted while the
information encoded in the pulse is preserved. Such a spectral inversion
process generates a time-reversed version of the original pulse, which moves
in subsystem B backward to its original propagation direction, and exits the
system. The modulation can follow any adiabatic trajectory in time, and can
have a narrower spectrum than the pulse.

Such a system can be implemented in a photonic crystal as shown in Figure 6
[16]. Increasing the radius of one of the high-index rods to 0.5a generates
a singly degenerate mode at wy= 0.286(27c/a). We construct two CROW
waveguides, each consisting of an array of such cavities (Figure 6). These
two CROW waveguides form the subsystems A and B. Coupling between two
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Figure 5. Schematic of the frequency bands for the system shown in Figure 4. ws and wg are
the resonance frequencies for individual cavities in subsystems A and B, respectively, and £ is
the wavevector. In the left panels, the dashed curves correspond to the bands for subsystems A
and B, respectively, when the subsystems are not coupled to each other. The cavities in A are
coupled to each other via a negative coupling rate, thus the blue curve has a negative group
velocity. The cavities in B are coupled to each other via a positive coupling constant, thus the
red curve has a positive group velocity. The right panels are the band structures w, and w_ of
the coupled system. The figure includes three cases: (a) wa — wp <K —|B|. The lower frequency
band w_ exhibits the characteristic of the subsystem A with negative group velocity, and it is
centered at the pulse carrier frequency w. to accept an incoming pulse. (b) wa &~ wg. The
subsystems A and B are near resonant. The upper and lower bands of the system display a
mixed character of both subsystems of A and B. Here, the distance between the upper and
lower bands is near its minimum |w; — w_| = 2|B]. (¢) wa — wp > |B|. The lower frequency
band w_ exhibits the characteristic of the subsystem B with positive group velocity.

neighboring cavities of the subsystem A occur through a barrier of five rods
(¢ = 6a), with a rate of ap = —1.89 x 1073(2rc/a). The two subsystems A
and B are coupled with a rate of 8 = —1.89 x 1073(2wc/a). The resonant
frequencies of the cavities can be tuned by refractive index modulations of
the dielectrics within the cavities. In subsystem B, we introduce air cylinders
with radius 0.2a in the middle of the barriers. In a CROW waveguide, the
band-edge state at k£ = 0 has significant energy in the center of the barriers,
while the band-edge state at k = 7 /¢ has a nodal plane at the same location.
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Figure 6. An implementation of the general system of Figure 4 in a two-dimensional photonic
crystal. The crystal consists of high index (n = 3.4) rods in a low-index material (n = 1.5)
indicated by the gray background. The small black dots indicate the positions of the dielectric
rods. These rods have a radius of 0.2a, where a is the lattice constant. The large black dots
represent dielectric rods with a radius of 0.5a and with tunable index near 3.4. These dots
form the subsystems A and B. The white holes indicate air cylinders with radius 0.2a.

Thus, by adjusting the dielectric between the cavities, the dispersion of the
CROW waveguide can be strongly affected. Our choice for the radius of the air
cylinders yields ag = 1.89 x 107327 c/a) = —aa.

