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only linearly and not exponentially with the source block length.
Since a trellis approaches a tree as the constraint length grows
large, this work also suggests an alternate tree coding scheme and
proof of the tree coding theorem of Jakatdar and Pearlman [6].

APPENDIX A

The generalized Gallager function E¢*(p) is defined in (21). In
the following we prove that given R Nu ™~ Ry, (Dg) for all j and k;
or equivalently given (7a), that the per-lett’er ‘rate” associated
with each code letter being always greater than the rate r,(dy)
induced by the rate-distortion function of the corresponding
source letter u;, will imply (22a), that is

Ef*
RN

'k

—p|>0, foralljand kand —1 < p < 0. (27)
From the properties of the Gallager function [1, p. 394] we can
write

[E_I(P_>

. _p]>0 —1<p<0, forr>r/(ds) (28)

where E;(p) and r,(dy) are respectivély the Gallager function and
the rate-distortion function associated with the letter u,. We will
use the property (28) to establish (27) as follows:

Nk
; N';l Z Ey_.(p)
E) | =
R, Ni'klog g
1| M

~ %iog g /;EMH(P) —pklog g |.

Since at depth (j + m) of the trellis
_ log q

jt+m
jtm

or Iqu = nj+m j+m>

we can rewrite the previous right-hand term as

Z N+I(p)_p Z nj+mj+m
=1

k]ogq
1 nj
“ klogq I;(EN,-+I(P) —per) + ..
Rk ’
* Z (El‘fj+k_1+/(P) - prj+k)
=1
I j+1 Iil EN+/(P) .
klogq = rj+l P
vk [ E
DY Enypari(P) )
=1 Ttk
_1f 1 "t [ Ey .i(p) ol -
o R Ty p

1 Tk E}\G+k,l+l(p)
+ )> -p
Ly S Tivk

Given that r/*! is greater than r(d,) for all indices / on the
(J + 1) stage of the trellis (7a), that is for all / € {N, + 1,---,N,
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+ 1,41}, we can conclude that
"t Ey o (p)

———-j —_—
1§1 Tji+1 g

> 0.

Similarly, all the summation terms in the bracket above are
positive, and therefore (22) is established and the proof is com-
pleted.
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An Information-Theoretic Proof of Hadamard’s
Inequality

THOMAS M. COVER, FELLOW, IEEE, AND ABBAS EL GAMAL,
SENIOR MEMBER, IEEE

Abstract— Hadamard’s inequality follows immediately from inspection of
both sides of the entropy inequality #( X}, X,, - --, X,) < Lh(X,), when
(X1, X5, - -+, X,,) is multivariate normal.

I. INTRODUCTION

The most familiar of Hadamard’s inequalities is that the de-
terminant of a matrix 4 is less than the product of the lengths of
its rows, ie., |4] <T1,(Z;a})'/>. An equivalent Hadamard in-
equality states that, for symmetnc nonnegative definite matrices
K, the determinant is less than the product of the diagonal
elements, i.e., |K| < ITk,;. To see that the first inequality follows
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from the second, let K = 4A4’. Then A4’ is nonnegative definite
and

|41 =]44"| < [ T(44"),;
-T1(ze5)

The implication of the second inequality from the first follows
from the fact that every nonnegative definite matrix K can be
factored as K = AA4". A typical proof of Hadamard’s inequality is
by induction (see, for example, Bellman {1]) and involves a
determinant decomposition followed by an inspection of the
resulting quadratic forms. A recent proof based on convexity
arguments is given in Marshall and Olkin [2].
We offer here an information—theoretic proof.

¢y

II. PRELIMINARIES

If X is a vector valued random variable having probability
density function f(x), define the (differential) entropy 4 of the
random vector X by 2(X) = — [f(x)In f(x) dx.

From elementary information theory [3], we have the inequal-
ity

n
AKX, X) < LX), @)
i=1
with equality if and only if X, X,,---, X, are independent
random variables. The proof follows from Jensen’s inequality as
follows:

WX %)~ Th(K)

» %)

= _ff(xl""’xn)lnf(xli'“
S LCHEENY RIACH

=i [T]f,=m1=0, 3)

with equality if and only if f = ['1f;, by the strict concavity of the
logarithm. ‘

If X is an n-variate normal random vector with mean 0 and
covariance matrix K, then a direct calculation [4, th. 4.5.1]
establishes

h(Xl"”’Xn)

It

~[fing

—-(1/2)x'K " x

1
bl Ee—
/ (@m)"* 1K

|- @m) K = S D x (K, | de
iJ

i

In (2'”);1/2'[(‘1/2 + % Z(K—l)UEX"X'j
iJ

=t (27)" K2 + 5

1 "
=Eln(27re) IK|. (4)
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Letting n = 1, we have

h(X;) =%ln2ﬂek“. (5)

IIL

Theorem (Hadamard'’s Inequality). If K is nonnegative definite,
then '

THEOREM AND PROOF

K| < Tk, ©)

with equality if and only if k;; = 0, for all i # j.

Proof: If the determinant |K| = 0, the inequality is trivially
true. Let | K| > 0, and consider X to be normally distributed with
mean 0 and covariance matrix K. Then from (2),

h(Xl’ Xy, Xn) < Zh(X,)
Substituting from (4) and (5) yields

%m 27e)"|K|< Y % In2mek;,.

(7
Exponentiating preserves the inequality and yields the desired
result.

Moreover, we have equality only if the X;’s are independent,
hence uncorrelated. Thus equality holds only if K is diagonal.

REFERENCES

[1] R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York:
McGraw-Hill, 1970, pp. 126-130.

[2] A. Marshall and I. Olkin, “A convexity proof of Hadamard’s inequality,”
Amer. Math. Monthly, vol. 89, no. 9, pp. 687-688, Nov. 1982.

{3] R. Gallager, Information Theory and Reliable Communication.
John Wiley, 1968.

[4] T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice Hall,
1971.

New York:

A Simple Proof of the Ahlswede—Csiszar One-Bit
Theorem

ABBAS EL GAMAL, SENIOR MEMBER, 1EEE

Abstract—1t is proved that if (X, Y) are two finite alphabet correlated
sources with p(x, y) > 0 for all (x, y) € (ZX%), and if a function
F(X,Y) is a-sensitive, then the rate R of transmission from X to Y
necessary to compute F( X, Y) reliably must be greater than H( X|Y). The
same result holds if the function is highly sensitive and for every x; # x,
€ %, then the number of elements y € % with p(x,, y) - p(x,, y) > Ois
different from one.

I. INTRODUCTION

Let (X,Y) € (£ X%) be two finite alphabet sources with joint
probability mass function p(x, y), and let (X, Y),i = 1,2,---,n,
be n independent copies of (X, Y). Consider a function

oo
F: U@ xo)-a.

n=1
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