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Abstract

The purpose of this paper is to give a historical view
of Linear Matrix Inequalities in control and system
theory. Not surprisingly, it appears that LMIs have
been involved in some of the major events of con-
trol theory. With the advent of powerful convex opti-
mization techniques, LMIs are now about to become
an important practical tool for future control appli-
cations.

Definition of an LMI

A linear matrix inequality is a matrix inequality of
the form

m
F(z)2 Fo+ ) :F; >0, (1)
i=1
where 2 € R™ is the variable, and F; = FT, i =
0,...,m are given matrices. Thus, a linear matrix
inequality is a consiraint on the variable z. Note that
the “nonstrict” version of (1), that is, F(z) > 0, is
also a linear matrix inequality.

Early History

The history of linear matrix inequalities in the anal-
ysis of dynamical systems goes back more than 100
years. The story begins in about 1890, when Lya-
punov published his seminal work introducing what
we now call Lyapunov theory [1]. He showed that the
differential equation

2 o(t) = a() (@)
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is stable (i.e., all trajectories converge to zero) if and
only if there exists a positive-definite matrix P such
that

ATP+PAKO. (3)

The requirement P > 0, ATP + PA < 0 is what we
now call a Lyapunov inequality on P, which is a spe-
cial form of a linear matrix inequality. Lyapunov also
showed that this first LMI could be explicitly solved.
Indeed, we can pick any Q@ = QT > 0 and then solve
the linear equation AT P + PA = —Q for the matrix
P, which is guaranteed to be positive-definite if the
system (2) is stable. In summary, the first LMI used
to analyze stability of a dynamical system was the
Lyapunov inequality (3), which can be solved analyt-
ically (by solving a set of linear equations).

The next major milestone occurs in the 1940’s. Lur’e,
Postnikov, and others in the Soviet Union applied
Lyapunov’s methods to some specific practical prob-
lems in control engineering, especially, the problem of
stability of a control system with a nonlinearity in the
actuator [2]. Although they did not explicitly form
matrix inequalities, their stability criteria in fact have
the form of linear matrix inequalities. These inequal-
ities were reduced to polynomial inequalities which
were then checked “by hand” (for, needless to say,
small systems). Nevertheless they were justifiably ex-
cited by the idea that Lyapunov’s theory could be
applied to important (and difficult) practical prob-
lems in control engineering. From the introduction of
Lur’e’s 1951 book [3] we find:

This book represents the first attempt to
demonstrate that the ideas expressed 60
years ago by Lyapunov, which even com-
paratively recently appeared to be remote
from practical application, are now about
to become a real medium for the exami-
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nation of the urgent problems of contem-
porary engineering.

In summary, Lur’e and others were the first to apply
Lyapunov’s methods to practical control engineering
problems. The LMIs that resulted were solved ana-
lytically, by hand. Of course this limited their appli-
cation to small (second, third order) systems.

The KYP Lemma and Quadratic Optimal
Control

The next major breakthrough came in the early
1960’s, when Yakubovich, Popov, Kalman, and other
researchers succeeded in reducing the solution of the
linear matrix inequalities that arose in the prob-
lem of Lur’e to simple graphical criteria, using what
we now call the Kalman-Yakubovich-Popov (KYP)
lemma 4, 5, 6]. This resulted in the celebrated Popov
criterion, Circle criterion, Tsypkin criterion [7, 8], and
many variations. These criteria could be applied to
higher order systems, but did not gracefully or use-
fully extend to systems containing more than one
nonlinearity. From the point of view of our story
(LMIs in control theory), the contribution was to
show how to solve a certain family of linear matrix
inequalities by a graphical method.

The important role of LMIs in control theory was
already recognized in the early 1960’s, especially by
Yakubovich [6, 9, 10]. This is clear simply from the
titles of some of his papers from 1962-5, e.g., The
solution of certain mairic inequalities in automatic
control theory (1962), and The method of matriz in-
equalities in the stabilily theory of nonlinear control
systems (1965).

The KYP lemma and extensions were intensively
studied in the latter half of the 1960s, and were found
to be related to the ideas of passivity, the small-
gain criteria introduced by Zames [11, 12] and Sand-
berg [13, 14, 15], and quadratic optimal control. By
1970, it was known that the LMI appearing in the
KYP lemma could be solved not only by graphical
means, but also by solving a certain algebraic Riccati
equation. The difficulty in solving the LMI directly
was noted by Anderson and Vongpanitlerd in their
book on Network Synthesis [16, p296):

The [quadratic matrix inequality appear-
ing in the KYP lemma] has the general
form

PAP+PB+BTP4+C<0

and is apparently very difficult to solve.

In a 1971 paper on quadratic optimal control [17]}, J.

