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Photonic crystal device sensitivity analysis with Wannier
basis gradients
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We present a powerful sensitivity analysis method for devices in a photonic crystal. The method is based on a
Wannier basis field expansion and efficient matrix analysis techniques for finding eigenvalue and transmission
gradients with respect to the perturbation. The method permits fast analysis of a large number of dielectric
perturbation situations for multiple devices in a photonic crystal. We verify the method with finite-difference
time-domain and plane-wave expansion calculations. © 2005 Optical Society of America
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Analysis of performance changes as a result of per-
turbations, such as fabrication error and temperature-
induced index change, is an important step for
photonic crystal (PC) structure design. The stan-
dard finite-difference approach is to solve directly
for the performance parameters before and after
perturbations. Often, computationally expensive
finite-difference time-domain (FDTD) simulations1 or
plane-wave expansions2 (PWEs) need to be repeated for
each perturbation situation. We show here, however,
using a powerful method that we call Wannier basis
gradients (WBGs), how multiple perturbation situ-
ations can be analyzed at a very small computational
cost. This method will permit designers to perform
sensitivity analysis on a large variety of perturbations
that have often been ignored previously, optimize
designs for higher robustness against perturbations
and optimize specific performance parameters.

The WBG sensitivity analysis method involves a
one-time evaluation of a small perturbation matrix
Dd0

0 associated with a particular single unit cell
perturbation of a PC. With a few trivial matrix
multiplications and shifts involving Dd0

0, we obtain
the performance sensitivity to the same perturbation
applied to different unit cells or multiple unit cells for
any device constructed in the same PC. Furthermore,
unlike FDTD simulations and PWE, the WBG method
does not require finer computational grids for smaller
dielectric boundary perturbations.

Another emerging technique for sensitivity analy-
sis is the f inite-difference frequency-domain method,3

which works well for arbitrary dielectric structures, not
just periodic media. The WBG method uses a basis
that is optimized for a particular PC. For analyzing
multiple designs within a particular PC, it is more ef-
ficient to use the WBG method.

For clarity, we focus on defect structures in two-
dimensional photonic crystals with TM-polarized
fields. Extensions to the TE case4 and to three
dimensions are under investigation. We express the
dielectric distribution as e�r� 1

P
i�Dei�r��, where

e�r� is the dielectric function of the perfect crystal
and Dei�r� is the defect structure at lattice site i.
First we expand the field for the defect mode in
maximally localized Wannier basis functions5 as
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E�r� �
P

n,R an,RWn,R�r�, where an,R are the ex-
pansion coeff icients, and Wn,R�r� are the Wannier
functions with Bloch wave band index n and crystal
lattice vector R. For resonator structure eigenfre-
quency calculations, following Busch et al.,6 we solve
a sparse (i.e., computationally cheap) eigenvalue
equation:√

I 1
X
i
Di

!
a �

µ
1
v

∂2

Aa, a � �an,R� , (1)

where I is the identity matrix and v is the frequency.
A is given explicitly by Busch et al.6 What is impor-
tant for this discussion is that A is obtained from the
periodic PC properties and it is independent of the de-
fect structure. Matrices Di are defined as

�Di�nR,mS �
Z

�2
Wn,R

��r�Dei�r�Wm,S�r�d2r . (2)

With a few matrix rearrangements, we get a sparse
matrix equation for the transmission–ref lection of
input–output-type devices:

Bx � y , (3)

where B is obtained from matrices A and Di and vec-
tor y is a vector related to the input field; x is a
vector of the form �r, t, a�, where r � ri, t � ti, �i �
1, 2 . . .� are ref lection and transmission coeff icients of
the input and output waveguide modes indexed by i.
The full form of B is given by Busch et al.6 What is
important for this discussion is that, in the presence
of an additional dielectric perturbation de�r�, Eq. (3)
becomes

�B 1 dD�x � y , (4)

where dD is given by Eq. (2), with de�r� in place of
Dei�r�.

The eff iciency of the WBG method relies partly on
the efficiency of the maximally localized Wannier basis
expansion. First, because the Wannier functions are
transformations of the Bloch waves, they contain all
the information about the underlying crystal. As a
© 2005 Optical Society of America



February 1, 2005 / Vol. 30, No. 3 / OPTICS LETTERS 303
result only a few Wannier basis functions per lattice
site are needed to represent the field. Second, because
the Wannier functions are highly localized, defects only
induce interactions among Wannier functions centered
on neighboring lattice sites [Eq. (2)]. This makes the
matrices in Eqs. (1) and (3) sparse. The eigenvectors
of Eq. (1) and B21 in Eq. (3) can be calculated with
reasonable computational cost, and the results will be
used in the WBG sensitivity analysis.

