only linearly and not exponentially with the source block length. Since a trellis approaches a tree as the constraint length grows large, this work also suggests an alternate tree coding scheme and proof of the tree coding theorem of Jakatdar and Pearlman [6].

APPENDIX A

The generalized Gallager function $E_0^{jk}(\rho)$ is defined in (21). In the following we prove that given $R_{N_{jk}} > R_{N_{jk}}(D_{\theta})$ for all j and k; or equivalently given (7a), that the per-letter "rate" associated with each code letter being always greater than the rate $r_l(d_{\theta})$ induced by the rate-distortion function of the corresponding source letter u_1 , will imply (22a), that is

$$\left[\frac{E_0^{jk}}{R_{N_{jk}}} - \rho\right] > 0$$
, for all j and k and $-1 < \rho < 0$. (27)

From the properties of the Gallager function [1, p. 394] we can write

$$\left[\frac{E_l(\rho)}{r} - \rho\right] > 0 \qquad -1 < \rho < 0, \quad \text{for } r > r_l(d_\theta) \quad (28)$$

where $E_l(\rho)$ and $r_l(d_{\theta})$ are respectively the Gallager function and the rate-distortion function associated with the letter u_i . We will use the property (28) to establish (27) as follows:

$$\left[\frac{E_0^{jk}(\rho)}{R_{N_{jk}}} - \rho\right] = \frac{N_{jk}^{-1} \sum_{l=1}^{N_{jk}} E_{N_j+l}(\rho)}{N_{jk}^{-1} k \log q} - \rho$$

$$= \frac{1}{k \log q} \left[\sum_{l=1}^{N_{jk}} E_{N_j+l}(\rho) - \rho k \log q\right].$$

Since at depth (j + m) of the trellis

$$r_{j+m} = \frac{\log q}{n_{j+m}}$$
 or $\log q = n_{j+m}r_{j+m}$,

we can rewrite the previous right-hand term as

$$\begin{split} &= \frac{1}{k \log q} \left[\sum_{l=1}^{N_{jk}} E_{N_{j}+l}(\rho) - \rho \cdot \sum_{m=1}^{k} n_{j+m} r_{j+m} \right] \\ &= \frac{1}{k \log q} \left[\sum_{l=1}^{n_{j+1}} \left(E_{N_{j}+l}(\rho) - \rho r_{j+1} \right) + \cdots \right. \\ &+ \left. \sum_{l=1}^{n_{j+k}} \left(E_{N_{j+k-1}+l}(\rho) - \rho r_{j+k} \right) \right] \\ &= \frac{1}{k \log q} \left[r^{j+1} \sum_{l=1}^{n_{j+1}} \left(\frac{E_{N_{j}+l}(\rho)}{r_{j+1}} - \rho \right) + \cdots \right. \\ &+ r^{j+k} \sum_{l=1}^{n_{j+k}} \left(\frac{E_{N_{j+k-1}+l}(\rho)}{r_{j+k}} - \rho \right) \right] \\ &= \frac{1}{k} \left[\frac{1}{n_{j+1}} \sum_{l=1}^{n_{j+1}} \left(\frac{E_{N_{j+l}}(\rho)}{r_{j+1}} - \rho \right) + \cdots \right. \\ &+ \frac{1}{n_{j+k}} \sum_{l=1}^{n_{j+k}} \left(\frac{E_{N_{j+k-1}+l}(\rho)}{r_{j+k}} - \rho \right) \right]. \end{split}$$

Given that r^{j+1} is greater than $r_i(d_{\theta})$ for all indices l on the (j+1) stage of the trellis (7a), that is for all $l \in \{N_j+1, \cdots, N_j\}$

 $+ n_{i+1}$, we can conclude that

$$\sum_{l=1}^{n_{j+1}} \left(\frac{E_{N_j+l}(\rho)}{r_{j+1}} - \rho \right) > 0.$$

Similarly, all the summation terms in the bracket above are positive, and therefore (22) is established and the proof is com-

