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Achievable Rates for Mu ltip le Descrip tions 
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Abstract-Consider a sequence of independent identically distributed 
(i.i.d.) random variables X,, X,, . ., X, and a distortion measure d( 4, ,$) 
on the estimates X, of X,. Two descriptions i(X) E { 1,2; , 2flRl) and 
j(X) E (1,2,...,2”R2] are given of the sequenceX=(X1,X2;..,Xn). 
From these two descriptions, three estimates J%?((i(X)), X,(j(X)), and 
X,( i( X), j(X)) are formed, with resulting expected distortions 

m=0,1,2. 

We  find that the distortion constraints D,, D,, D2 are achievable if there 
exists a probability mass  distribution p(x)p(i,, Zz, P, j x) with 
Ed( X, km) 5 0, such that 

R, > I( X; $)> 

R, ’ 1(X; ri,), 

R, + R, > I(i; ri,, &, &,) + I#; ri,), 

where I( .) denotes Shannon mutual information. These rates are shown to 
be optimal for deterministic distortion measures. 

2. INTRODUCTION 

T HE FOLLOWING problem of jointly good  descrip- 
tions was posed by Gersho, W itsenhausen, Wo lf, 

Wyner, Z iv, and  Ozarow at the September 1979  IEEE- 
Information Theory Workshop. Contributions to this prob- 
lem can be  found in W itsenhausen [5], Wo lf, Wyner, and  
Z iv [6], Ozarow [7], and  W itsenhausen and  Wyner  [8]. 
Suppose we wish to send a  description of a  stochastic 
process to a  destination through a  communicat ion network. 
Assume that there is a  chance that the description will be  
lost. Therefore we send two descriptions and  hope  that one 
of them will get through. Each description should be  
individually good. However, if both get through, then we 
wish the combined descriptive information to be  as large as 
possible. 

The  difficulty is that good  individual descriptions must 
be  close to the process, by virtue of their goodness,  and  
necessarily must be  highly dependent.  Thus the second 
description will contribute little extra information beyond 
one  alone. On  the other hand, two independent descrip- 
tions must be  far apart and  thus cannot in general  be  
individually good. 

The  more general  problem, stated precisely in the next 
section, is as follows. Consider a  stochastic process 
x,, x,, *. . where the Xi’s ai-e independent identically dis- 
tributed (i.i.d.) according to some known distribution p(x). 
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Fig. 1. Multiple descriptions. 

Two individuals must describe X at respective rates RI and 
R, bits per transmission. Three single letter distortion 
measures d,, d,, and d, are given. The  question is, “What  
information should be  sent at rates R, and R, so that a  
receiver given only description 1  can iecover X with distor- 
tion D,, a  receiver seeing only description 2  can recover X 
with distortion D,, and a  receiver seeing both descriptions 
can recover X with distortion DO?” For fixed distortions 
DO, D,, and D,, what is the set of (R,, R2) necessary and  
sufficient to achieve these distortions? 

In this paper, we shall exhibit an  achievable rate region 
of (R,, R,) pairs as a  function of the distortion vector 
D = (DO, D,, D2). See F ig. 1  

The  following examples consistent with F ig. 1  also 
motivate the search for a  general  theory of joint descrip- 
tions. 

Communication Network: A communicat ion network is 
used to send descriptions of X to New York with distortion 
D, at a  cost c, dollars/bit, and  to Boston with distortion 
D2 at a  cost c2 dollars/bit. G iven an  acceptable distortion 
DO for the best estimate of x from the combined data base, 
m inimize the cost c = c,R, + czR,. 

Data Base: We wish to store the data X = (X,, . 3  .,X,) 
with distortion D, in a  New York computer with memory 
capacity nR, and store X with distortion O2  in a  Boston 
computer with memory capacity nR,. How should we do  
this so that when we combine the data we recover X with 
m inimal distortion D,,? 

Manager: A manager  instructs two survey teams to 
gather information about X for their own use and  for the 
subsequent  use of the manager.  What  should he  ask them 
to report? 

II. DEFINITIONS 

We shall first introduce the basic definitions of rate 
distortion theory and  state Shannon’s rate distortion theo- 
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rem. Then the definitions will be extended to multiple 
descriptions and their incurred distortions. 