The WBG method can calculate both the sensitivity
of the resonator eigenfrequencies and the sensitiv-
ity of the transmission–ref lection coeff icients in
input–output-type devices. Consider a single unit
cell perturbation de0�r� that changes the dielectric
distribution to e�r� 1

P
i�Dei�r�� 1 de0�r�. The eigen-

value equation becomes

�E 1 A21Dd0�a � ba, b � �c�v�2, (5)

where E � A21�I 1
P

i Di� and Dd0 is given by Eq. (2),
with de0�r� in place of Dei�r�.

One way to f ind the sensitivity of the transmis-
sion–ref lection coefficients is to solve the eigenvalue
problem again. However, this method becomes
computationally expensive when we apply the same
perturbation to other unit cells, or to multiples of
them. If we can parameterize the perturbation by
parameter g and find the derivative of Dd0 with
respect to g, Dd0

0, then we can use the WBG method
to calculate the effect of the perturbation much more
efficiently, without repeating the eigenvalue problem.

One type of easily parameterized perturbation is the
scaling of Den�r�. This type of perturbation could be
caused by effects such as temperature changes or the
presence of electric f ields. In this case Dd0

0 � Dn.
Another case is a shift in the material boundary. As-
suming that g parameterizes the shift of the material
boundary h�g, r�, we can show that

�Dd0
0�nR,mS � er

I
h�g�0, r�

Wn,R
��s�Wm,S�s�ds , (6)

where er is the dielectric constant difference across
the boundary. This integral is well defined for the
TM case, when the electric f ield is continuous across
the material boundary. For TE fields we can use a
smoothing method3,7 to derive a slightly different equa-
tion to handle the field discontinuity.

With Dd0
0 properly defined, let b be a nondegener-

ate eigenvalue of matrix E and b�g� be an eigenvalue
of E 1 gA21Dd0

0 such that b�0� � b. b and E are re-
lated by expressions Ev � bv and wyE � wyb, where
v and w are the right and left eigenvectors of E associ-
ated with b, respectively. Using a result from matrix
analysis,8 one can show that

db�g�
dg

Ç
g�0

�
wyA21Dd0

0v
wyv

. (7)

Equation (7) is a computationally trivial matrix
multiplication, involving Dd0

0 and a few parameters
that are independent of the perturbation and easily
obtained when we calculate the eigenfrequency by use
of Eq. (1). Because of the localization of the Wannier
functions to a few neighboring unit cells,6 Dd0

0 typi-
cally has only a few hundred nonzero elements. As a
result, the sensitivity analysis can be done in a matter
of seconds on modest personal computing hardware.

Although Dd0
0 is for the perturbation to one specif ic

unit cell, sensitivity analysis of application of the same
perturbation to other unit cells, or to multiples of them,
is computationally trivial. The change to the dielec-
tric distribution becomes

P
j �dej�r��, where dej �r� �

de0�r 2 Rj � for the ith unit cell. Using the fact that
the Wannier functions for different lattice sites are just
translations of each other, we can show that the sensi-
tivity can be evaluated simply as

db�g�
dg

Ç
g�0

�
wy

P
j �A21Ddj

0�v
wyv

, (8)

where �Ddj
0�nR,mS � �Dd0

0�n�R2Rj �,m�S2Rj �. The matrix
shift is a trivial operation. Therefore we can map the
eigenfrequency sensitivity to the perturbation of differ-
ent unit cells, as well as coherent effects from multiple
simultaneous perturbations. Furthermore, the com-
putational overhead of founding Dd0

0 can be amortized
over the analysis of many structures constructed in the
same PC.

For small shifts in the material boundary, the di-
rect infinite difference obtained from FDTD simula-
tion or PWE needs high-resolution computational grids
to resolve the perturbation. Assume that the Wan-
nier functions are found on a computational grid larger
than the boundary shift. Because the Wannier func-
tions are continuous and vary significantly only over
distances comparable with the wavelength, simple in-
terpolation of the Wannier functions can ensure the ac-
curacy of Eq. (6).

By use of the same method, it is straightforward
to show that a dielectric perturbation changes Eq. (3)
to �B 1 gDd0

0�x � y . It can be shown that, for
any invertible matrix, if dB�g��dg � Dd0

0, then
dB21�g��dg � 2B21Dd0

0B21. Therefore we have a
simple expression for the sensitivity:

dx�g�
dg

� 2B21Dd0
0B21y . (9)

Matrix B is small enough to be inverted directly
for structure sizes up to 50 by 50 lattice constants.
Therefore B21 can be obtained when we solve the
transmission for the nonperturbed structure, and a
change in the transmission–ref lection can be deter-
mined by use of Eq. (9) with simple multiplication.
All the advantages of using Dd0

0 mentioned above still
apply. We refer to both Eq. (7) and Eq. (9) as the
WBG method for sensitivity analysis.

