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Abstract

We show how to compute in a numerically efficient way the maximum

risk of a portfolio, given uncertainty in the means and covariances of asset

returns. This is a semidefinite programming problem, and is readily solved

by interior-point methods for convex optimization developed in recent years.

While not as general, this approach is more accurate and much faster than

Monte Carlo methods. The computational effort required grows gracefully, so

that very large problems can be handled. The proposed approach is extended

to portfolio selection, allowing for the design of portfolios which are robust

with respect to model uncertainty.
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1 Introduction

Consider a portfolio of risky assets held over a single period, where the dis-

tribution of the asset returns is imprecisely known. That is, estimates exist

for the expected value and covariance matrix of the asset returns, but these

estimates are subject to estimation errors, and possibly to modeling errors.

Modeling errors arise, for example, because statistical procedures make

the unrealistic assumption of distributions being stationary. Further, since

the covariance matrix has n (n + 1) /2 independent entries, if a large number

of assets is to be considered then a very large number of samples is required in

order to have good, uncorrelated estimates of all the entries in the covariance

matrix. The usual fix consists of assuming a structure for the covariance

matrix (typically diagonal plus low-rank), but it is not clear that this is

statistically justified.

We use the following notation. There are n assets, with expected return

µ ∈ Rn and covariance Σ ∈ Rn×n. The portfolio under analysis is described

by the weight vector w ∈ Rn, where wi represents the fraction of the total

wealth held in asset i.

In a simple analysis of the risk associated with the portfolio, these esti-

mates of asset statistics are assumed exact. The portfolio expected return

and variance are then assumed to be µTw and wTΣw. Such an approach

does not account for the imprecision in the estimates of the asset statistics,

which may have a significant effect on the risk associated with the portfolio.

Repeating the analysis under a small number of different scenarios (i.e.,

with different values for the expected returns and covariance matrix) is a

simple way of dealing with inaccuracy in the estimates. It is, however, an
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inadequate approach for problems with a moderate to large number of assets.

A large number of scenarios may be run in a Monte Carlo procedure, but, as

the number of assets becomes large, obtaining accurate results by this method

quickly becomes numerically too expensive. (Further, while Monte Carlo

analysis can work well in analyzing the risk of moderately large portfolios, it

is not easily incorporated in an optimization procedure with the purpose of

finding a portfolio with desirable characteristics.)

The purpose of this article is to present a new approach for upper bound-

ing the risk associated with a portfolio, for a given description of the uncer-

tainty in the estimates of the first and second moments of the asset returns.

We also show how to design portfolios that are robustly optimal, in the sense

that they minimize this upper bound on risk. In fact, solving portfolio opti-

mization problems with great precision, when the problem parameters (say

µ and Σ) are not precisely known is not a reasonable proposition. A better

approach is to explicitly account for such parameter uncertainty in the opti-

mization, and to design a portfolio that performs reasonably for any set of

parameters within the range of parameter uncertainty.

Consider an example of maximum risk analysis. Given an entry-wise

description of uncertainty in the estimate of Σ, how large can the portfolio

variance be? Assume we have the following information. We know an upper

and lower bound on the variances of each asset, and an upper and lower

bound on the covariances of each pair of assets. That is, for each entry Σij

of the covariance matrix we have an upper bound Σij and a lower bound

Σij . And, of course, we know that the covariance matrix must be positive
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semidefinite. The problem is then

maximize wTΣw

subject to Σij ≤ Σij ≤ Σij, i, j = 1, . . . , n

Σ � 0,

(1)

where w ∈ Rn is fixed, and Σ ∈ Rn×n is the problem variable.

This is a convex program, with linear objective, and convex constraints.

The positive semidefinite constraint is nonlinear and non-differentiable. The

problem is, in fact, a semi-definite program (SDP), for which new optimiza-

tion methods have been developed in recent years (Nesterov and Nemiroski’s

book [NN94] is a fundamental source, for an overview see Vandenberghe and

Boyd [VB96], and software is now freely available [VB94, AHN+97, Stu98].)

