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Abstract

In this paper, we propose a robustness measure for
LTT systems with causal, nonlinear diagonal pertur-
bations with finite La-gain. We propose an algo-
rithm to reliably compute this quantity. We show
how to find a state-feedback controller that achieves
the global maximum of the robustness measure.

1. Definition of the Robustness Measure

We consider the following feedback system:

¥ = Azx+ Buw,
z = Cu, (1)
w = Az, (2)

where z(t) € R™, w(t), z(t) € R™, and A is a causal,
possibly nonlinear operator mapping L3 into itself.
We assume that A has ‘diagonal structure’> With
2T =1z,..., zm] and w? = [wy, ..., w,], we assume

that (2) can be expressed as
wi:Ai(Zi), i:l,...,m, (3)

where each A; maps Lo into itself. We also assume
that (A, B, C') is a minimal realization of the transfer

matrix H(s) 2 C(sl — A)~'B.

Denote by P the set of real diagonal m x m matrices
with positive entries and define

v(H) 2 ot | PP (4)
PeP 53]

where ||H||oo is the Hog-norm of the transfer matrix
H(s). The quantity 1/v(H) is a measure of robust-
ness of H(s) against causal nonlinear diagonal oper-
ators A : L* — L', In particular, the system (1,2)
is stable for all diagonal A with Ls-gain less than
1/v(H), where the Lo-gain of an operator A is de-

fined as A
oy 180

wto |lull2
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([|u|]2 stands for the usual Lo-norm of w.) The ma-
trices P in (4) are input-output scalings that leave
the block structure of the system (1,2) invariant. For
more details, see [1].

2. Computation of the Robustness Measure

The strict bounded real lemma states the following
(see e. g. [2]). For a given transfer matrix H(s) =

C(sI — A)~!B, with (A, B, C') minimal, the following

statements are equivalent:
1. H(s) is stable and ||H||co < 7-
2. There exists X = X7 > 0 such that
ATX +XA+0TC+ %XBBTX <0.
Using this lemma we conclude that v(H) < v if and
only if there exists a P € P and X = X7 > 0 such
that

1
ATX + XA+ C"PC+ 5 XBPT'BTX <.
v

Thus
v(l)= inf  {y>0|R(y,X,P)>0},
X=xT>0
PepP
where R(y,X,P) = ATX 4+ XA + CTPC +

v 2XBP-1BTX.

Using a change of variable W = X~! and Q =
v~2P~! we obtain the following characterization of
v(H).

v(H) = inf

W=w7>0
QeP

{7>0|R(,W,Q)>0},

where the symmetric matrix function R(y, W, Q) is

defined as

R R
ROWQ = | o R ]
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with
Ri1 = —(AW +WA" + BQBT),
Rz = WCT,
Rzz = ’yZQ.

Since R(vy, W, Q) is an affine symmetric matrix
function in the variables W, (), we readily recast the
problem of computing v as a constrained generalized
etgenvalue mintmization problem:

minimize 7, (5)
(z,7) € RV
v2B(z) — A(z) > 0
C(x)>0

where A(+), B(-) and C(+) are affine, symmetric matrix
functions in the variable z € RY which contains the
independent variables in (W, Q).

Problem (5) is a nondifferentiable, quasi-convex op-
timization problem [3], so methods such as Kelley’s
cutting-plane algorithm or the ellipsoid algorithm of
Shor, Nemirovksy, and Yudin are guaranteed to min-
imize it. Interior point algorithms which appear to
be very efficient for solving (5) are given in [4, 5]; see
also [6] for a brief outline of the algorithm.

3. Minimizing v via state-feedback

Consider now the following system:

r = Ax+ Biw+ Bau,
z = Cu (6)
w = Az

bl

where A is again diagonal as in (3). We assume that
(A, By) and (A, By) are controllable, and that (C, A)

1s observable.

We wish to find a (stabilizing) state feedback con-
trol law v = K& which minimizes the robustness mea-
sure (4) for the closed-loop transfer matrix from w to
z, which we denote by Hg (s). Noting that Hg(s) has
a minimal realization {A+ B2 K, By, C'}, the results of
the previous section may now be applied to obtain a
characterization for the smallest achievable v(Hg) as
a minimization problem over an affine matrix matrix
inequality.

infr(Hg) = inf  {y>0|R(y,X,P,K)>0},
K x=x7>0
PeP, K

(7)

where R(7y, X, P, K) = (A+ B2 K)T X+ X (A+ B2 K)+
CtPC+y72XB, P'BTX.

Using the change of variables W = X~ YV =
KX~ ! and Q = v72P~! we obtain the following
result.

infu(HK) = inf {y>0] R(’y, W, Q,Y) >0},
K w=w7>0
QEP,Y

(8)
where the matrix function R(y, W, Q,Y) is defined as

Ri1 R
ROWQY) = | o ]

with

Ri = —(AW+WAT + B,y +YTBI 4+ B,QBY),
Ry = WCT,

Ry = 7°Q.

Problem (8) is thus reducible to (5). The optimal

controller is given by Koot = YoptWO_p%, where Yot

and Wept are the optimal Y and W respectively in (8).

4. Conclusions

A measure of robustness of LTI systems against
causal nonlinear diagonal perturbations can be com-
puted using generalized eigenvalue minimization. The
same algorithm can be used to design the optimal
feedback that minimizes this measure. Extensions of
these results to more generally structured perturba-
tions (for example block diagonal) are fairly straight-
forward.
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