We simulate a system with 100 pairs of cavities using FDTD method 43.
The subsystems are terminated by introducing a loss rate equal to |as | in the
last cavities. This provides a perfect absorbing boundary condition. Initially,
we generate an asymmetric pulse (Figure 7a) by exciting the first cavity. The
excitation has a large peak at # = 0.5 - #,,5; and a smaller peak at 1 = 0.75¢,55,
where 5 1s the traversal time of the pulse through the system without any
index modulation. While the pulse is generated, the subsystem A is in resonance
with the pulse frequency, while the subsystem B is kept detuned. The field is
concentrated in the subsystem A (Figure 7b, upper panel, t = 0.87,), and the
pulse propagates at a group velocity of 2as£. After the pulse is generated, we
gradually tune the subsystem B into resonance with the pulse while de-tune
the subsystem A out of resonance (Figure 7a, t = 1.25%,,). At the end of this
process, the field is transferred from the subsystem A to the subsystem B
(Figure 7b lower panel, = 1.2f,,s). We used a modulation exp[—#*/#2 ;]
where tn,q4 = 10/8, which is sufficient to preserve adiabaticity. The pulse at
the exit of the subsystem B shows the perfect time-reversed temporal shape of
the initial pulse at the entrance of the subsystem A (Figure 7a). In the FDTD
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Figure 7. Propagation of an optical pulse through a coupled microcavity complex in a
photonic crystal system as the resonance frequencies of the cavities are varied. The photonic
crystal consists of 100 cavity pairs. The pulse is generated by exciting the first cavity.
(a) The dashed and solid black lines represent the variation of resonance frequencies
(wap — w.)/B =dw/P as a function of time, respectively. The blue and the red lines represent
the electromagnetic intensity as recorded in the middle of subsystems A and B, respectively.
tpass 15 the traversal time of the pulse through the system when no index modulation is applied.
Open circles are FDTD results, and the red and blue lines are from coupled mode theory.
(b) Snapshots of the electric field distributions in the photonic crystal at ¢ = 0.8f,, and
t = 1.2ty, in the upper and lower panels, respectively. The dimensions of the images along
the propagation direction are compressed. Yellow represents large positive electric fields. The
same color scale is used for both panels. The arrows indicate propagation direction of the
pulse, and the dashed lines represent the locations halfway in between subsystems A and B.



250 M. F. Yanik and S. Fan

simulations, to make the total simulation time feasible, we choose a large
index modulation of about 6% and a modulation rise time of about 10 ps. We
have also performed coupled mode theory calculations using Equations (14)
and (15), where the effects of index change are taken into account by the
modulation of the resonant frequencies, while the coupling constants are kept
unchanged. This approach is valid as long as the frequency change is small.
The results show excellent agreement with FDTD (Figure 7a).

Coupled mode theory allows us to determine the system requirements in
practical optoelectronic devices, because the modulation strengths (6n/n) are
typically less than 10~* [44]. The number of cavities is determined by the
pulse length and the duration of the time-reversal process. The duration of
time reversal can be reduced by using a large 8 because the fastest modulation
rate is limited by 8. The largest coupling 8 that can be used is limited by the
strength of index modulations. To accommodate a pulse, the coupling constants
|ea.g| needs to be larger than the bandwidth of the pulse. In a photonic
bandgap, both |xa g| and B decrease exponentially with the distance between
the cavities, and also depend on the bandgap size. The coupling constants can,
therefore, be designed by choosing appropriate distances and lattice constants
in photonic crystals [33]. With a refractive index modulation of the order of
10~* at a maximum modulation speed of 100 GHz, about 100 microcavities
are sufficient to time reverse an pulse with a 20 GHz bandwidth centered at
200 THz. Independent modulation of only two sets of cavities (i.e., A and B in
Figure 4) is required. With electro-optical modulation of high-Q microcavities
[57], chip-scale implementation of such systems is foreseeable.

5. Conclusion

The on-chip and room temperature operation of dynamic photonic structures
may enable completely new classical and quantum information-processing
capabilities. Multiple pulses can be held simultaneously in the system, and
desired pulses can then be released on demand. This capability might enable
controlled entanglement of networks of quantum systems in distant microcavities
via photons, thus opening up the possibility of chip-scale photonic quantum
information processing. We further note that the technique of coherent field
transfer between multiple systems (Figure 5) can be used to combine all-optical
systems and atomic systems to overcome some of the fundamental bandwidth
and wavelength limitations in the atomic systems. For example, the first few
subsystems of such a system can be all-optical resonators with a large bandwidth
to accommodate a fast optical pulse, and the last subsystem can consist of
nuclear spin states with long lifetimes to store the electromagnetic coherence.

The ultra-low group velocity and bandwidth compression also dramatically
enhances nonlinear effects over the entire bandwidths of pulses. Also, the
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stopping of light occurs at a single photon level. Thus, the work could have
important implications for quantum information processing, especially when
the group velocity is ultra low.

The small index modulations that are required can readily be achieved with
the intrinsic nonresonant electro-optical effects in semiconductors, without
requiring resonant electronic excitations that are intrinsically lossy. Moreover,
fluctuations in microcavity resonance frequencies due to fabrication inaccuracies
can be compensated by the index tuning, which is inherent in our schemes. In
addition to optics, the underlying ideas and scheme are applicable to all wave
phenomena, including acoustics and microwave signals.
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