With these methods, the global solution of many convex programs, including

SDPs, can be efficiently computed. The computational effort is shown to

grow polynomially with problem size, even for nonlinear, non-differentiable

problems, making the methods suitable for large problems.

We are, in effect, departing from a Bayesian approach, in which the un-

certainty about the distribution would be incorporated by defining a new

distribution on the returns (with a larger variance.) An approach similar to

the one we discuss here has, however, been used with great success in the

field of robust control.

Broadly speaking, our approach falls in the Markowitz framework, where

a tradeoff between return mean and variance is present. The genesis of

the field has been independently attributed to Markowitz [Mar52, Mar59]

and Roy [Roy52]. Implications for the valuation of assets arose with the

capital asset pricing model (CAPM) of Sharpe [Sha64] and Lintner [Lin65].
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Recent general references are, e.g., Rudolf [Rud94], and Luenberger [Lue98].

The book from Salomon Brothers [LBK96] is one of many sources for the

downside-risk approach, which has been increasingly used in recent years

(see also [Roy52]).

The RiskMetrics technical document [MR96], by J. P. Morgan and Reuters,

provides an introductory overview of portfolio risk analysis. With the in-

creased use of downside risk approaches, more attention is being paid to the

effects of uncertainty in the covariance matrix estimates. A recent article by

Ju and Pearson [JP99] in the Journal of Risk is titled “Using value-at-risk to

control risk taking: how wrong can you be?” This article provides the tools

to answer this question, and proposes robust optimization as a methology to

deal with it.

In §2 we describe three worst-case portfolio analysis problems that can be
solved via numerically efficient convex optimization methods. In §3 and §4
we look at other descriptions of the uncertainty set for the mean and covari-

ance matrix that are convex and can be efficiently handled. In §5 we look at
solution methods for the analysis problem. In additions to the general ap-

proach via interior-point methods, specialized projection methods can also

be used. In §6 we describe the corresponding design problem, that is, find-
ing a portfolio that has good worst-case performance. While software that

can be used to solve the analysis problem is now widely available, the de-

sign problem requires specialized methods. In §7 we describe how the design
problem can be efficiently solved using cutting plane methods.
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2 The analysis problem

Assume the following data: a) the vector w ∈ Rn specifies the weights of the

portfolio under analysis; b) the setsM ⊂ Rn and S ⊂ Rn×n define the range

of uncertainty for the estimates of the mean and covariance matrix of asset

returns, that is, they define the values that µ and Σ may take. Consider the

following problems.

• The variance problem: compute the worst-case variance of portfolio w,

i.e.

sup
Σ∈S

wTΣw. (2)

• The downside risk problem: compute the worst-case value at risk in

portfolio w, for a confidence level of η, i.e.

sup
µ∈M,Σ∈S

γ (wTΣw)1/2 − µTw − 1, (3)

with η = Φ(γ), where Φ(·) is the c.d.f. of a zero norm, unit variance
Gaussian random variable.

• The tracking error problem: compute the worst-case expected square

tracking error of portfolio w relative to a reference portfolio with weights

v, i.e.

sup
µ∈M,Σ∈S

(w − v)T
(
Σ + µµT

)
(w − v). (4)

Note that we have assumed the uncertainty description for Σ and µ to be

separable. Although we won’t discuss it in this thesis, this doesn’t have to be

the case, and some joint descriptions can also be handled. As a second side

note, the interpretation of problem (3) as the value at risk for a confidence
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level of η requires the assumption of jointly Gaussian distribution of returns.

With proper care and adequate interpretation, the downside risk problem

can still be used without this assumption. The derivations for problems 3

and 4 can be found, e.g., in Lobo, Fazel and Boyd [LFB99].

