
Computer Vision and Image Understanding

Vol. 76, No. 3, December, pp. 205–212, 1999

Article ID cviu.1999.0798, available online at http://www.idealibrary.com on

A Probabilistic Model for Recovering Camera Translation
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This paper describes the mathematical basis and application of
a probabilistic model for recovering the direction of camera trans-
lation (heading) from optical flow. According to the theorem that
heading cannot lie between two converging points in a stationary
environment, one can compute the posterior probability distribution
of heading across the image and choose the heading with maximum
a posteriori (MAP). The model requires very simple computation,
provides confidence level of the judgments, applies to both linear
and curved trajectories, functions in the presence of camera rota-
tions, and exhibited high accuracy up to 0.1◦–0.2◦ in random dot
simulations. c© 1999 Academic Press
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Computing the direction of camera translation, orheading, is
an important problem because heading direction not only
critical parameter for navigation and motor control, but als
useful for computing a depth map. Various models to reco
the direction of camera translation based on image motion
(optical flow), have been proposed in both computer vision
visual perception literature [1–10]. However, most of them h
assumptions that put various constraints on their applicab
Some require continuous or differentiable flow fields [11–1
some apply only to pure translation, with no camera rotat
[14, 15], some are specific to curved paths [16], some req
ordinal depth of the objects [17, 18], and so on.

We take a new approach to this problem. According to re
research in human heading perception [17–20], humans ca
termine the direction of their translation based on the rela
motion of pairs of objects in the image sequences. For exam
if a near tree on the left and a far tree on the right are mo
closer to each other in the image, participants judged their m
ments to be to the left of the near tree. Furthermore, when t
are more than one pair of trees in the scene, they can appa
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a model based on the same approach: to compute simple
nary constraints of the direction of camera translation based
pairs of points in the image, and then combine these constra
probabilistically to generate a metric heading direction. Th
approach has minimal assumptions, because the relative mo
of two points is by and large unaffected by camera rotatio
or by curved trajectory of the camera motion, and the pairw
comparison does not require continuous image motion fields
requires very simple computation, provides confidence meas
of the judgments, and is based on the human visual percep
data and therefore can be used to understand and model hu
visual systems.

In this article we first describe the mathematical basis of t
binary constraint for heading judgments (Theorems I and
based on the relative motion of two points in the image. Th
we describe the probabilistic model that combines these c
straints to generate a metric heading direction. Finally we pres
some simulation data (3D random dot clouds) and real ima
data.

II. THE MATHEMATICAL BASIS

Assume a camera is moving through the environment w
linear velocityV(Vx, Vy, Vz) and a rotationω(ωx, ωy, ωz). A
perspective projection of the surfaces in the environment for
an image on the plane at distancef from the camera’s focal
point. Let the origin be at the focal point and the Z axis of th
camera coordinate system be perpendicular to the image p
(Fig. 1).

Let the angular position of pointI ′(x′i , y′i ) with corresponding
objectI (xi , yi , zi ) be defined as

θi = atan(xi /zi ) = atan(x′i / f ) (1)

φi = atan(yi /zi ) = atan(y′i / f ). (2)
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FIG. 1. An illustration of the camera coordinate system used in the pap

Similarly, the direction of camera translation can be deco
posed into an angularX component,

α = atan(Vx/Vz), (3)

and an angularY component:

β = atan(Vy/Vz). (4)

The two components are independent of each other. Here
only discuss the computation of theX-component of the heading
vector (α), but the same can be applied to theY-component (β).
Then the two angular components can be combined to rec
the heading vectorV (up to a scale factor) according to th
inverse of Eqs. (3) and (4).

