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only linearly and not exponentially with the source block length. 
Since a trellis approaches a tree as the constraint length grows 
large, this work also suggests an alternate tree coding scheme and 
proof of the tree coding theorem of Jakatdar and Pearlman [6]. 

APPENDIX A 
The generalized Gallager function Edk( p) is defined in (21). In 

the following we prove that given RN,* > RN-*( De) for allj and k; 
or equivalently given (7a), that the per-letfer “rate” associated 
with each code letter being always greater than the rate r,(d,) 
induced by the rate-distortion function of the corresponding 
source letter u,, will imply (22a), that is 

Ep I 1 - - 
R P ‘0, foralljandkand-l<p<O. (27) 

4k 
From the properties of the Gallager function [l, p. 3941 we can 
write 

[+Lp]>O -1 < p < 0, for r > r,(dO) (28) 

where E,(p) and r,( do) are respectively the Gallager function and 
the rate-distortion function associated with the letter u,. We will 
use the property (28) to establish (27) as follows: 

Njk 

[ 1 EBk(P) p = 
Nji’ C EN,+I( P) 

I’=1 ___- 
R NI* Nji’klog q - ’ 

EN,+,(p) - pklog 4 . 1 
Since at depth (j + m) of the trellis 

1% 4 ij+, = - 
nj+, 

or 1% 4 = nj+mq+m, 

we can rewrite the previous right-hand term as 

k 

EN,+,(P) - P ’ c nj+,,,‘J+i 
m=l 

“,+k 

+ C (EN,+~-,+I P 
I=1 

( > -Pq+k)] 

. . 

Given that rJ+l is greater than r,(d,) for all indices I on the 
(j + 1) stage of the trellis (7a), that is for all I E { 1”; + 1; . . , N, 

+ n j + 1 } , we can conclude that 

;q ENf”’ -p) >o. 

Similarly, all the summation terms in the bracket above are 
positive, and therefore (22) is established and the proof is com- 
pleted. 
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An Information-Theoretic Proof of Hadamard’s 
Inequality 

THOMAS M. COVER, FELLOW, IEEE, AND ABBAS EL GAMAL, 
SENIOR MEMBER, IEEE 

Abstract-Hadamard’s inequality follows immediately from inspection of 
both sides of the entropy inequality h ( Xl, X2, . . , X,) Q Zh (X;), when 
(X,, X2, . , X,,) is multivariate normal. 

I. INTR~IxJ~TI~N 

The most familiar of Hadamard’s inequalities is that the de- 
terminant of a matrix A is less than the product of the lengths of 
its rows, i.e., ]A] Q l-I,(Xia~j)1/2. An equivalent Hadamard in- 
equality states that, for symmetric nonnegative definite matrices 
K, the determinant is less than the product of the diagonal 
elements, i.e., lK[ < Ilkii. To see that the first inequality follows 
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from the second, let K = AA’. Then AA’ is nonnegative definite 
and 

IAl*=+4’I < jy&L4’),i 

= n( l&z:.). (1) 
i j 

The implication of the second inequality from the first follows 
from the fact that every nonnegative definite matrix K can be 
factored as K = AA’. A typical proof of Hadamard’s inequality is 
by induction (see, for example, Bellman [l]) and involves a 
determinant decomposit ion followed by an inspection of the 
resulting quadratic forms. A recent proof based on convexity 
arguments is given in Marshall and Olkin [2]. 

We  offer here an information-theoretic proof. 

II. PRELIMINARIES 

If X is a vector valued random variable having probability 
density function f(x), define the (differential) entropy h of the 
random vector X by h(X) = - /f(n) In f(x) dx. 

From elementary information theory [3], we have the inequal- 
ity 

h(X,,..*, xn> 6 i h(4), (2) 
i=l 

with equality if and only if Xi, X2, . . . , X, are independent 
random variables. The proof follows from Jensen’s inequality as 
follows: 

=-- /( f ~~,~..,x,)ln f(x~,~~~,x,) 
+ s f(x,,.-. 9  x,)ln13fii<xi> 

i 

=ln nf,=lnl=O, / (3) 

with equality if and only if f = Uf,, by the strict concavity of the 
logarithm. 

If X is an n-variate normal random vector with mean 0 and 
covariance matrix K, then a direct calculation [4, th. 4.5.11 
establishes 
h(X,;.- ,X,,) = - jflnf 

s 
1 

=- 

(2?r)“‘2(K11/2 
e -(1/2)x’K -1.x 

-ln(21r)“‘2]K]1/2 - i CX;(K-‘)iiX, dx  
‘?J 1 

= ln(2r)“‘2]K( l/* +  Jj C,(K-~),,EX,X~ 
‘.J 

= ln(2m)“‘21K11/2 + 5 

= i ln(2ne)“lK]. (4 

Letting n = 1, we have 

h(A) = + ln27rek,,. (5) 

III. WOREM AND PROOF 

Theorem (Hadamard’s Inequality): If K is nonnegative definite, 
then 

IKI d  I-h, 7  (6) 

with equality if and only if kjj =  0, for all i #  j. 

Proof If the determinant ] K ] = 0, the inequality is trivially 
true. Let ] K ] > 0, and consider X to be normally distributed with 
mean 0 and covariance matrix K. Then from (2), 

h(X,, X2,... , Xn) d Ch(X,). 
Substituting from (4) and (5) yields 

i ln(2?re)“]K] Q c $ln2sek,,. (7) 

Exponentiating preserves the inequality and yields the desired 
result. 

Moreover, we have equality only if the X,‘s are independent, 
hence uncorrelated. Thus equality holds only if K is diagonal. 
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A Simple Proof of the Ahlswede-Csiszk One-Bit 
Theorem 

ABBAS EL GAMAL, SENIOR MEMBER,  IEEE 

Abstract-It is proved that if (X, Y) are two finite alphabet correlated 
sources with p(x, JJ) > 0 for all (x, v) E (XX g), and if a function 
F(X, Y) is a-sensitive, then the rate R of transmission from X to Y 
necessary to compute F(X, Y) reliably must be greater than H( XI Y). The 
same result holds if the function is highly sensitive and for every x1 f x2 
E X, then the number of elementsy E Y withp(x,, y) .p(x2,‘y) > 0 is 
different from one. 

I. INTRODUCTION 

Let (X, Y) E (ZX ?V) be two finite alphabet sources with joint 
probability mass functionp( x, y), and let (X,, Y), i =  1,2; . . ,n, 
be n independent copies of (X, Y). Consider a function 

F: fi (9’ x V) +  W. 
n=l 
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