REFERENCES

- A. J. Viterbi and J. K. Omura, "Trellis encoding of memoryless discretetime sources with a fidelity criterion," *IEEE Trans. Inform. Theory*, vol. IT-20, pp. 325–332, May 1974.
- -, Principles of Digital Communication and Coding. New York: Mc-Graw-Hill, 1979.
- F. Jelinek, "Tree coding with a fidelity criterion," *IEEE Trans. Inform. Theory*, vol. IT-15, pp. 584-590, Sept. 1969.
- T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall,
- R. G. Gallager, Information Theory and Reliable Communication. New York: Wiley, 1968.
- P. Jakatdar and W. A. Pearlman, "Very low rate tree coding of Stationary Gaussian Sources," in *Proc. Sixteenth Annual Conf. Inform. Sci.*
- and Syst., Princeton University, Princeton, NJ, pp. 559-563, Mar. 1982. J. B. Anderson and J. B. Bodie, "Tree encoding of speech," *IEEE Trans. Inform. Theory*, vol. IT-21, pp. 379-387, July 1976. W. A. Finamore and W. A. Pearlman, "Optimal encoding of discrete-time
- continuous-amplitude memoryless sources with finite output alphabets,"
- IEEE Trans. Inform. Theory, vol. IT-26, pp. 144-155, Mar. 1980. W. A. Fuller, Introduction to Statistical Time Series. New York: Wiley, 1976.
- H. H. Tan, "Tree coding of discrete-time abstract alphabet stationary block-ergodic sources with a fidelity criterion," *IEEE Trans. Inform.* Theory, vol. IT-22, pp. 671-681, Nov. 1976.
- R. M. Gray, "Sliding-block source coding," IEEE Trans. Inform. Theory, vol. IT-21, pp. 357-368, July 1975.
- -, "Time-invariant trellis encoding of ergodic discrete-time sources with a fidelity criterion," IEEE Trans. Inform. Theory, vol. IT-23, pp. 71-83, Jan. 1977.
- L. C. Stewart, R. M. Gray, and Y. Linde, "The design of trellis waveform coders," IEEE Trans. Commun., vol. COM-30, pp. 702-709, Apr.
- [14] Y. Linde and R. M. Gray, "A fake process approach to data compression," IEEE Trans. Commun., vol. COM-26, pp. 840-847, June 1978.

An Information-Theoretic Proof of Hadamard's Inequality

THOMAS M. COVER, FELLOW, IEEE, AND ABBAS EL GAMAL, SENIOR MEMBER, IEEE

Abstract - Hadamard's inequality follows immediately from inspection of both sides of the entropy inequality $h(X_1, X_2, \dots, X_n) \leq \sum h(X_i)$, when (X_1, X_2, \dots, X_n) is multivariate normal.

I. Introduction

The most familiar of Hadamard's inequalities is that the determinant of a matrix A is less than the product of the lengths of its rows, i.e., $|A| \le \prod_i (\sum_j a_{ij}^2)^{1/2}$. An equivalent Hadamard inequality states that, for symmetric nonnegative definite matrices K, the determinant is less than the product of the diagonal elements, i.e., $|K| \le \prod k_{ii}$. To see that the first inequality follows

Manuscript received September 24, 1982; revised April 22, 1983. This work was supported in part by the National Science Foundation under Contracts ECS78-23334 and JSEP DAAG29-81-K-0057, and ENG79-08948.

The authors are with the Department of Electrical Engineering, (the first author jointly with the Statistics Department), Stanford University, Stanford, CA 94305.

from the second, let $K = AA^{t}$. Then AA^{t} is nonnegative definite Letting n = 1, we have and

$$|A|^2 = |AA^t| \leqslant \prod (AA^t)_{ii}$$

$$= \prod_i \left(\sum_i a_{ij}^2 \right). \tag{1}$$

The implication of the second inequality from the first follows from the fact that every nonnegative definite matrix K can be factored as K = AA'. A typical proof of Hadamard's inequality is by induction (see, for example, Bellman [1]) and involves a determinant decomposition followed by an inspection of the resulting quadratic forms. A recent proof based on convexity arguments is given in Marshall and Olkin [2].

We offer here an information-theoretic proof.

II. PRELIMINARIES

If X is a vector valued random variable having probability density function f(x), define the (differential) entropy h of the random vector X by $h(X) = -\iint f(x) \ln f(x) dx$.