We assume that Xi, i = 1,2, . . . is a sequence of i.i.d. 
discrete random variables drawn according to a probability 
mass function p(x). We are given a reconstruction space X 
together with an associated distortion measure d: x X$ --) 
R. The distortion measure on n-sequences in Xn X X” is 
defined by the average per symbol distortion 

d(x, i) = (l/n) i d(Xi, ai). (2.1) 
i=l 

A description of x E 2 is a map i: 2 --3 { 1,2; . ~,2”~}, 
where R is the rate of the description in bits per symbol2f 
x. A reconstruction of X is a map f: { 1,2; . .,2nR} + X”, 
and is said to incur distortion DC”) defined by 

DCn) = Ed(X, i(i(X))) 

= E(l/n) i d( Xk, a,(i(x))). (2.4 
k=l 

The distortion D is said to be achievable with rate R for 
the stochastic process {X,},,, if for n = 1,2; . a, there 
exists sequence of rate R dFcriptions i: Xn -+ 
{1,2,-.-, 2” “} and reconstructions X: { 1,2,. . . , 2nR} -+ Xn, 
such that DC”) I D, for all n sufficiently large. 

Let the rate distortion function R(D) be the infimum of 
all rates R achieving distortion D on a given stochastic 
process {Xi]. 

mass function p(x), then 
R(D) = infI(X; X), (2.3) 

where 
m 2) = Ix P(x> 4 1% (p(x, wP(x)PwY 

x.2 
(2.4) 

Theorem (Shannon [I I): If X,, i = 1,2,. . . , are i.i.d. 
discrete finite alphabet random variables with probability 

large n, 

E(l/n) i d,(X, Xmi) 5 D,,,, m = 0,1,2. 
i=l 

Definition: The rate distortion region R(D) for distortion 
D = (D,, D,, D,,) is the closure of the set of achievable 
rate pairs (R,, R2) inducing distortion I D. An achievable 
rate region is any subset of the rate distortion region. 

In the next section, we shall exhibit an achievable rate 
region for the multiple description problem. 

III. THEOREMANDCONSTRUCTION 

The following achievable rate region for multiple de- 
scriptions has an information theoretic characterization. 

Theorem 1: Let Xl, X,, * . * be a sequence of i.i.d. finite 
alphabet random variables drawn according to a probabil- 
ity mass function p(x). Let di(. , .) be bounded. An 
achievable rate region for distortion D = (D,, D,, D,) is 
given by the convex hull of all (R,, R2) such that 

R, >I(X; Xl) 

R, >I(X; X2) 

D,zEd,,(X; X,,). (3.4 
Remark on convexification of region in Theorem 1: Since 

we have been unable to prove in general that the region in 
Theorem 1 is convex, it may be necessary to convexify this 

R, + R, >I(X; X0, Xl, X2) + I(&; X2) 

region by time-sharing. For each choice of p = p(&,, 2,, i2, 

(3.1) 

for some probability mass function ~(2, &,, 2,, R2) = 

I xl, let 

p(x)p(&, R,, i2, ( x) such that 

D, I Ed,( X; 2,) 

D, L Ed,( X; X2) 

and the infimum is taken over all joint probability mass 
functions p( x)p( R ] x) such that 

2 p(x, 2)d(x, .2) ID. (2.5) 
x.2 

Now we define the problem of multiple descriptions 
shown in Fig. 1. We are given three finite reconstruction 
spaces ?,,, ?,, and TZ, together with associated distortion 
measures 

d,:%+,+R, m = 0,1,2. 

The distortion measure on n-sequences in 3 X %i is 
defined by the average per-letter distortion 

d,(x, -L) = (l/n) i d,(xi, );-,,), 
i=l 

where f, = (&,, z?,,,~,. . .,a,,,,). 
Definition: We shall say that (R,, R2) is an achievable 

rate for distortion D = (D,, D2, D,) if there exists a se- 
quence, indexed by n, of pairs of descriptions i(x) E 
{LL.**, 2nRI}, j(x) E { 1,2; * * ,2” R2}, and reconstruction 
functions a,(i), a,(j), a,( i, j) such that, for sufficiently 

v(p) = (1(x; q, @; Ji2), 
1(x; &, R,, i*) + I(&; &), 
Ed,( X, &), Ed,( X, &), -W,( X, kc,)). 

