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Mechanically switchable photonic crystal filter with either
all-pass transmission or flat-top reflection characteristics
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We theoretically introduce a new type of optical all-pass filter based on guided resonance in coupled photonic
crystal slabs. The filter exhibits near-complete transmission for both on- and off-resonant frequencies and
yet generates large resonant group delay. We further show that such a filter can be mechanically switched
into a f lat-top band rejection filter. © 2003 Optical Society of America

OCIS codes: 230.5750, 260.5740, 230.3990, 120.2440.
Optical f ilters play important roles in communication
systems. In particular, a narrowband f lat-top re-
f lection filter, which ref lects a particular wavelength
channel while letting other channels pass through,
is needed to achieve the wavelength sensitivity in
wavelength-division multiplexing systems.1 On the
other hand, an all-pass transmission filter, which
generates significant delay at resonance, while main-
taining 100% transmission both on and off resonance,
is useful for applications such as optical delay or
dispersion compensation.2

In this Letter we introduce a mechanically switch-
able photonic crystal filter structure that can function
as either a f lat-top ref lection f ilter or an all-pass
transmission filter. The structure, shown in Fig. 1,
consists of two photonic crystal slabs. Each slab is
constructed by introduction of a periodic array of
air holes into a high-index guiding layer. We show
that for normally incident light one can switch the
transmission characteristic of the structure by simply
varying the distance between the slabs. Furthermore,
unlike all previously reported all-pass ref lection f ilters
based on Gires–Tournois interferometers,3 which use
multiple dielectric stacks, our structure generates an
all-pass transmission spectrum, which significantly
simplifies signal extraction and optical alignment.
In addition, the spectral response is polarization
independent because of the 90± rotational symmetry
of the structure.

The filter function of our device relies on the guided
resonance phenomenon in each photonic crystal slab.
Guided resonance is a class of optical mode that is
strongly conf ined by the dielectric slab and yet can
couple into radiation modes because of the phase-
matching mechanism provided by the periodic index
contrast.4,5 As light is normally incident upon the
slab, the wave can pass through the slab either directly
or indirectly by first exciting the resonance and then
decaying out. In the particular case where the partial
transmission coeff icient through the direct pathway
is unity, the ref lection from the crystal exhibits a
Lorentzian line shape with 100% ref lectivity at the
resonant frequency,6 as can be seen in Fig. 2 for the
transmission through a single slab7 with a dielectric
constant of 11.4 [which is appropriate for GaAs at
1.55 mm (Ref. 8)], a thickness of 1.05a and a radius of
0.1a for the air holes (a is the lattice constant).
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Having two slabs creates additional f lexibility with
which to engineer spectral functions.9 Let us f irst
consider an all-pass transmission filter for optical
delay applications. A single resonance can generate
significant optical delay. However, in the single-slab
geometry shown in Fig. 2, since the ref lected ampli-
tude comes entirely from the resonant decay, there is
a strong variation of the transmitted intensity as a
function of frequency.

To achieve an all-pass characteristic with no in-
tensity variation over the resonance bandwidth, it is
therefore necessary to use at least two resonances.
For simplicity, we consider a system with two identical
slabs, as shown in Fig. 1. Each slab supports a
single resonance within the bandwidth of interest.
Since there is mirror symmetry parallel to the slab,
the resonant modes of the coupled system can be
decomposed into either even or odd modes with respect
to the mirror plane. When external light is incident
upon the slabs, both the even and odd modes are
excited. The power in each resonance then decays
in both forward and backward directions. Since the
two modes have different symmetry, the decaying
amplitudes in the backward direction acquire an op-
posite phase and interfere destructively. Therefore,
complete transmission over the bandwidth of interest
becomes possible, provided that the even and odd
modes possess the same resonant frequency and the
same width.10 To achieve complete transmission we

Fig. 1. Schematic of a mechanically tunable photonic
crystal filter consisting of two photonic crystal slabs.
The arrow represents the direction of the incident light.
The spectral response function of the filter is tunable by
varying the distances between the two slabs.
© 2003 Optical Society of America
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Fig. 2. Transmission spectrum through a single photonic
crystal slab for normally incident light. The crystal struc-
ture shown in the inset consists of a square lattice of air
holes of radius 0.1a, where a is the lattice constant. The
slab has a dielectric constant of 11.4 and a thickness of
1.05a. The open circles are the numerical results from a
FDTD simulation. The solid curve is from the analytical
theory in Ref. 7.

place two slabs close to each other so that the modes
in the two slabs can couple through an evanescent
tunneling pathway, in addition to the free-space
propagation of light between the slabs.