Let us consider the angular velocity of pointI ′ in the image:

dθi /dt = d(atan(xi /zi ))/dt

= (zi dxi /dt − xi dzi /dt)
/(

x2
i + z2

i

)
. (5)

Since the relative motion ofI in the camera coordinate syste
is

(dxi /dt, dyi /dt, dzi /dt) = −V − I × ω, (6)

we have

dθi /dt = (xi Vz− zi Vx)
/(

x2
i + z2

i

)+ xi yiωx
/(

x2
i + z2

i

)
−ωy + yi ziωz

/(
x2

i + z2
i

)
. (7)

The first term comes from the camera translation and the

three terms come from the rotations. When the points are not
far from theX axis in the image plane (i.e.,yi /(x2

i +z2
i ) ≈ 0), or
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when there is only rotation around theY axis (i.e.,ωx =ωz= 0),

dθi /dt ≈ (xi Vz− zi Vx)
/(

x2
i + z2

i

)− ωy. (8)

When we consider the relative angular velocity between tw
pointsI ′ andJ′,

dθi j /dt

= d(θi − θ j )/dt = dθi /dt − dθ j /dt

= (xi Vz−zi Vx)
/(

x2
i + z2

i

)− (xj Vz−zj Vx)
/(

x2
j + z2

j

)
. (9)

The rotation around theY axis (ωy) cancels out, thus the
relative angular velocitydθi j /dt relies only on the ratio of two
parameters,Vx andVz, which determinesα, the angular heading
component in theX direction (Eq. (3)).

Equation (9) can be simplified. Letr 2= x2+ z2. We then have

cosθ = z/sqrt(x2+ z2) (10)

sinθ = x/sqrt(x2+ z2). (11)

So the relative velocity betweenI ′ andJ′ is

dθi j

dt
= (−cos(θi ) tan(α)+ sin(θi ))Vz

ri

− (−cos(θ j ) tan(α)+ sin(θ j ))Vz

r j
(12)

or

dθi j

dt
=
(

sin(θi − α)

ri
− sin(θ j − α)

r j

)
Vz

cos(α)
. (13)

Equation (12) is linear on tan(α); thus if the scaled distances
of I (ri /Vz) andJ (r j /Vz) are known, the above equation ca
be solved directly and trivially. Unfortunately, distances them
selves are difficult to compute. When distances are unknow
we haven+ 1 unknown parameters givenn points in the vi-
sual field, but there are onlyn− 1 independent equations. Given
these measurements alone the problem seems unsolvable.

Various assumptions have been made in previous model
reduce the unknowns. Our approach seeks simple, binary c
straints on the heading angleα based on the relative motion of
I andJ. Let us consider two points in the image getting clos
in the X direction (converging),

(θi − θ j )dθi j /dt < 0, (14)

that is, (
sin(θi − α)

ri
− sin(θ j − α)

r j

)
(θi − θ j ) < 0. (15)
tooSupposeπ/2>θi >θ j >−π/2. If the direction of camera
translation alongX is betweenI andJ (i.e., θi >α>θ j ), we
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have

sin(θi − α) > 0 and sin(θ j − α) < 0. (16)

Then Eq. (15) does not hold, which meansI andJ are not con-
verging. Therefore ifI andJ are moving closer then one’s aim
point must be on either side of them.

THEOREM I. If, during camera motion, the projections of
two stationary pointsI ′(θi , φi ) and J′(θ j , φ j ) moves closer to
each other, e.g., in X direction(i .e., (θi − θ j )dθi j /dt< 0), then
the direction of camera translation can be to either side of
two points but not in between them(i.e., α >max{θi , θ j } or
α <min{θi , θ j }).

When the relative depth order is known for the correspo
ing objectsI andJ (θi >θ j ) in the front (i.e.,|α − θ |<π/2),
we haveα <θ j (if ri > r j ) andα >θi (if ri < r j ). The proof is
straightforward.

THEOREM II. If, during camera motion, the projections of
two stationary objectsI (ri , θi , φi ) and J(r j , θ j , φ j ) converge,
e.g., in the X direction(i.e., (dθi j /dt)(θi − θ j )< 0), and their
relative depth order is known(e.g., ri < r j ), then the heading is
always outside of the object with smaller depth(i.e., α > θi if
θi >θ j , α < θi if θi <θ j ).