The sets M and S can be obtained from statistic considerations (i.e.,

from confidence intervals), and from assumptions about modeling errors. The

process by which M and S are obtained, however, is not discussed in this

thesis. Our focus is on identifying descriptions of S and M that can be

handled with new efficient convex optimization methods. In particular, one

critical element in any description of the set S is that all its elements must be
positive semidefinite, since they must be valid covariance matrices. In this

article we show how to handle problems with such a positivity constraint on

Σ, as well as with other types of constraints, including box constraints on Σ

and µ and ellipsoidal constraints on µ.

3 Uncertainty sets for the expected returns

vector

The expected asset returns appear as a linear term in the downside risk

problem, and as a quadratic term in the tracking error problem. We now

show how to obtain solutions for the worst-case analysis of these terms, for

two different types of uncertainty sets. In several cases an analytical solution

exists.
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3.1 Box constraint

Consider a set of entry-wise upper and lower bounds on µ (or box constraint,

or �∞ constraint), i.e.

µ
i
≤ µi ≤ µi, i = 1, . . . , n.

With this constraint specifying the uncertainty in the expected asset returns,

analytical solutions are easily derived for the terms in µ that appear in the

worst-case problems. For the downside risk problem, which is linear in µ,

the solution is:

sup
µ∈M

−µTw = µT (w)− − µT (w)+,

where (w)+ is a vector with entries max{wi, 0}, and (w)− is a vector with

entries max{−wi, 0}. For the tracking error problem, which is quadratic in
µ, the solution is:

sup
µ∈M

(µT (w − v))2 =

= max
{(
µT (w − v)+ − µT (w − v)−

)2
,
(
µT (w − v)+ − µT (w − v)−

)2
}
.

3.2 Ellipsoidal constraint

A more interesting case is when M is an ellipsoid, i.e.,

M = {µ : (µ− µ̄)TS−1(µ− µ̄) ≤ 1}.

Note that for many statistical procedures M will indeed be an ellipsoid, with

S collinear with Σ (i.e., a scaled version). This is not the case if µ is inferred

by some other process (such as some pricing model, or from information from

analysts’ reports). We now show how to incorporate worst-case ellipsoidal
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uncertainty in µ in a practical optimization program. We do not require an

assumption of collinearity with Σ.

For the downside risk problem, which is linear in µ, we can easily compute

the worst-case value analytically.

λ = sup
µ∈M

−µTw = − inf
µ∈M

µTw = − inf
‖S−1/2µ̃‖≤1

(µ̄+µ̃)Tw = −µ̄Tw− inf
‖z‖≤1

zTS1/2w,

where S1/2 is the (symmetric, positive-semidefinite) matrix square root of S.

The z that achieves the infimum is easily seen to be

z∗ = − S1/2w

‖S1/2w‖ ,

so that the value of the supremum is

λ = −µ̄Tw +
wTSw√
wTSw

= −µ̄Tw +
√
wTSw = −µ̄Tw + ‖S1/2w‖.

Therefore, the solution to the downside risk problem (3) with ellipsoidal

uncertainty in µ is obtained by adding the constant

−µ̄Tw + ‖S1/2w‖ − 1

to the solution of the worst-case variance problem (2).

For the tracking error problem, which is quadratic in µ, we can also obtain

a numerically tractable program. The derivation is bit more involved. To

obtain the worst-case error we need to evaluate

λ = sup
µ∈M

(w − v)TµµT (w − v).

It is easily seen that λ is the smallest number that satisfies

µT (w−v)(w−v)Tµ ≤ λ for all µ such that (µ− µ̄)TS−1(µ− µ̄) ≤ 1. (5)
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By using the S-procedure [BEFB94, p.23], λ satisfies (5) if and only if there
is a τ such that


 −(w − v)(w − v)T 0

0 λ


 − τ


 −S−1 S−1µ̄

µ̄TS−1 1− µ̄TS−1µ̄


 � 0, τ ≥ 0.

