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The Capacity Region of the Discrete Memoryless 
Interference Channel with Strong Interference 

M A X  H. M. COSTA, MEMBER,  IEEE, AND 
ABBAS A. EL GAMAL, SENIOR MEMBER,  IEEE 

A/~ruci -The capacity region of the discrete memoryless interference 
channel with strong interference is established. 

I. INTRODUCTION 
The discrete memoryless interference channel with strong 

interference is a discrete memoryless interference channel with 
inputs Xi and X, and corresponding outputs Y, and Ys which 
satisfy 

qx,;y,Ix,) Iqx,;y,I&) (1) 
and 

qx,; r,lx,) Iz(x*; y,lx,) (2) 
for all product probability distributions on %r x !I$. 

In [l] Sato conjectures that the capacity region of this channel 
coincides with the capacity region C of the model where both 
messages are required at both receiving terminals [2]. This region 
can be expressed as the union of the rate pairs (R,, R,) satisfying 

orR,~Z(x,;Y,lx,,Q> (3) 
OsR,sZ(X,;Y,l&,Q> (4) 

R,+R,rmin{Z(X,,X,;Y,lQ),Z(X,,X,;Y,lQ)} (5) 
where Q is a time-sharing parameter of cardinality 4, and 
the union is over all probability distributions of the form 
~(q)~(xllq>~(x21q)~(yl, Y~Ix~, XAwith P~J~~KIx~~ 4 set by 
the channel. 

We prove Sato’s conjecture using a result by Khmer and 
Marton [3] that involves the notion of more capable broadcast 
channels. A conveniently modified version of this result is stated 
in Section III and proved in the Appendix. 

II. PRELIMINARIES 
Let W, and W, be two independent information sources 

uniformly distributed over the integer sets (1,. . ., Mr } and 
{ 1,. . . , M2 }, respectively. Encoder 1 maps W, into codeword Xi 
and encoder 2 maps W, into codeword X,. The interference 
channel consists of four finite alphabets T1;, T1;, ?Vr, and gz, 
and conditional probability distributions p(y,(x,, x2) and 
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p(y21xl,x2). An (M,, M2,n,X,)-code for this channel is a set of 
two encoding functions e, : Ml --) Tf, e2: M2 + 3?” and two 
decoding functions d, : g: + Ml, d,: g$ + M, such that 

m={h,.,~,,.I Ql. (8) 
A rate pair (R,, R2) is said to be achievable if there is a 

sequence of (2”R1,2nR2, n, X,)-codes with X, --) 0 as n + CO. The 
capacity region of the interference channel is defined as the 
closure of the set of all achievable rate pairs. 

III. ACHIEVABILITY AND CONVERSE 
The achievability of the rate pairs in C is immediate since C is 

the capacity region when both messages WI and W, are required 
at both receivers [2]. Inequalities (3) and (4) represent obvious 
upper bounds on the rates R, and R,. Therefore, by symmetry, 
to establish Sato’s conjecture it suffices to show 

R,+R,sI(X,,X,;Y,lQ). (9) 
From Fano’s inequality, we have 

fft WY,) 5 %h,. + +Lz) p nr,,n (10) 

f0’i!Y,) snR,A,,, + htb,n) 4 n~2.n (11) 

where h( .) is the binary entropy function and ei, n, e2, n --f 0 as 
X,, + 0. Now consider 

ntR,+fb) =H(W,)+HtW) 
=~(W,;Y,)+~(W,;Y,)+~(W,lY,)+~(W,lY,). 

Using Fano’s inequality with en = max { ei, n, e2, n }, we get 

n(R,+ R,) IZ(W,;Y,)+Z(W,;Y,)+~~E, (14 
I’z(Xl;Y,)+z(X2;Y2)+2nE, (13) 
I Z(X,; YJX,) + Z(X,; Y,) +2nr,. (14) 

Inequality (13) follows from the data processing inequality, while 
(14) is a consequence of the independence of X, and X2. 

At this point we state the following lemma. The proof, given in 
the Appendix, is essentially due to Khmer and Marton [3]. 

Lemma: Let a discrete memoryless interference channel have 
inputs X1, X, and outputs Y,, Y,. If 1(X,; YJX,) I 1(X,; Y,]X,) 
for all product probability distributions on .?Zi X &, then 
Z(X,; KlX,> 5 Z(X1; y,lX,). 