From elementary information theory [3], we have the inequality

$$h(X_1, \dots, X_n) \leqslant \sum_{i=1}^n h(X_i), \tag{2}$$

with equality if and only if X_1, X_2, \dots, X_n are independent random variables. The proof follows from Jensen's inequality as follows:

$$h(X_1, \dots, X_n) - \sum_{i=1}^n h(X_i)$$

$$= -\int f(x_1, \dots, x_n) \ln f(x_1, \dots, x_n)$$

$$+ \int f(x_1, \dots, x_n) \ln \prod_i f_i(x_i)$$

$$= \int f \ln \frac{\prod f_i}{f}$$

$$\leq \ln \int f \frac{\prod f_i}{f}$$

$$= \ln \int \prod f_i = \ln 1 = 0,$$
(3)

with equality if and only if $f = \prod f_i$, by the strict concavity of the

If X is an n-variate normal random vector with mean 0 and covariance matrix K, then a direct calculation [4, th. 4.5.1] establishes

$$h(X_{1}, \dots, X_{n}) = -\int f \ln f$$

$$= -\int \frac{1}{(2\pi)^{n/2} |K|^{1/2}} e^{-(1/2)x^{t}K^{-1}x}$$

$$\cdot \left[-\ln (2\pi)^{n/2} |K|^{1/2} - \frac{1}{2} \sum_{i,j} x_{i} (K^{-1})_{ij} x_{j} \right] dx$$

$$= \ln (2\pi)^{n/2} |K|^{1/2} + \frac{1}{2} \sum_{i,j} (K^{-1})_{ij} E X_{i} X_{j}$$

$$= \ln (2\pi)^{n/2} |K|^{1/2} + \frac{n}{2}$$

$$= \frac{1}{2} \ln (2\pi e)^{n} |K|. \tag{4}$$

$$h(X_i) = \frac{1}{2} \ln 2\pi e k_{ii}.$$
 (5)

III. THEOREM AND PROOF

Theorem (Hadamard's Inequality): If K is nonnegative definite,

$$|K| \leqslant \prod_{i} k_{ii},\tag{6}$$

with equality if and only if $k_{ij} = 0$, for all $i \neq j$.

Proof: If the determinant |K| = 0, the inequality is trivially true. Let |K| > 0, and consider X to be normally distributed with mean 0 and covariance matrix K. Then from (2),

$$h(X_1, X_2, \cdots, X_n) \leq \sum h(X_i).$$

Substituting from (4) and (5) yields

$$\frac{1}{2}\ln(2\pi e)^{n}|K| \le \sum_{i=1}^{n} \frac{1}{2}\ln 2\pi e k_{ii}.$$
 (7)

Exponentiating preserves the inequality and yields the desired result.

Moreover, we have equality only if the X_i 's are independent, hence uncorrelated. Thus equality holds only if K is diagonal.

- [1] R. Bellman, Introduction to Matrix Analysis, 2nd ed. New York:
- McGraw-Hill, 1970, pp. 126-130. A. Marshall and I. Olkin, "A convexity proof of Hadamard's inequality," Amer. Math. Monthly, vol. 89, no. 9, pp. 687-688, Nov. 1982.
- R. Gallager, Information Theory and Reliable Communication. New York: John Wiley, 1968.
- T. Berger, Rate Distortion Theory. Englewood Cliffs, NJ: Prentice Hall,

A Simple Proof of the Ahlswede-Csiszár One-Bit Theorem

ABBAS EL GAMAL, SENIOR MEMBER, IEEE

Abstract—It is proved that if (X, Y) are two finite alphabet correlated sources with p(x, y) > 0 for all $(x, y) \in (\mathcal{X} \times \mathcal{Y})$, and if a function F(X,Y) is α -sensitive, then the rate R of transmission from X to Y necessary to compute F(X, Y) reliably must be greater than H(X|Y). The same result holds if the function is highly sensitive and for every $x_1 \neq x_2$ $\in \mathcal{X}$, then the number of elements $y \in \mathcal{Y}$ with $p(x_1, y) \cdot p(x_2, y) > 0$ is different from one.

I. Introduction

Let $(X, Y) \in (\mathcal{X} \times \mathcal{Y})$ be two finite alphabet sources with joint probability mass function p(x, y), and let (X_i, Y_i) , $i = 1, 2, \dots, n$, be n independent copies of (X, Y). Consider a function

$$F: \bigcup_{n=1}^{\infty} (\mathscr{X}^n \times \mathscr{Y}^n) \to \mathscr{R}.$$

Manuscript received July 6, 1982; revised April 12, 1983. This work was supported in part by the National Science Foundation under NSF Grant 80-26102 and in part by the Air Force under Contract 49620-79-C-0058.

The author is with the Information Systems Laboratory, Durand 137, Stanford University, Stanford, CA 04305.