C. Willems is led to the LMI

ATP+PA+Q PB+CT

BTP+C R 2% ®
and points out that it can be solved by studying the
symmetric solutions of the Riccati equation

ATP+PA—(PB+CTRY(BTP+C)+Q =0,

which in turn can be found by an eigendecomposition
of a related Hamiltonian matrix. This connection had
been observed earlier in the Soviet Union, where the
Riccati equation was called the Lur’e resolving equa-
tion [18].

So by 1971, researchers knew several methods for
solving special types of LMIs: direct (for very small
systems), graphical methods, and by solving Lya-
punov or Riccati equations. From our point of view,
these methods are all “closed-form” or “analytical”
solutions that can be used to solve special forms of
LMIs. (Most control researchers and engineers con-
sider the Riccati equation to have an “analytical” so-
lution, since the standard algorithms that solve it are
very predictable in terms of the effort required, which
depends almost entirely on the problem size and not
the particular problem data. Of course it cannot be
solved exactly in a finite number of arithmetic steps
for systems of fifth and higher order.)

In Willems’ 1971 paper we find the following striking
quote:

The basic importance of the LMI seems
to be largely unappreciated. It would be
interesting to see whether or not it can
be exploited in computational algorithms,
for example.

Here Willems refers to the specific LMI (4), and not
the more general form (1). Still, Willems’ suggestion
that linear matrix inequalities might have some ad-
vantages in computational algorithms (as compared
to the corresponding Riccati equations) foreshadows
the next chapter in the story.

LMIs and Convexity

The next major advance (in our view) was the simple
observation that:

The LMIs that arise in control and sys-
tems theory can be formulated as convez
optimization problems that are amenable
to computer solution.

Although this is a simple observation, it has some
important consequences, the most important of which



is that we can reliably solve many LMIs for which no
“analytical solution” has been found (or is likely to
be found).

This observation was made explicitly by several re-
searchers. Pyatnitskii and Skorodinskii [19, 20] were
perhaps the first researchers to make this point,
clearly and completely. They reduced the original
problem of Lur’e (extended to the case of multiple
nonlinearities) to a convex optimization problem in-
volving linear matrix inequalities, which they then
solved using the ellipsoid algorithm. (This problem
had been studied before, but the “solutions” involved
an arbitrary scaling matrix.) Pyatnitskii and Sko-
rodinskii were the first, as far as we know, to formu-
late the search for a Lyapunov function as a convex
optimization problem, and then apply an algorithm
guaranteed to solve the optimization problem.

We should also mention several precursors. In a 1976
paper, Horisberger and Bélanger [21] had remarked
that the existence of a quadratic Lyapunov function
that simultaneously proves stability of a collection of
linear systems is a convex problem involving LMIs.
And of course, the idea of having a computer search
for a Lyapunov function was not new—it appears, for
example, in a 1965 paper by Schultz et al. [22].

Recent Advances in Convex Optimization

The final chapter in our story is quite recent and of
great practical importance: the development of pow-
erful and efficient interior-point methods to solve the
LMIs that arise in control and systems theory. In
1984, N. Karmarkar [23] introduced a new linear pro-
gramming algorithm that solved linear programs in
polynomial-time, like the ellipsoid method, but in
contrast to the ellipsoid method, was also very effi-
cient in practice. Karmarkar’s work produced a sen-
sation and spurred an enormous amount of work in
the area of interior-point methods for linear program-
ming (including the rediscovery of efficient methods
that were developed in the 1960s but ignored). Es-
sentially all of this research activity concentrated on
algorithms for linear programs. Then in 1988, Nes-
terov and Nemirovskii [24] developed interior-point
methods that apply directly to convex problems in-
volving matrix inequalities, and in particular, to the
problems encountered in control theory. Although
there remains much to be done in this area, several
interior-point algorithms for LMI problems have been
implemented and tested on specific families of LMIs
that arise in control theory, and found to be extremely
efficient.

a3

Summary

A summary of key events in the history of LMIs in
Control theory is then:

e 1890: First LMI appears; analytical solution of
the Lyapunov LMI via Lyapunov equation.

e 1940’s: Application of Lyapunov’s methods to
real control engineering problems. Small LMIs
solved “by hand”.

e Early 1960’s: KYP lemma gives graphical
techniques for solving another family of LMlIs.

e Late 1960’s: Observation that the same family
of LMIs can be solved by solving an ARE.

e Early 1980’s: Recognition that many LMIs
can be solved by computer via convex program-
ming.

e Late 1980’s: Development of interior-point al-
gorithms for LMIs.

It is fair to say that Yakubovich is the father of the
field, and Lyapunov the grandfather of the field. The
new development is the ability to directly solve (gen-
eral) LMIs.
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