This can be rewritten as

 τS−1 −τS−1µ̄

−τµ̄TS−1 τ(µ̄TS−1µ̄− 1) + λ


−


 w − v

0




[
(w − v)T 0

]
� 0, τ ≥ 0,

and, with the Schur complement [BEFB94, p.7], we get the equivalent in-

equality




τS−1 −τS−1µ̄ w − v

−τµ̄TS−1 τ(µ̄TS−1µ̄− 1) + λ 0

(w − v)T 0 1



� 0, τ ≥ 0.

This last formulation involves a positive semidefinite constraint, or linear

matrix inequality, and can be efficiently and globally handled [VB96].

4 Uncertainty sets for the covariance matrix

We now turn to the specification of S, that is, to the description of our
knowledge of Σ (or, more accurately, the description of the uncertainty in

our knowledge of Σ).

The variance and tracking error problems (2) and (4) are linear in Σ.

The downside risk problem (3) can be cast as a program where Σ appears
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linearly:

minimize t− µTw

subject to t2 ≤ γ2wTΣw

µ ∈ M, Σ ∈ S,
where t ∈ R is an extra variable. The extra inequality is convex quadratic

in t, and linear in Σ.

For a practical optimization method to be effective we want, if at all pos-

sible, a description of the uncertainty set S that leads to a convex program.
All the problems in consideration are (or can be made) linear in Σ, and they

will be convex if the set S is convex.

We have already introduced a positivity constraint and box constraints,

both of which are convex. We represent the constraint that Σ be positive

semidefinite by

Σ � 0.

This constraint is required to ensure that all the Σ in the uncertainty set S
are valid covariance matrices. It may, however, be omitted: a) if the other

constraints are shown to define a subset of the positive semidefinite cone; or

b) if Σ is parameterized in such a way that it is guaranteed to always be

positive semidefinite (as will be discussed for factor models in §4.4). The
most straightforward description of an uncertainty set for Σ is by adding to

the positivity constraint a set of box constraints, on each entry Σij :

Σij ≤ Σij ≤ Σij

for i = 1, . . . , n, j = 1, . . . , i.
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4.1 Second-moment of the Wishart distribution

If the returns are normally distributed, the estimate of covariance matrix has

a Wishart distribution. The second-moment of the Wishart distribution can

be used to define a region of confidence for the estimate. The moments of the

Wishart distribution are given, e.g., in Muirhead’s book [Mui82, p.90]. This

leads to an ellipsoidal constraint on the entries of the covariance matrix, i.e.,

(s− s0)
TQ(s− s0) ≤ 1

where s ∈ Rn(n+1)/2 is a vector representation of the (upper triangular)

entries of Σ. This can also be written as a second-order cone constraint,

using a square-root of Q. The size of this constraint can be quite large; Q

has about n4/4 entries. Note, however, that the matrix Q has a great deal

of structure (again, see [Mui82]). Further work is required to determine how

to exploit this structure for fast algorithms.

The region of confidence can be scaled by a factor that specifies the “con-

servativeness” (large factor) or “aggressiveness” (small factor) of the analysis.

Under a probabilistic interpretation, the size of the ellispsoid corresponds to

the confidence level, i.e., to the probability of the covariance matrix being in

the uncertainty set.

4.2 Constraints on the correlation coefficients

A more natural approach may be to write constraints not on the covariances,

but on the correlation coefficents. The constraint for coefficient ij,

ρ
ij
≤ ρij ≤ ρij,
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is equivalent to

ρ
ij

√
ΣiiΣjj ≤ Σij ≤ ρij

√
ΣiiΣjj.

If Σii and Σjj are constant (i.e., if the variance of each asset is known exactly),

this constraint is linear in Σ. In this case, it is equivalent to a box constraint.