The theorems apply to both continuous and discrete mo
fields; they hold in the case of camera rotations and for any
of movement trajectories, either curved or straight. Howe
two problems need to be solved for these rules to be usef
visual perception and image processing. First, the theorem
assume that the world is stationary, that the image velocity m
surement is accurate, and that the field of view is reason
small in the case of camera rotations (see Discussions be
In the real world these assumptions are usually violated
certain degree. Therefore the theorems need to be modifi
accommodate incidences of exceptions. Instead of making h
absolute exclusions they can also be used to provide soft, p
abilistic measurements of the direction of camera transla
That is, the aimpoint of the camera translation is more lik
to be outside of a pair of converging points than in betw
them. This probability measure allows a certain number of
lations, such as noise in the image velocity calculation (opt
flow), small moving objects, and peripheral motion with cam
rotation, because they are unlikely to give a consistent bia
the overall calculation. Second, both theorems can only pro
crude constraints on the direction of camera translation ins
of calculating the exact translation vector. In order to get a m
ric measurement, one needs to consider more than one p
points in the image. By combining multiple constraints provid
by multiple pairs of points the possible direction of camera tra

lation can be narrowed down. As the number of points increa
one approaches metric measurement of the translation vec
ADING JUDGMENT 207
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III. THE PROBABILISTIC MODEL

Although ultimately simple, the above theorems are quite ge
eral. However, the constraint they provide is very rough. Name
one can only tell whether the camera is moving toward the left
right side of a point. To calculate the precise translation vect
one needs to combine constraints provided by multiple pairs
points in the image. One way of doing that is to take a Bayes
approach that has been quite successful in many areas of
ception and cognition [23–29]. For example, one can meas
the probability of the translation vector at all possible directio
given these constraints. The directions between a pair of c
verging points have a low posterior probability value, while tho
outside a converging pair of points have a higher probability
being the aimpoint. With only one pair of points this posterio
probability distribution (p(x)) may be quite flat and there may be
no clear peak (see Fig. 2, the upper left panel). However, dir
tions between two pairs of converging points have a much low
probability. The more points in the image, the more sharpen
the probability distribution, and the more accurate the judgme
(see Fig. 2, the upper right and the lower panels).

Let p(x) be the probability of the camera heading towar
positionx. Let Ci j be 1 if two points at positionsi and j form
a converging pair, and let it be 0 if they do not. Letp(Ci j /x) be
the probability of detecting (Ci j = 1) or not detecting (Ci j = 0)
a converging pair between positionsi and j given the aimpoint
at x (the likelihood). Assume that the probability of detecting
converging pair on different sides of the aimpoint isε, and on
the same side of the aimpoint isη. Therefore fori < j

p(Ci j = 1/x) =
{
ε if i < x < j

η if x < i orx > j
(17)

p(Ci j = 0/x) =
{

1− ε if i < x < j

1− η if x < i orx > j .
(18)

Under ideal situationsε should be 0 because the aimpoin
cannot lie between a converging pair. However, because there
always various violations of the assumptions, Theorem I is n
always true. Therefore in practiceε is usually a small number.
When noise increases and when the environment is unsta
i.e., some objects are moving,ε should increase. In contrast,η is
generally a larger number but it is not necessarily 1 even in id
environments, because two points on the same side of hea
can be a converging pair but not always so.1

1 ε andη are free parameters for the probability calculation. We used fix
values in the current paper, but in principle they can be modified according
the noise level of the optical flow calculation, the amount of dots in the imag
etc. The actual values of these two parameters are not critical to the mo
ses,
tor.

performance, but fine tuning can be done. The method for fine tuning these
parameters is not discussed in the current paper.
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FIG. 2. The demonstration of the probabilistic model based on Theorem 1. Each panel consists of an optical flow illustration at the top and the corr
probability distribution at the bottom. In the optical flow image, the thin line deviating from each dot represent the direction and magnitude of its image motion.
The black square represents the true heading point. The upper left panel shows two dots moving apart (diverging) in theX direction. According to the model, the
posterior probabilities between the two dots are relatively high, and that outside the two dots are relatively low. The panels on the upper right (20 dots) and the

lower left (100 dots) show that as the number of dots increase, the probability distribution sharpens, and peaks approximately at the true heading point. The lower
right panel shows the optical flow with a large camera rotation to the right (ωy= 5◦/s); the probability distribution is almost unaffected.
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According to Bayes’ rule, we have

p(x/Ci j ) = p(Ci j /x)p(x)/p(Ci j ). (19)

