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Abstract

We consider linear time-invariant systems subject to real, parame-
tric variations. The problem of computing the half-sidelength 1/poc of
the largest stability hypercube in the parameter space is formulated in a
frequency-independent way. The frequency-dependent approach develo-
ped in g analysis is impracticable, because g is a discontinuous func-
tion of frequency. We derive an accurate upper bound for pi, using
block-diagonal scaling of the largest singular value of a real, frequency-
independent matrix M. The optimal scaling is found using quasi-convex
optimization. A numerical example illustrates the method.

1 Introduction

In this paper we address the problem of finding the minimum 1., distance
to the stability boundary of a parameter-dependent plant in the parameter
space, or lo-parameter margin. This quantity is nothing else than the
inverse of the “real p” of Doyle [1]. Unfortunately, the only fool-proof
algorithms available now are exponential in CPU time [2, 3], because a
global minimum has to be found. The two-parameter case is solved in [4].



w analysis [1] provides a framework for robustness analysis of systems
subject to various types of perturbations (neglected high-order dynamics,
complex parametric perturbations, ...). The analysis is done at each
frequency, and then a line search is done over all frequencies. This ap-
proach is impracticable here since the real p is a discontinuous function
of frequency [5, 9].

For the very general case when the parameters appear rationally in the
coefficients of the plant’s dynamic matrix, a new, frequency-independent
framework 1s introduced in § 2. The scaling ideas developed for y analysis
[1] are then used in § 3, to get an accurate upper bound v for the real p,
involving the largest singular value of a scaled matrix. The new feature
is that the scaling matrices are now block-diagonal instead of diagonal,
yielding a quasi-convex problem instead of convex. The ellipsoid algorithm
with constraints [6] is used to compute v. A numerical example, taken
from [7], illustrates the method in § 4.

2 Parameter Margins
Consider a linear, time-invariant system of order n:
&= F(a) z,

where z is the state and F(a) is the n x n dynamic matrix of the plant.
F(a) is a function of a parameter vector a of length p, whose nominal
value can always be reset to zero. The l.-Parameter Margin of F(a) is
[9):

pmoo(F) 2 min {]|alle | F(a)is unstable }
aGRP

Hoo 2 1/pm« is nothing else than the structured singular value with
repeated real scalar blocks found in p analysis [1]. We assume without
great loss of generality that F(a) is a rational function of a, and that the
nominal system (a = 0) is stable.

We can form a real matrix B(a), of size n(n + 1)/2, such that the
problem reads [8, 9]:

pm(F) = a?ﬁlp{ lall| det[B(a)] =0}

B(a) is called the Lyapunov matriz of F(a) [9]; its elements are linear
combinations of those of F(a). Exploiting the rational dependence of
F(a), one can write the problem in the same form as in p analysis:

pm= min { || a| | det[I + A(a)M] =0}
aGRP

M is now a real, frequency-independent matrix, and A has the structured
form:

A(a) 2 block-diaglai I, ... aply,],



where each Irp is an identity matrix of size r;; r = [r1...7p] is called the
structure vector.

Using transformations of the form UMUT | where U is a block-diagonal
rotation, we can reduce the size N of M, so that each “block-row” and
“block-column” is full rank [4].

3 An Upper Bound for ;i
For a given structure vector r, define:

B = {block-diag[B;]"_, , B € R"*"}
— {DeB, detD #0}

{PeB, P=P" >0}

{block-diag [e;[;]_, , es = *1,

I; = identity matrix of size r;}

SRR
Il

We have the well-known bounds:

AL -1
< oo s < s =
Igea‘)gipR(ME) < proo(M,r) <v(M,r) l%relfD g(DMD™) (1)

where pr(M) is the largest real eigenvalue of M (or zero if none exist).
It turns out that the upper bound is an excellent approximation for pis.
This can be understood from the following new characterization of pio

[9]:

. || DMu ||

wo(M,r) = g A0l
poo(Myr) = max inf S

. | DMD™w ||

< ll'lf max ————

s i maxT—g v

The above characterization generalizes to the block-diagonal case the
one found in [10].

The lower bound in (1) is attained if and only if the largest stability
box touches the stability boundary on one of its corners. This is the case
if the largest singular value v is simple, or if r =[1...1] [11].

Given a real matrix M and a structure vector r, we now address the
block-diagonal scaling problem:

v(M,r) = jnf F(DMD™) (2)

Problem (2) can be reduced to the following (non-differentiable) quasi-
convex optimization program:

v(M,r) = gli% E(P%MP_%) subject to: Amin(P) > 1,
=

where )\mm(P) is the smallest eigenvalue of P. For this problem, the
ellipsoid algorithm with convex constraints [6] can be used.



At each step, we compute one singular value decomposition, one sym-
metric square root, a few matrix multiplications and take one inverse.
This is of the order of N® flops, where N is the size of M.

We were not able to derive a satisfactory stopping criterion: we took
a criterion which works for convex functions only. This problem is linked
to the conditions for which the infimum in (2) is attained.

4 Helicopter Example

This example is taken from [7, page 109]. The linearized closed-loop
dynamic matrix of a VT'OL helicopter in the vertical plane, at an airspeed
of 135 knots and for typical load and flight conditions, is:

—0.0366 —0.4174 0.0188  —0.4555
Fla)= 0.0482 —18.8189— 1.6352a3 0.0024 —4.0208
a)= 0.1002 16.4988+ a; —0.707 1.42+ as

0 0 1 0

The parameters a; have zero nominal value, and are subject to the bounds:
| a1 [<0.01, |az|<0.05, | as |<0.04. (3)

The algorithm converges to a precision of € = 107° after 450 steps. The
largest singular value of the scaled matrix is simple, so it is actually equal
to poo:

Hoo = v =0.7021 , = pmao = 1.4243 .

Thus, the system is stable inside the rectangular box given by inequalities
(3): no robustification is needed, contrarily to what is claimed in [7].

5 Conclusion

In this paper we addressed the issue of minimizing the largest singular
value of a real matrix using block-diagonal scalings. the problem is for-
mulated as a quasi-convex problem with a convex constraint, and was
solved using the ellipsoid algorithm. The resulting algorithm yields an
excellent approximation for the real parametric u, for which a frequency-
independent formulation was derived. Further research should concentrate
on the conditions for existence and unicity of an optimal scaling, and also
the conditions for which g equals its bounds.
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