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Abstract

In this paper, we propose a robustness measure for
LTI systems with causal, nonlinear diagonal pertur-
bations with �nite L2-gain. We propose an algo-
rithm to reliably compute this quantity. We show
how to �nd a state-feedback controller that achieves
the global maximum of the robustness measure.

1. De�nition of the Robustness Measure

We consider the following feedback system:

_x = Ax +Bw;

z = Cx; (1)

w = �z; (2)

where x(t) 2 Rn, w(t); z(t) 2 Rm, and � is a causal,
possibly nonlinear operator mapping Lm2 into itself.
We assume that � has `diagonal structure': With
zT = [z1; : : : ; zm] and wT = [w1; : : : ; wm], we assume
that (2) can be expressed as

wi = �i(zi); i = 1; : : : ;m; (3)

where each �i maps L2 into itself. We also assume
that (A;B;C) is a minimal realization of the transfer

matrix H(s)
�
= C(sI � A)�1B.

Denote by P the set of real diagonalm�mmatrices
with positive entries and de�ne

�(H)
�
= inf

P2P




P 1=2HP�1=2




1
; (4)

where kHk1 is the H1-norm of the transfer matrix
H(s). The quantity 1=�(H) is a measure of robust-
ness of H(s) against causal nonlinear diagonal oper-
ators � : Lm2 ! Lm2 . In particular, the system (1,2)
is stable for all diagonal � with L2-gain less than
1=�(H), where the L2-gain of an operator � is de-
�ned as

sup
u6=0

k�(u)k2
kuk2

:
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(kuk2 stands for the usual L2-norm of u.) The ma-
trices P in (4) are input-output scalings that leave
the block structure of the system (1,2) invariant. For
more details, see [1].

2. Computation of the Robustness Measure

The strict bounded real lemma states the following
(see e. g. [2]). For a given transfer matrix H(s) =
C(sI �A)�1B, with (A;B;C) minimal, the following
statements are equivalent:

1. H(s) is stable and kHk1 < 
.

2. There exists X = XT > 0 such that

ATX +XA +CTC +
1


2
XBBTX < 0:

Using this lemmawe conclude that �(H) < 
 if and
only if there exists a P 2 P and X = XT > 0 such
that

ATX +XA + CTPC +
1


2
XBP�1BTX < 0:

Thus

�(H) = inf
X=XT>0

P2P

f
 > 0 j R(
;X; P ) > 0g ;

where R(
;X; P ) = ATX + XA + CTPC +

�2XBP�1BTX.

Using a change of variable W = X�1 and Q =

�2P�1, we obtain the following characterization of
�(H).

�(H) = inf
W=WT >0

Q2P

f 
 > 0 j R(
;W;Q) > 0 g ;

where the symmetric matrix function R(
;W;Q) is
de�ned as

R(
;W;Q) =

�
R11 R12

RT
12 R22

�
;
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with

R11 = �(AW +WAT +BQBT );

R12 = WCT ;

R22 = 
2Q:

Since R(
;W;Q) is an a�ne symmetric matrix
function in the variables W;Q, we readily recast the
problem of computing � as a constrained generalized

eigenvalue minimization problem:

minimize
(x; 
) 2 RN+1


2B(x)� A(x) > 0
C(x) > 0


; (5)

where A(�), B(�) and C(�) are a�ne, symmetric matrix
functions in the variable x 2 RN which contains the
independent variables in (W;Q).

Problem (5) is a nondi�erentiable, quasi-convex op-
timization problem [3], so methods such as Kelley's
cutting-plane algorithm or the ellipsoid algorithm of
Shor, Nemirovksy, and Yudin are guaranteed to min-
imize it. Interior point algorithms which appear to
be very e�cient for solving (5) are given in [4, 5]; see
also [6] for a brief outline of the algorithm.

3. Minimizing � via state-feedback

Consider now the following system:

_x = Ax+B1w +B2u;

z = Cx; (6)

w = �z;

where � is again diagonal as in (3). We assume that
(A;B1) and (A;B2) are controllable, and that (C;A)
is observable.

We wish to �nd a (stabilizing) state feedback con-
trol law u = Kx which minimizes the robustness mea-
sure (4) for the closed-loop transfer matrix from w to
z, which we denote byHK(s). Noting that HK(s) has
a minimal realization fA+B2K;B1; Cg, the results of
the previous section may now be applied to obtain a
characterization for the smallest achievable �(HK) as
a minimization problem over an a�ne matrix matrix
inequality.

inf
K
�(HK) = inf

X=XT>0

P2P; K

f
 > 0 j R(
;X; P;K) > 0g ;

(7)

where R(
;X; P;K) = (A+B2K)TX+X(A+B2K)+
CTPC + 
�2XB1P

�1BT1 X.

Using the change of variables W = X�1, Y =
KX�1 and Q = 
�2P�1, we obtain the following
result.

inf
K
�(HK) = inf

W=WT >0

Q2P; Y

f
 > 0 j R(
;W;Q; Y ) > 0g ;

(8)
where the matrix function R(
;W;Q; Y ) is de�ned as

R(
;W;Q; Y ) =

�
R11 R12

RT
12 R22

�
;

with

R11 = �(AW +WAT + B2Y + Y TBT2 +B1QB
T
1 );

R12 = WCT ;

R22 = 
2Q:

Problem (8) is thus reducible to (5). The optimal

controller is given by Kopt = YoptW
�1
opt, where Yopt

andWopt are the optimalY andW respectively in (8).

4. Conclusions

A measure of robustness of LTI systems against
causal nonlinear diagonal perturbations can be com-
puted using generalized eigenvalue minimization. The
same algorithm can be used to design the optimal
feedback that minimizes this measure. Extensions of
these results to more generally structured perturba-
tions (for example block diagonal) are fairly straight-
forward.
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