Sincep(Ci j ) is the same for allx’s, it is a normalization factor
and we can leave it out. Thus we can compute the post
probability of heading atx given observation of the relativ
motion of two pointsi and j . If they converge (Ci j = 1),

p(x/Ci j = 1) = εp(x), if i < x < j (20)

p(x/Ci j = 1) = ηp(x), if x < i or x > j . (21)

Similarly, if they do not converge (Ci j = 0),

p(x/Ci j = 0) = (1− ε)p(x), if i < x < j (22)

p(x/Ci j = 0) = (1− η)p(x), if x < i or x > j . (23)

In a series of searches for alli , j pairs in a given image
velocity field, the posterior probabilityp(x/Ci j ) of the previous
pair of points becomes the prior probabilityp(x) for the next
pair. After running through the whole image, one can norma
the probability to 1 and get the final probability distribution
heading:

p′(x) = p(x)/6k(p(k)). (24)

The x with maximum p′ value can be taken to recover th
heading angleα:

α = atan(x/ f ). (25)

Similarly, the angularY-component of the heading direction c
be computed. The overall heading can be recovered from the
heading components according to the inverses of Eqs. (3) an

IV. THE IMPLEMENTATION

In practice, one may not want to compute the posterior p
ability for every pair of points in an image. Instead, one c
gather evidence on a “column by column” basis. First, div
the image intoK columns. Next, compute the posterior pro
ability distribution according to pairs of columns, consider
only the fastest and slowest moving points in each column. H
ε refers to the probability that there exists a converging pair
tween the two columns. That is, at least one of the point p
one from columni and one from columnj , forms a converging
pair. η therefore means no converging pairs exist between
two columns. The computation is significantly simplified. Ge
erally, when an image is not too large columns can take the s

width as pixels, as described in the following, although the sa
principle can be applied to larger column widths.
ADING JUDGMENT 209
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Suppose we have the flow field of an image (N by K pixels)
as input. Let the angular velocity at pixelnk in X andY direc-
tions beξnk & ψnk. To computeα, we need only theξnk set. Let
sk= max{ξ1k, ξ2k, . . . ξNk}be the maximum value of thekth col-
umn, and lettk= min{ξ1k, ξ2k, . . . ξNk} be the minimum. Let the
initial probability of the aimpoint (prior) be equal among theK
possible directions (p(x)= 1/K for all x= 1, 2, . . . , K ). Then
search all column pairs (u, v) for u= 1 to K − 2 andv= u+ 2
to K to compute whether the pair of columns has a converg
pair of points:

Cuv =
{

1 if su > tv
0 otherwise.

(26)

Then computep(x/Cuv) for all x’s according to Eqs. (20)–
(23). In total there areK (K − 2)/2 cycles. Finally, thex with
the maximump(x) can be taken to compute theX-component
of heading according to Eq. (25).

V. EXPERIMENTAL RESULTS

Simulations

We first tested this algorithm on simulations of 3D rando
dot clouds. We generated a number of dots (N) at random im-
age positions and assigned a random depth to each dot va
between 2–10 focal lengths. Then we randomly chose a tr
lation vectorV and set a rotation vectorω, so that the aimpoint
fell inside the image. The image velocity of each dot was cal
lated according to Eq. (7). This calculated image velocity fie
(optical flow) was then taken as the input to the model, and
model computed the probability distribution and gave the judg
angular translation component alongX.