In the general case, however, the constraint on the correlation coefficient

is convex only if ρ
ij

≤ 0 and ρij ≥ 0. In particular, it is then a convex

hyperbolic constraint. By adding the auxiliary variable t ∈ R, it can be

written as one second-order cone (SOC) and two linear constraints:

∥∥∥∥∥∥∥


 2 t

Σii − Σjj



∥∥∥∥∥∥∥
≤ Σii + Σjj, ρ

ij
t ≥ Σij ≥ ρijt.

4.3 Constraints on the variance of specific portfolios

Box constraints are a particular case of linear constraints on the covariance

matrix. As an example of the use of other linear constraints, suppose we

have better statistical information about the return of a given portfolio u

(e.g., the market portfolio). That is, we have a confidence interval for the

variance of the portfolio return. We can then define the linear constraint

s ≤ uTΣu ≤ s,

where s and s are the lower and upper bounds on the variance of portfolio u.

This is only useful if it results in a tighter specification for Σ than, say, the

confidence intervals for its individual entries. Of course, constraints such as

this can be included simultaneously for any number of portfolios.
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4.4 Factor models

Factor models, unfortunately, are not easily handled. Consider a one factor

model, that is, a diagonal plus rank one covariance matrix:

Σ = diag(d) + bbT .

In general, if the uncertainty is specified by a set which is convex in the di

and bi, i = 1, . . . , n (e.g., a box constraint), a non-convex quadratic problem

results. (Note that, in this case, we can parameterize Σ in the variables di,

bi, i = 1, . . . , n, and dispense with the positive-semidefinite constraint.)

5 Solving the analysis problem

If one of the objectives (2), (3), or (4) given in §2 is coupled with any of the
convex uncertainty sets described in §3 and §4, a convex program results.

While nonlinear and non-differentiable, these programs have a global opti-

mum, and can be efficiently solved. Thus, we can treat problems like: find

the worst case downside risk given box uncertainty in Σ; or, find the worst

case tracking error given box uncertainty in Σ and ellipsoidal uncertainty in

µ. We will discuss two solution techniques: semidefinite programming, and

projection methods.

5.1 Solution by semidefinite programming

Convex programming methods developed in recent years can efficiently solve

all the convex problems previously described, even for large problem sizes.
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These methods are discussed, e.g., in Vandenberghe and Boyd [VB96]. Cur-

rently available semidefinite programming software packages can handle prob-

lems of size over n = 100, on an inexpensive personal computer.

The computational complexity of these methods is provably polynomial

in problem size. On the other hand, computing resources show no sign of

departing from exponential growth and, as a consequence, within a few years

semidefinite programs of size well into the thousands will be readily handled.

5.2 Solution by projection methods

There are alternative methods for the solution of the analysis problem that

further exploit specific structure in the problem. These methods are based

on the fact that it is easy to compute the projection on the sets defined by

some of the constraints discussed above. Unlike in §5.1, this approach is
not general, and depends on the particular problem under consideration. Its

effectiveness relies on the projections on the objective level and constraint

sets being computationally inexpensive.

For conciseness, we consider the example (1) given in the introduction,

that is,

maximize wTΣw

subject to Σij ≤ Σij ≤ Σij, i, j = 1, . . . , n

Σ � 0,

(6)

where the variable is the symmetric matrix Σ ∈ Rn×n. This is a problem for

which a projection method can be used, since all the required projections are

readily computed.
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Several optimization algorithms have been developed that are based on

iterated projections (see, e.g., Bertsekas [Ber95]). In practice, we have found

a variation of the projection arc algorithm to be effective – but, as noted

before, with the caveat that our numerical experience is not extensive.

We next show how to compute projections onto objective function level

sets, and onto the sets defined by the two constraints in the above prob-

lem: the box constraint and the positivity constraint. All projections are

given in the Frobenius norm (consistency of norms is required to ensure the

convergence of a projection based method.)

We also describe the problem dual to (6) which, for some problems, is

more readily solved.

5.2.1 Projection on the objective level set

The gradient of the variance objective function (6) is a rank-one matrix,

∇Σ(w
TΣw) = wwT .