We compared the WBG method with direct solution
for the perturbed ref lection spectrum by use of the
FDTD simulation. The test structure and the pertur-
bation are shown in Fig. 1. First we calculated the re-
f lection spectrum for the unperturbed structure using
the Wannier basis expansion. The calculation, yield-
ing both the ref lection spectrum and the necessary
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Fig. 1. Ref lection spectra for a PC waveguide bend [see
inset: high-index rods �n � 3.4� in air, rod radius 0.18a,
where a is the lattice constant]. The two highlighted rods
(open circles) in the inset are perturbed by a 10% radius
increase. Solid and dashed curves, spectrum from the
FDTD method, before and after perturbation, respectively;
filled circles, original spectrum found by use of Wannier
expansion; circles, perturbed spectrum found by use of
Eq. (9).

Fig. 2. (a) Resonator formed by three missing rods. The
computational size is 9 by 9 lattice constants, larger than
the area shown. The PC parameters are the same as in
Fig. 1. (b)–(d) Sensitivity maps for the three eigenfre-
quencies of the resonator. The shading above each rod
shows the changes to v in units of 2pc�a 3 1024 when the
particular rod’s radius increases by 10%. Using WBG sen-
sitivity analysis, it took 	10 s to calculate all three maps
on a Pentium 3 computer.

matrices for the sensitivity calculation [Eq. (9)], took
roughly 30 min on a Pentium 3 personal computer.
The result matches well with the FDTD calculation of
the spectrum (Fig. 1), which took 10 h on a faster ma-
chine. For the spectrum after perturbation, the WBG
result matches well with FDTD calculation (Fig. 1).
Another 10 h were needed for this new FDTD calcula-
tion. In contrast, our WBG method took roughly 10 s
to compute, since it involves only small matrix multi-
plications [Eq. (9)]. It should be pointed out that, be-
fore the WBG sensitivity analysis, we needed roughly
10 min of computation time to calculate perturbation
matrix Dd0

0. This matrix, however, can be reused if
we calculate the perturbed spectrum that results from
a 10% radius increase for any other rod or rods in any
device constructed with the same PC. Each additional
spectrum will then be obtained in a matter of seconds.

We also verified the WBG sensitivity calculation for
a PC defect resonator by use of PWE. The structure
is shown in Fig. 2(a). First, a Wannier expansion
calculation yields resonator eigenfrequencies and the
vectors needed for the sensitivity calculation [Eq. (7)].
When found this way, v agrees with PWE calcula-
tions to four significant f igures. Then, the rod at
row 3, column 2 in Fig. 2(a) is perturbed by a 10%
radius increase. Three methods were used to find the
changes �Dv� for the three eigenfrequencies. Using
PWE directly to f ind v of the perturbed structure
took 	2 h, and Dv were found to be 1.35 3 1023,
5.20 3 1025, and 6.87 3 1024. Because adding a per-
turbation is no different from changing the resonator
design, we can solve the new values of v directly, us-
ing the Wannier expansion again. This took 	1 min
�Dv � �1.34 3 1023, 5.10 3 1025, 5.91 3 1024��.
The WBG method, using Eq. (7), took less than 1 s
�Dv � �1.52 3 1023, 4.48 3 1025, 4.76 3 1024��. Dis-
crepancies among the three methods are less than 15%
for the f irst two modes. The highest frequency mode
is very close to the band edge of the PC, so the result
from PWE is less reliable. The error in the WBG
method is due to the fact that we used only a linear
projection to approximate Dv based on the slope found
in Eq. (7).

As we have shown, even without using Eq. (7),
solving for Dv directly in the Wannier basis already
offers a large increase in speed over PWE. To demon-
strate the advantage of using WBG over rerunning the
Wannier expansion, we calculated Dv as a result of a
10% radius change for each and every rod in the reso-
nator. The results for all three modes are shown in
Fig. 2. Because Eq. (7) is a simple multiplication, the
three sensitivity maps took a total of 10 s to calculate.
Solving for Dv directly in the Wannier basis requires
solving a separate matrix eigenvalue equation for each
lattice site and will take more than 1 h. If we use
PWE, more than 100 h will be needed. Therefore, if
we need to search through a large number of designs
for a given sensitivity criterion, using the WBG
approach is the only practical method available that is
known to the authors.

Y. Jiao’s e-mail address is jiaoyang@stanford.edu.
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