(3.3) 

Let Ybe the convex hull of U V(p). (An arbitrary point 
in the convex hull can be obtained by mixing at most seven 
~(p)‘s.) Let (R, 0) = (R,, R,, R, + R,, Di, 02, DO). 
Then it follows that (R, D) is achievable if there exists a 
V E Ysuch that 

(R, D) > I’. (34 
Remark about method of proof: Let p(x) be given, and 

fix a choice of p( Z,, R,, R, 1 x). Sequences x and f, are 
said to be jointly typical if the empirical joint composition 
of (s, a,) is approximately equal to p(x, a,). A subset B, 
of Xt is said to cover 3 if, with high probability, a 
randomly drawn X E 3 is jointly typical with some f, E 
B,. It can be shown that approximately 2”ICx; x~) f,‘s are 
both necessary and sufficient to cover 2. Moreover, if 4, 
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is jointly typical with x, then the joint compositionp(x, 2,) 
guarantees that d,(x, 2,) will be  close to Do. 

Two extra ingredients in addition to the notion of cover- 
ing are found in the proof of Theorem 1. The  distribution 
p(x, 2,, J?~, .?a) is used to find a  covering {(.?,, 2,)) of % ” 
so that the P,‘s individually cover x”, the 2,‘s individually 
cover x”, and  the (a,, Ji-,)‘s jointly cover 3. F inding the 
best rate region for the product covering involves a  new 
result on  lists. Second, for each (a,, &), a  m inimal condi- 
tional covering of 3  is found. The  conditional P, informa- 
tion is to be  distributed to the two describers and  increases 
their rates beyond that which is necessary to individually 
recover -i-, and  R, at distortions D, and D,. However, the 
extra information efficiently adds information to the two 
descriptions to yield a  third description -i-, with distortion 
4. 

Before proceeding to the proof in Section V, we give an  
example in the next section. 

IV. EXAMPLE 

Let Xl, X2, -. . be  independent identically distributed 
normal random variables with mean  0  and  variance 1. 
From rate distortion theory [ 11, 121, we know that R(D) = 
(l/2) log l/D, is the rate distortion function for a  squared 
error distortion 

d(x, i) = (x - a)‘. (4.1) 
Thus, (n/2) log l/D bits are necessary and  sufficient to 
describe a  random sequence ( Xl, X2,. . *, X,) with expected 
squared error 

E; j (x, - &)* 5 D. (4.2) 
2=1 

(X, Xl, X2, X,,) obtained from X - N(0, l), 

2, = cx&+ z, 

k2=cx&+z2 

& = a,x + z,, (4.4) 

where (Z,,, Z,, Z,) are jointly normal with mean  0  and  
covariance matrix 

k, 0  0 
K = 0 k, k,, , i 1  (4.5) 

0 kl2 k2 

and (Z,, Z,, Z,) is independent of X. Optimizing (3.1) in 
Theorem 1  over (Ye, (Y,, (Ye, K subject to the distortion 
constraints 

E(X- i?,)2= D,, 

E(X- Jf2)’ = D2, 

E(X- &)‘= D,,, 

yields the region described below. 
Case 1: (High distortion) D, + D2 - Do 2 1. 
The  following region is achievable: 

R, ’ (l/2) 1% l/D,, 
R, ’ (l/2) log l/D,, 

R, + R, > (l/2) log l/D,,. (4.6) 
This is trivially optimal by our previous remarks. 

Case 2: (Low distortion) D, + D, - Do < 1. 
The  following region is achievable: 

R, 2 (l/2) log l/D,, 

R, 2 (1/2)logl/D,, 
R, + R, 2 (l/2) log l/D, 

+ wwg (1 - Do>” 
(1 - 0,)’ - (( 1 - Dl)“2( 1 - D2)“2 - (D, - Do)“2( D, - Do)1’2)2 ’ 

(4.7) 

Consequently, for the simultaneous description problem, 
an  obvious inner bound  on  the rate region is 

R, 2 (l/2) log l/D, 

R, 2 (l/2) log l/D, 

R, + R, I (1/2)log l/D,. (4.3) 
The  third inequality follows from the realization that the 
description rate is R, + R, for the X0 reconstruction. 
Surprisingly, for high distortions (D, + D2 - D,, 2  1) these 
rates are actually achievable. The  detailed calculations have 
been  provided to the authors by M . Aref. We  examine the 
region of Theorem 1’ for the joint normal distribution on  

‘It should be possible to extend the proof of Theorem 1 to the Gaussian 
source, using the techniques in Gallager [4]. 