Hence, the Euclidean projection (i.e., for matrix 2-norm) on the objective

level set V = {Σ : wTΣw ≥ σ2} is given by

Pobj(Σ) = Σ + γww
T , where γ =

σ2 − wTΣw

(wTw)2
.

It can be shown that this also yields the Frobenius metric projection.
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5.2.2 Projection on the box constraint set

The Frobenius norm projection on the set defined by the box constraint (6)

is easily seen to be

[Pbox(Σ)]ij =




Σij, Σij < Σij

Σij, Σij < Σij

Σij , otherwise.

5.2.3 Projection on the positive semidefinite cone

The projection of Σ on the positive semidefinite cone (6) is also easily com-

puted. This projection is obtained by computing the eigenvalue decomposi-

tion of Σ and taking only the dyads with positive eigenvalues, i.e.,

Ppsd(Σ) = U diag
(
(λi(Σ))+

)
UT ,

where Σ = U diag(λi(X) )U
T is the decomposition of Σ, and (x)+ = max{x, 0}.

This projection is valid in both Euclidean and Frobenius metrics. (For proof,

consider the problem of minimizing ‖X−Σ‖F subject to X � 0, and use the

decomposition of Σ plus the invariance of the norm with respect to unitary

transformations.)

5.2.4 Solution by Iterated projection

For a given value of the objective, σ2, the problem can be determined to

be feasible or infeasible by iterating the 3 projections, Pobj, Pbox, and Ppsd.

The problem is feasible if the objective level set V = {Σ : wTΣw ≥ σ2}
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and the two sets defined by each of the problem constraints have non-empty

intersection.

If the three sets do indeed have non-empty intersection (i.e., if the optimal

objective is higher than σ2) the convexity of the sets and the fact that all

projection are in the same (Frobenius) norm guarantees that the cycling

of the projections will converge to a point in the intersection of the sets.

Further, if the intersection of the sets is empty (i.e., if the optimal objective

is lower than σ2), the cycling of the projections will converge to a fixed cycle.

This procedure can be repeated with bissection of σ2, to find the optimal

value of (6), which lies at the threshold between feasibility and infeasibility.

We have then the following, simple algorithm:

1. Pick a value σ2 for the objective, and cycle through the 3 projections:

S1 = Pobj(Σ), S2 = Pbox(S1), Σ = Ppsd(S2).

2. If σ2 is less than the optimal value, step 1 will converge to a fixed point

(Σ, S1, S2 equal to each other).

If σ2 is greater than the optimal value, step 1 will converge to a fixed

cycle (Σ, S1, S2 repeating from cycle to cycle).

3. Repeat from step 1, with bisection on σ2, to find the optimal value to

the desired precision.

In practice, this is not an effective method. The convergence for the case

when the objective value is feasible can be quite slow, which makes it hard

to reliably detect infeasibility (since this detection relies on non-convergence

to a point). Hence, what should be a lower bound for the bisection is easily
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mistaken for an upper bound, leading to erroneous results. A more effective

method is presented next.

5.2.5 Solution by search along the arc of iterated projections

A more effective optimization method can be obtained by performing a line

search along the gradient projection arc (see, e.g., Bertsekas [Ber95, §2.3]).
The idea is, from a given starting point, to scale the gradient of the objective

and project it on the constraint set. Bisection is then performed on the

gradient scaling, to find the projected point with the best objective value.

This is then used as a new starting point for the next iteration. The procedure

is repeated until convergence.

However, in our case the projection arc cannot be found easily. We easily

project on each of two convex constraints (box and positive semidefinite),

but no easy way to compute the projection on the intersection of these two

constraints. We can, nevertheless, use the two projections iteratively to find

an arc of feasible points (which we may call a “pseudo-projection arc”). With

this modification, the method can still be shown to converge. We have then

the following algorithm:

1. Given the current point Σ and gradient scaling κ, let S := Σ+κ∇Σ(w
TΣw) =

Σ + κwwT .