The idea described above can be quantified by use
of the coupling of modes in a time-dependent formal-
ism for optical resonators.7,11 The theoretical model
describes the dynamics of the optical resonance am-
plitudes a and b in the two slabs. For the structure
in Fig. 2, which possesses a Lorentzian resonance,
the dynamic equation for the amplitude a in the f irst
slab is
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where v0 is the resonance frequency and t is the reso-
nance lifetime. S11, S21, S12, and S22 are incoming
and outgoing waves from either side of the f irst
slab. The coupling constant k describes the strength
of evanescent tunneling between the two slabs and
is real because of energy conservation and mirror
symmetry constraints. Similarly, the equations for
the amplitude b in the second slab can be written as
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where P11, P21, P12, and P22 are incoming and
outgoing waves from either side of the second slab.
Also, since the wave can propagate between the slabs,
we have

P11 � exp�2jf�S22 , P12 � exp� jf�S21 , (5)

where f � �v�c�h and h is the distance between the
edges of the slabs. Using Eqs. (1)–(5), we can elimi-
nate wave amplitudes that are propagating between
the slabs to arrive at the dynamic equations for the
even resonance, A ��a 1 b�, and the odd resonance,
B ��a 2 b�. Then, when the coupling coeff icient is
set to be k � 2j exp�2jf��t, and when f � p�2
is chosen, the even and odd resonances will possess
the same resonance frequency and decay length. Un-
der these circumstances, the transmission coeff icient
becomes

t � exp�2jf�
j�v 2 v0� 2 1�t

j�v 2 v0� 1 1�t
, (6)

and, indeed, the structure behaves as an all-pass filter.
As a physical realization of the theoretical analy-

sis, we consider the two-slab structure, each slab of
which is shown in Fig. 2, with a resonance frequency
at 0.694 (c�a). In a FDTD simulation,5,12,13 the line
shapes of the even and odd modes can be obtained
by Fourier transformation of the temporal decay of
the resonance amplitude. When the displacement be-
tween the slabs is chosen to be 0.4a, the resonant line
shapes of the even and odd modes overlap almost com-
pletely [Fig. 3(a)]. For such a structure, the transmis-
sion spectrum indeed shows near 100% transmission
over the entire bandwidth both on and off resonance
[Fig. 3(b)], and yet a large resonant delay is generated
in the vicinity of the resonant frequency [Fig. 3(c)]. To
compare the simulation with the theory, we extract the
parameter from Fig. 3(a), and generate the theoretical
spectra by use of Eqs. (1)–(5). The simulations show
excellent agreement with the analytic theory.

The spectral response function of the two-slab
structure can be tuned by mechanical variation of
the distance between the slabs. As we increase the

Fig. 3. Spectral response functions for the two-slab
structure shown in Fig. 1, with an edge-to-edge distance of
0.4a. (a) Resonance amplitudes of the even mode (dashed
curve) and the odd mode (solid curve). (b) Transmission
spectrum for normally incident light. (c) Group delay.
In both (b) and (c), the solid curve represents the theory
and the open circles correspond to FDTD simulations.
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Fig. 4. Transmission spectra through the two-slab struc-
ture shown in Fig. 1 as we vary the distance between the
slabs to be (a) 0.5a, (b) 1.1a. The solid curves represent
the theory, and the open circles correspond to FDTD
simulations.

distance between the slabs, the evanescent coupling
becomes negligible, and it is no longer possible to
generate all-pass transmission. Rather, significant
ref lection occurs in the vicinity of the resonance
[Fig. 4(a)]. In particular, by choosing h � 1.1a,
one could generate a f lat-top ref lection spectrum,14

as demonstrated by FDTD simulations in Fig. 4(b).
Thus, with mechanical tuning, a guided resonance
device can generate two types of filter response that
are useful for optical communication systems. In
addition, the f lat spatial dispersion of the guided
resonance may permit operation of such filters with a
large range of operation angles.

This work was partially supported by the U.S.
Army Research Laboratories under contract DAAD17-
02-C-0101 and by National Science Foundation (NSF)
grant ECS-0200445. The computational time was
provided by the NSF National Resource Allocation
Committee program. We thank Mehmet Fatih Yanik
for developing the software code used in this work.
S. Fan’s e-mail address is shanhui@stanford.edu.

References

1. D. K. Jacob, S. C. Dunn, and M. G. Moharam, Appl.
Opt. 41, 1241 (2002).

2. C. K. Madsen, J. A. Walker, J. E. Ford, K. W. Goossen,
T. N. Nielsen, and G. Lenz, IEEE Photon. Technol.
Lett. 12, 651 (2000).

3. F. Gires and P. Tournois, C. R. Hebd. Seances Acad.
Sci. B Sci. Phys. (France) 268, 313 (1969).

4. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A.
Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and
T. Tiedje, Appl. Phys. Lett. 70, 1438 (1997).

5. S. Fan and J. D. Joannopoulos, Phys. Rev. B 65, 235112
(2002).

6. R. Magnusson and S. S. Wang, Appl. Phys. Lett. 61,
1022 (1992).

7. S. Fan, W. Suh, and J. D. Joannopoulos, J. Opt. Soc.
Am. A 20, 569 (2003).

8. E. D. Palik, Handbook of Optical Constants of Solids
(Academic, San Diego, Calif., 1985), p. 439.

9. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, Appl.
Phys. Lett. 82, 1999 (2003).

10. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A.
Haus, Phys. Rev. Lett. 80, 960 (1998).

11. H. A. Haus, Waves and Fields in Optoelectronics
(Prentice-Hall, Englewood Cliffs, N.J., 1984).

12. K. S. Kunz and R. J. Luebbers, The Finite-Difference
Time-Domain Methods for Electromagnetics (CRC,
Boca Raton, Fla., 1993).

13. A. Taf love and S. Hagness, Computational Electro-
dynamics: The Finite-Difference Time-Domain Meth-
ods (Artech House, Boston, Mass., 2000).

14. Similar f lat-top behavior in one-dimensional grating
structures was reported in Ref. 1.