Apparently, for low distortions, the consequent  depen-  
dence of the descriptions causes an  increase in the total 
description rate R, + R, beyond the (l/2) log l/D, neces- 
sary for independent descriptions. 

This region has recently been  shown to be  optimal by 
Ozarow [7]. 

V. PROOF OF  THEOREM 1  

Throughout  this pro$f we shall assume that x and  the 
reconstruction spaces X, are finite sets. 

Before proceeding with the proof, we shall define the 
idea of joint typicality. 

Let {Xc”, X(*); . . ,Xck)} denote a  finite collection of 
discrete random variables with some fixed joint distribu- 
tion p(x(‘), x(3,. . .,x(k)), (XC’), x(9,. . .,x(k)) E xc’) x 
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3,x(2) x . . . X GXck). Let S denote an ordered subset of these 
random variables, and consider n independent copies of S. 
Thus, 

Pr{S=s} = fi P{S,=s,}, s E S”. (5.1) 
i=l 

For s E S, and s E S”, let N(s; s) be the number of 
indices i E { 1,2,. . . , n} such that si = s. By the law of 
large numbers, for any subset S of random variables and 
for all s E S, 

(l/n)Ns; s) -p(s). (5 4 
Also, 

1 
l%P& s*,..*> 

1 n -- s,) = -- 2 logp(S.) I -fm. n n ix* 

(5.3) 
Convergence in (5.2) and (5.3) take place simultaneously 

with probability one for all 2k subsets 

s c {XC’), x(2);. -,XCk)}. 

Definition: The set T, of strongly f-typical n-sequences 
(x(‘), x(2) . . . , ,xck)) is defined by 
T,( x(l), $2); . .,x(k)) 

= 
i 

(xu), x(2),. . . ,X ‘i’):/~N(s;s)-p(s)~<~;Vsts, 

vs c {x”), x(2),* * *,X(k)} . (5.4) 
I 

Let T,(S) denote the restriction of T, to the coordinates 
corresponding to S. Let II All denote the cardinality of the 
set A. We need the following well-known properties of T,. 
There exists a 6(e) + 0 as E + 0, such that for sufficiently 
large n, and any 6 + 0, 

P{T,(S)} 2 1 - 6,~ vs c {x(‘);. .,XCk)}, (5.5) 
2nCWW-S) 5 11 T,( s)ll 5 2n(H(S)+S) (5.6) 

2--nWW+~) < -p(s) 5 2-‘G’(S)--S), for alls E T,(S), 

(5.7) 
If s2 E T,(,S,), then the number of jointly c-typical s,‘s, 

denoted by IIT,(S, ] s,)ll, is bounded by 
2”(H(sil&-s) 5 11 T,( S, ) s2)ll 5 ~“(H(SIISZ)+S). (5 J) 

Proof of Theorem: We shall choose a net of P, sequences 
covering 2 with distortion D,, a net of f, sequences 
covering p with distortion D,, and a conditional net of f, 
sequences (given (ir, a,)) covering 2 with distortion D,. 
A random choice of the nets will suffice. Fix a joint 
probability maJs fun$tion of the formp(x)p(.?,, Z2, i0 1 x) 
on 3 X Xl X X2 X X0 such that 

Ed,( X, 2,) < D, 

Ed,( X, $2) < 4 

Ed,( X, &) < D,, . (5.9) 
Choose real numbers R;, R;, A 2 0. 

Random Coding: Let n-vectors d,(l), J?,(2), . . . ,X,(2” Ri) 
be drawn independently according to a uniform distribu- 
tion over the set T,(J?,) of c-typical 2, n-vectors. That is, 
P{x,(i) = a,} = l/IIT,(X,)lI, if f, E T,, and = 0 other- 
wise. 

Similarly, let 2”Rh n-vectors g2( l), X?*(2), . * * ,-?2(2”R;)be 
drawn i.i.d. according to a uniform distribution over T,( X2). 

Finally, for every jointly typical (i,(i), a,(j)) in the 
above list, let J?O(i, j, l), &,(i, j, 2); . . ,X,(i, j, 2”‘), be 
drawn i.i.d. according to a uniform distribution over the set 
T,(% I&(i), ~,(A> f o conditionally e-typical f,‘s, condi- 
tioned on (a,(i), a,(j)). 