Applying this to (14), we obtain 

n(R,+R,) IZ(X,;Y,IX~)+Z(X,;Y~)+~~C, (15) 
=Z(X,,X,; Y*)+2nc, (16) 

5 i q4,,X2i;Y2,)+2wz, (17) 
i=l 

completing the proof of the converse. 
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IV. CONCLUSION 
The capacity region of the class of discrete interference chan- 

nels with strong interference has been established. This class 
includes two classes of interference channels for which capacity 
regions were separately obtained. They are 

a) channels with statistically equivalent outputs [2], [4], [5]; 
b) the class of channels with very strong interference, i.e., 

those for which Z(X,; Yi]X,) 5 Z(X,; Ys) and Z(X,; Y,]X,) 
I Z( X,; Y,) for all product probability distributions on the 
inputs [6], [7]. 
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APPENDIX 
PROOF OF THE LEMMA 

First we note that the hypothesis implies Z(X,; Y,]X,, U) I 
Z(X,;Y,IX,,U), where U-+(X,,X,)-,(Y,,Y,) and X,-U+ 
X, form Markov chains. Define Yn-l = (Y,, Y,; . -, T-i). Then 
we have 

Z(X1; Y,l&) - Z(X,; Y,IXd 
= z( Xl) y;-11x*) +.z( x1; Y,,lX, ) Y;-1) 

- Z(X1; r,,lX,)- +I; y;-llx,,y,,) 

=z(x,,r,,;y;I-‘Ix,)+z(x,;y,,Ix,,Y~-’) 

-Z(X,,Y;-‘;y,nlX~)-Z(X~;Y;-lIX~,y,,). (Al) 
This follows from the fact that Yl, + (Xl, X,) + YT-’ forms a 

Markov chain. Using the chain rule, we find 

Z(X1; Y,lX,) - z(x1; Y,IXd 
= z( Y,,; Y;-‘IX,) + z( x;-1; Y;-l(xz, Y,,) 

+~(x,“;~;l-11~,,y,~,~;-1)+~(~,;yz,l~*,~2”-1) 
+ z( x7-1; Yzn(X2, y;-1, x1,) - z( Y;-1; Y,,IX*) 

-z(x,,,;r,,lX*,Y~-l)-z(X;-‘;Y,,IX,,Y,”-l,Xl,) 
-z(x;l-l;Y;-lIX,,Y,,)-z(Xl,;Y;-lIX*,Yl,,X;-l) 

(A3 
The 3rd, 5th, 8th, and 10th terms of the right-hand side above 

are null, due to the memorylessness of the channel. Therefore, 

~(X,~Y,lX*)-~(X,~Y,IX*) 
=~(x,,,;r,,,lx*,Y;‘-‘)-~(Xl,,;Y,,~IX,,Y;’-’) 

+ z( xi’-‘; y;‘-‘IX*, Y,,,) - z( XT-‘; y;‘-‘IX*, Y,,). 

(A31 

Now, since 

form Markov chains, it follows by induction that 
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Feedback Can at Most Double Gaussian Multiple 
Access Channel Capacity 

JOYATHOMAS 

Abstract-The converse for the discrete memoryless multiple access 
channel is generalized and is used to derive strong hounds on the total 
capacity (sum of the rates of all the senders) of an m-user Gaussian 
multiple access channel in terms of the input covariance matrix. These 
hounds are used to show that the total capacity of the channel with 
feedback is less than twice the total capacity without feedback. The 
converse for the general multiple access channel is also used to show that 
for any m-user multiple access channel, feedback cannot increase the total 
capacity by more than a factor of m . 

I. INTRODUCTION 

The simplest communication situation is when we have a single 
sender trying to send information to a single receiver. In many 
practical situations, however, we have two-way links-the re- 
ceiver can also send back information to the sender (for example, 
telephone links). Although feedback is very common in practical 
channels, it is still only imperfectly understood and a large 
number of problems remain open on the capacity of channels 
with feedback. In this report, we establish bounds relating this 
capacity to the capacity without feedback for a class of multiple 
access channels. Our objective is to show that feedback cannot 
help very much in increasing the capacity of many practical 
channels. 

The most important and rather surprising result in this area is 
due to Shannon [l], who established that feedback cannot in- 
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