2. Repeat S := Ppsd(Pbox(S)) until S is feasible.

3. Repeat steps 1 and 2 as required to perform bisection search on κ to

maximize wTSw.
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4. Update the current point to be the result of the bissection search,

Σ := S, and repeat from step 1 (until convergence of Σ).

5.2.6 The dual problem

In some instances it may be more effective to solve the dual problem. This

should be the case, in particular, if the dual problem includes fewer con-

straints and the projections are therefore easier to apply. The dual of (6)

is

minimize Tr(ΣΛ− ΣΛ)
subject to Z + Λ− Λ = −wwT

Λij ≥ 0, Λij ≥ 0, Z � 0.

(7)

If (6) is feasible and bounded (i.e., has a finite optimal objective), then (7)

is also finite and bounded, and the optimal objectives of the two problems

are identical [VB96].

Note that this can be equivalently written without the variable Z, using

the constraint Λ − Λ + wwT � 0. Alternatively, by using a translation to

make the box constraints symmetric and using Λ = Λ − Λ, the number of

dual variables can be reduced. The dual problem (7) is then equivalent to

minimize Tr
(

Σ+Σ
2
Z − Σ−Σ

2
Λ

)

subject to Λij ≥ Zij + wiwj, Λij ≥ −Zij − wiwj

Z � 0.

(8)

Obvious extensions apply. For Σij = Σij (i.e., Σij precisely known), the

corresponding Λij and the constraints associated with it are omitted. For

Σij unconstrained (i.e., no knowledge about Σij), we have that Λij = 0, and

the constraint Zij = −wiwj is used.
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6 The design problem

We now incorporate the previous analysis into portfolio optimization. The

discussion so far has addressed the analysis problem, where the portfolio is

fixed (and known). The corresponding design problem consists in selecting

a portfolio using the worst-case risk as a criterion for the desirability of a

particular portfolio. In the simplest form of the problem, the goal is to find

the portfolio that is optimal in the sense of the previous analysis, that is, the

portfolio that minimizes the worst-case risk. The minimization is subject to

constraints, of course, such as an upper bound on the budget, a lower bound

on the expected return, or others.

For simplicity, we consider worst-case design for the classical mean-variance

tradeoff problem, with uncertainty in the covariance matrix Σ. The same ap-

proach can be used for the other problems introduced in §2.
Consider then the problem of selecting the portfolio with lowest risk (de-

fined as the worst-case portfolio variance), subject to a lower bound on ex-

pected return, and subject to budget and shorting constraints:

minimize max
Σ∈S

(wTΣw)

subject to 1Tw = 1, wi ≥ wmin, µTw ≥ Rmin,

(9)

where S = {Σ ∈ Rn×n | Σ � 0, Σij ≤ Σij ≤ Σij} is a convex compact set,
so that the max is well defined. In practice, we will want to find the tradeoff

curve between risk and return, which is obtained by solving this program

ranging over different values of Rmin.

The uncertainty set can be scaled around some nominal point to make

the design more “cautious” or more “aggressive”. In the limit where the
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uncertainty set is reduced to a point (i.e., to the nominal value of the mean

and covariance of returns) the worst-case design reduces to the standard

portfolio selection problem.

6.1 Min-max and max-min

Consider problem (9) in the form

min max wTΣw,

w ∈ W Σ ∈ S
(10)

where W = {w ∈ Rn | 1Tw = 1, wi ≥ wmin, µ
Tw ≥ Rmin} is a convex

compact set, so that the min is well defined. This is equivalent to the problem

min max Tr(CΣ),

C � wwT , w ∈ W Σ ∈ S

which has an inner product as objective function. We can now use the min-

max theorem of game theory to switch the order of the min and max operators

(see, e.g., Bertsekas [Ber95, §5.4.3], or Luenberger [Lue69, §7.13]). The sets
associated with both the min and max operators are convex. In particular,

the newly added constraint is convex. Using the Schur complement, it is seen

to be equivalent to 
 C w

wT 1


 � 0.