Encoding: Given an x E 3, find, if possible, a triple 
(i, j, k) such that (x, a,(i), a,(j), &,( i, j, k)) is in the set 
T, of all jointly typical sequences. If no such (i, j, k) exists, 
simply set (i, j, k) = (0, 0,O). 

We now divide the description of k E 2”A into two parts, 
k = (k,, k2), k, E 2”‘1, k, E 2nA2, A, L 0, A2 L 0, A, + 
A, = A. We use the obvious notation 2”’ for the set 
{LL.**, [2”‘]}, where [t] denotes the greatest integer less 
than or equal to t. We send (i, k,) to decoder 1, (j, k2) to 
decoder 2, and consequently send (i, j, k) to decoder 0. 
The resulting rates of transmission become 

R, = R; + A,, 
R, = R; -I- A2. (5.10) 

We shall prove that a successful encoding of X achieving 
distortions 5 (D,, D2, D,,) is accomplished (with high 
probability by this random net) provided n is sufficiently 
large and 

R; > I( X; $), 

R;-(X $4, 

R; + R; - I( 2,; k2) > I( X; i,, ri,), 

A, 2 0, 
A2 I 0, 

A, + A2>I(X; X0]&, X2). (5.11) 

Theorem 1 then follows from adding these inequalities 
with the result 

R, = R; + A, L I( X; X,), 

R, = R; + A2 2 I( X; X2), 
R, + R, = R; + R; + A, + A, 

>l(x;~l,~2)+l(x;~~~xl,~2)+1(7il,~2) 

=1(x; T,, ?z2, &) + l(R,; 2*), (5.12) 

where the last equality is an information theoretic identity. 
These are the conditions of Theorem 1. 

Reconstruction: Decoder 1, given (i, k, ), announces ii(i) 
as his reconstruction of x. Similarly decoder 2, given ( j, k,), 
announces a,(j). And decoder 0, given (i, j, k), where 
k = (k,, k2), announces iO(i, j, k). These reconstructions 
will be shown to meet the distortion constraints. 

Distortion: We first note that if (i, j, k) can be found 
satisfying the encoding step, then the distortions satisfy 
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d,(x, a,) I D,,,, m  = 0, 1,2, by definition of T,. Let us 
denote by E the error event that there does not exist 
(i, j, k) such that (X, R,(i), X*(j), &(i, j, k)) E T,. We 
wish to show P(E) + 0, as n  + cc. 

Probability of Error: An error E will occur if one  or 
more of the following events occurs: 

E,: xe T,, 
E,: (X,2,(i)) B q, foralli E 2nRi, 

J%: (X 22(j)) @  T,, for all j E 2nAi, 

E3: (x, 2,(i), 22(j)) B T,, 
for all (i, j) E 2”a; X 2”R4, 

E4: 3(i, j) E 2”RI X 2nRz, 

such that (X, *,(i),&(j)) E T,, 

but (x, Jf,(i>, $(j>, ko(j, j, k)) @  T,, 
fork E 2”‘. 

Therefore, P(E, fl El) -+ 0 if 

R;+R;>H(~,)+H(~~)-H(R,,~~IX) 

= 1(x; k,, &) + I(&; Tz2). (5.20) 

It remains to argue that the expected distortion is 
asymptotically unaffected when an  encoding description 
(i, j, k) cannot be  found, i.e., when the event E occurs. But 
EC implies lim ,,, E{d ] EC) _( D + ~1, by construction of 
T, . F inally, 

EdG’(E’)(D + cl) +p(E)ld,,, (5.21) 

where 1  = (1, 1, 1) and  

d = ma* max 
xrx 

d,(x, &>. 

n,&, mE(O,l,2) 

Thus E = U&E, and the probability of (encoding) error 
is bounded  above by 

Here we assume d,, < co. F inally, P(E) --) 0  and  E + 0  
imply that lim  n--rM Ed I D, and the theorem is proved. 