In the form stated the set associated with the min operator is not compact,

as required by the theorem. However, since Σ � 0 it is always possible to

upper bound C without changing the solution of the problem, which makes
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the set compact (with the upper bound applied to, say, the spectral norm of

C). Therefore, problem (10) is equivalent to

max min wTΣw.

Σ ∈ S w ∈ W
(11)

The design problem is convex overall, and we can equivalently solve it in ei-

ther min-max or max-min form. In practice, the numerically most convenient

form should be used.

7 Solving the design problem

In this section, we briefly indicate how the robust portfolio design problem

can be effectively solved by analytic center cutting plane methods. For sim-

plicity, the discussion here will focus on the variance problem. This approach

is generalizable to the other robust portfolio problems. At the end of the sec-

tion we briefly indicate alternative solution methods.

Define the function φ : Rn → R,

φ(w) = max
Σ∈S

wTΣw,

and denote the corresponding optimal variable by

Σ∗(w) = argmax
Σ∈S

wTΣw.

For a convex S, it is easily shown that the function

g(w) = 2Σ∗(w)w

is a subgradient of φ(w). Hence, once φ(w) has been computed (i.e., the

associated convex program has been solved) the subgradient is obtained at
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essentially no extra computational cost. The subgradient defines a supporting

hyperplane for the sublevel set {v : φ(v) ≤ φ(w)} (the plane orthogonal to
g(w) that passes through w).

With S = {Σ ∈ Rn×n | Σ � 0, Σij ≤ Σij ≤ Σij} as before, problem (9)

can be written

minimize φ(w)

subject to w ∈ W.

Solving the mathematical program that computes φ(w) (and Σ∗(w), g(w)) for

a given w, provides an “oracle” for an analytic center cutting plane method,

for which polynomial complexity has been established. For more on cutting

plane methods see, e.g., [Kel60, Nes95, GV99] (and the references therein.)

A method for solving this problem is as follows. Starting from any w ∈ W:

1. Solve the inner problem: compute φ(w), a subgradient, and the corre-

sponding supporting hyperplane.

2. Find the analytic center of the intersection of W with the half-planes

defined by the previously computed supporting hyperplanes. Let w be

the analytic center.

3. Repeat from 1, until w converges.

The overall complexity of this algorithm is polynomial in problem size. The

cutting plane method is of polynomial complexity, and the same is true for a

number of methods that solve the semidefinite program from which the cut-

ting plane is obtained. Finding the analytic center requires the minimization

of the logarithmic barrier function. In practice, the analytic centering prob-
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lem does not have to be very precisely solved, which can save a significant

amount of computational effort.

An alternative solution method exploits duality. The optimal value of

the inner problem can equivalently be obtained by solving the associated

dual problem. The min-max problem is then reduced to a minimization over

all program variables. It is an open question whether this always results in

a program that is easily handled by existing methods. In the case of (9),

this approach results in an SDP, which is readily solved (Laurent El Ghaoui,

personal communication.)

Another approach consists in developing self-concordant barrier functions

for the min-max problems, allowing for the direct application of interior-point

methods (Reha Tutuncu, personal communication.)

8 Conclusions

For many cases of interest, computing the maximum risk of a portfolio given

uncertainty in the means and covariances of asset returns is a semidefinite

programming problem. Its global solution can be efficiently computed, even

for large problems. While not as general, this approach is more accurate and

much faster than Monte Carlo methods. The computational effort required

grows gracefully, which allows very large problems to be handled.

Also, solving portfolio optimization problems with great precision, when

the problem parameters are inherently uncertain, is not a reasonable propo-

sition. By using cutting plane methods, the worst-case risk analysis can be

incorporated into portfolio selection, which allows “robust” portfolios to be
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designed.
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