VI. FUNCTION DISTORTION MEASURES 

P(E) 5 P(E,) + $ P(E, I-I E,‘). (5.13) 
i=l 

Clearly P( E,) + 0, as n  + co. Also, it follows from known 
results in rate distortion theory that 

R; > I( X; 2,) implies P( E, fl E,‘) -+ 0; 

R; > 1(X; X2) implies P( E, n E,‘) --f 0; 

A > I( X; X0 IX,, X2) implies P( E4 f’ E,“) + 0. (5.14) 
It remains to show that P(E, fl E,‘) --f 0, i.e., we wish to 

show that there are enough  individually typical J%?,(i), .??J j) 
so that we can find at least one  jointly typical pair. Thus 
define, for each x E T,, the random set 

C, = {(i, j) E 2”Ri X 2”R6: 

(k,(i), k2<j>) E T,(i,, 22Ix)>, (5.15) 
consisting of those (i, j) pairs for which the random code 
assignment yields (x, J?,(i), J&(j)) jointly e-typical. It is 
easily seen that 

Suppose that receivers 0, 1, and  2  wish only to know 
fo(x), f,(x), and f2(x) respectively. Here we have a  simpler 
rate region and  a  converse. 

Theorem 2: Let X, = fO(X), X, = f,(X), and X2 = 
f,(X). Then  (R,, R2) allows recovery of f, by 1, f2 by 2, 
and  f0 by 0  if and  only if 

R, > I( Xi 2,) = H(f,(X)), (6.1) 

R,‘@-$) = H(J;(X)), (6.2) 

R, + R2 ’ 4fdXL f2W  foW  x> 
+r(f,(X); f,(X)> 

P(E, n El) = P{ llCxII = 0, X E T,} 

ImaxP{lIC,Il = O}. 
ET, 

(5.16) 

But, for all x E T,, 0  < a -Z 1, we have 
P{llC,Il = O> I P{I llC,II - EIIC’II (2 c~ElIC,ll} 

5  var llC,ll/a2(EllC,ll)2. (5.17) 
Writing II C, Il. as the sum of indicator functions, it follows 
from arguments similar to the proof in [3] that 

E IIC I( 1 2n(Ri+R’2-H(~,)-H(~~)+~(~,, ~zIA’-o(~II 
x 

(5.18) 
and  

= H(f,(X)) + Mf2W) 

+Nf,(X) If,(X), f20>>. 63) 

Proof: Achievability is immediate from Theorem 1. 
For the converse, let there be  maps 

j: * -3 znRI, 
j: 3  + znRz, 

and set 
I=i(X), J=j(X). 

Also given are reconstruction functions a,( a), i,( .), 2~ .), 
with the property 

where 
(6.4) 

varl/C 1) 5 2n(Ri+Ri~H(~I)-H(~*2)+~(~,, ~IIX)+O(I)) 
x 

f,(X) =~oxm* ’ 4X,))> i=O,1,2. 

We shall show that the rates R,, R, must satisfy (6. l), _  -. - . 
(5.19) (6.2), and  (6.3). 
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Inequalities (6.1) and (6.2) follow from Shannon. To 
prove (6.3) we first note that 

nR, + nR, 1 H(I) + H(J) 

= m ma + ff(J> &2(W) 

-H(f,(X)II)-H(f,(X)IJ). 
It follows from (6.4) and Fano’s inequality that 

H( f,(x) 11) 5 (H(I)6 + h(t)) 5 nk, 

ff( f2(X) IJ) 5 (H(J)c + h(c)) 5 n%, 

where 8, --f 0 as E -+ 0. Therefore 

nR, + nR2 2 H(I, f,(x)) + H(J, f2(X)) - 2% 

= nH(f,(X)) + n$fiW + ff(~l.f~(X)) 
+H(J IfAx)) - 24 

1 nMf&O + 4f2W 
+w, J? lxx) IflW tz(x)) 
-fom II, J, f,(X)? fiG0) - 24l. 

Again, by (6.4) and Fano’s inequality, we have 

fJ( fo(x) 11, J) 5 4. 
Thus 

nR, + nR2 1 nH(fdX)) + nH(f,(X)) 
+4foW IfiW fiV>> 
+ff(L Jlfdx)~ f&O &W>) - 34. 

(6.5) 
Finally, by dropping the fourth term in (6.5), inequality 
(6.3) follows. 

VII. ROBUST DESCRIPTIONS 

We shall describe a problem concerning robust descrip- 
tions that seems at first to be unrelated to Theorem 1. 

Suppose that we wish to describe a source x E 3 by an 
index i E 2”R in such a manner that the description i(x) is 
good simultaneously for several given distortion measures. 
(See Fig. 2) For example, we may wish to describe a 
Gaussian source so that it can be recovered with low Lnean 
squared error distortion and low absolute error distortion. 
Or, for a Bernoulli source X, we might wish 2, to agree 
with X on the zeros of X, and for & to agree with X on the 
ones of X. Incidentally, this does not guarantee that X can 
be recovered perfectly from J?, and &. 

A more precise specification of the problem is as follows. 
Given is a source { X,}p”, , where X,, X,, . . . are i.i.d. 
random variables drawn according to a probability mass 
function p(x), x E x Also giv% are m distortion func- 
tions di(x, Ri) defined on x X Xi, i = 1,2,. . a, m. Distor- 
tions D = (D,, D2; * +, 0,) are to be achieved. What rate 
R(D) is necessary? The solution to this problem is given in 
the following theorem. A version of this theorem can be 
found in Berger [2]. 

i+&+L%~; 

m 

Fig. 2. Robust descriptions. 

Theorem 2: 

R(D) = min I( X; i,, &;. .,im), (7.1) 

where the minimum is over allp(?,, i2,; . .,R,,, 1 x) satisfy- 
ing 

Edi(X; ii) 5 Di, i = 1,2;‘+,m. (7.2) 

Remark: As mentioned before, it appears that a descrip- 
tion that can be used to make no mistakes on the O’s of X 
and can also be used to make no mistakes on the l’s of X 
must necessarily make no mistakes whatsoever. This would 
require rate R = 1, but since R(D,, D,) < 1, for all D,, D, 
< l/2, we see that the above idea is mistaken. 

Remark: For m = 2, Theorem 2 is a special case of 
Theorem 1 obtained by constraining R, = 0. 

We give some examples before proceeding with the proof 
for general m. 

Example: Let X be Bernoulli with parameter l/2. Let d, 
and d, be given by 

d, : d,: 
1 1 0 1 cc 0 

(7.3) 

Thus d, allows no errors on the O’s of x, and d, allows no 
errors on the l’s of x. The optimizing distributionp(x,, x2 I 
x) is given by inspection of Fig. 3. The resulting rate is 

R(D,, 4) = 1(X; 21, %) 

= h( D,,‘2, D,/‘2, (0, + D,&‘) 

- (lP)h(D,) - (1,‘2)h(D,). (7.4) 

Remark: It may happen that all distributions satisfying 
the distortion constraint (7.2) correspond to a Markov 
chain X -+ i, + & in that order. In such a case, we have 

1(x; k,, Tz2) =1(x; 2,). (7.5) 

Thus, only the first distortion constraint is active, and a 
good description for 1 and 2 is given by the best descrip- 
tion for 1 alone. 

Proof of Theorem 2: Achievability follows immediately 
once the encoding is specified. Fix a choice of 
P(&, 2,; . *> i,,, 1 x) satisfying distortion constraints (7.2). 
This induces a distribution p(i,, )2,; . *,a,,,). Choose 2”R 
vectors 2 = (R,, &; . . ,X,) independently drawn accord- 
ing to Ur,, p(ili, izi; * -, Rmj). Designate these vectors 
J?(k), k E 2”R. By the usual arguments, these vectors will 
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Fig. 3. Joint distribution for robust description 

“cover” Xn if 

R > 1(X; T?,, J?z,--,&). (7.6) 

Thus for large n, with probability arbitrarily close to 1, 
there will be  an  index k E 2”R such that 

di(X, Jfi(k)) ID,, i = 1,2; . - ,m. 

The  converse is precisely along the lines of the converse for 
Shannon rate distortion theory. 

VIII. CONCLUSION 

It is a  pleasant surprise that two descriptions are “twice 
as good” as one  when the two descriptions need  not be  
individually very good. This conclusion holds (for high 
distortions) for the Gaussian example in Section IV and  
also holds for the Hamming distortion on  Bernoulli se- 
quences, an  example not given here. O f course, when we 
demand  low distortions for the individual descriptions, the 
peculiar tension of this problem reveals itself. If the distor- 

857 

tion constraints are sufficiently severe, two descriptions are 
no  better that one  because they are in fact the same 
description. 
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