The simulation was run using a PowerBase 240 mach
Each data point was averaged over 200 trials. The angulaX-
component of heading direction was computed according to
implementation described in the previous section, and then
average angular heading error was calculated. The prametε
andη were set atε= 0.01 andη= 0.5. The distance separatio
between the two planes relative to the distance of the ne
plane (1z/z1), the total number of dots in the image (N), the
image height (IH), the rotational components (ωx andωz), and
the amount of random noise added to the image motion fi
were systematically varied.

Number of dots and depth separation.Various psycholog-
ical data and computational models have suggested that la
depth variations [1, Exps. 9–11, 35] and richer environme
(more dots) [18, 20, 30, 31] lead to more accurate heading ju
ments from optical flow. The current model is consistent w
these results. As shown in the upper left panel of Fig. 3, per
mance improved when either the depth separation or the num
of dots in the image increased.
meAssumptions. Theorem 1 has three assumptions: A stable
environment, accurate/noise-free optical flow calculation, and
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FIG. 3. Judgment accuracy in simulated camera motion toward 3D random dot clouds. Unless otherwise specified, there were totally 800 dots with dept
z1 andz1+1z. The depth separation (1z/z1) was 4, the translation velocity was 1 focal length/s toward a random point within the image, the rotation was a
(0, 1, 0) at 6◦/s, and the image size was 40◦ by 30◦ in the X andY directions, respectively. The upper left panel shows the angular judgment errors (X-component)
in simulations with varying total number of dots (N) and the depth separation of the two planes (1z/z ). The upper right panel shows judgment errors with differe
1

distances of the dotsz1 and average noise component measured as percentage to average flow vector size (Noise %). The lower panels show judgment errors with
a
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different image height (measured as visual angles) in degrees (IH) and rot

relatively small visual field in case of camera rotations. Ho
ever, when the probability measurement is introduced, the mo
ments of a small proportion of the environment and the sm
distortions of the velocity fields in the periphery should pr
duce random, inconsistent biases in the probability distributi
just as does the random noise in the velocity calculation.
tested the effect on judgment accuracy of Image Height (
in combination with rotations around theX and Z axes to see
the tolerance of the model to these violations. As shown in

lower panels of Fig. 3, rotation around theX axis (ωx) had
little effect on judgment accuracy, even when the image w
tion around theZ axis (ωz, left panel) and theX axis (ωx , right panel).

-
ve-
all
-
n,
e
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he

quite large. When the image was relatively narrow (about◦

of visual angle alongY, i.e., IH= 2◦), performance was not af-
fected by any camera rotations. Only when the image hei
was larger than 8◦, and the rotation aroundZ was above 6◦/s,
did performance begin to drop significantly. Rotation around
Y axis does not affect the computation of theX-component of
the translation when optical flow is noise-free, as shown in E
(5)–(7) (also see Fig. 2, lower right panel).

Another inevitable violation to Theorem I arises from nois
as
errors in the motion field (optical flow calculation). We tested the
model’s performance on noisy motion fields by adding random
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errors to the calculated correct velocity of each dot, and
noise% was calculated as the average percentage of error siz
ative to the final velocity for each dot. The algorithm’s resistan
to noise is shown in the upper right panel of Fig. 3. As expect
performance dropped as the noise increased, though judgm
was reasonably accurate when the noise was under 15%.

Real Images

We tested the model on real images, both indoor and outd
scenes. The optical flow was calculated according to Horn
Schunck [32]. Figure 4 shows an example of the implementat
The top panel shows the image, the middle panel shows
optical flow calculated, and the lower panel shows the probabi
distribution calculated by the model.

FIG. 4. An example of the real images tested. The top panel is the mid
frame of the image sequence used to calculate optical flow. The middle p
is the calculated flow field according to Horn and Schunck [32]. The bla

square indicates the true camera translation direction. The lower panel sh
the probability distribution calculated by the model, usingε= 0.3 andη= 0.5.
DING JUDGMENT 211
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VI. DISCUSSIONS

This paper describes a new approach to computing the di
tion of camera translation (heading) from optical flow. Based on
the relative velocity of pairs of points in the image, the algorith
calculates the posterior probability distribution of the aimpo
and chooses heading direction with MAP. Simulations of he
ing toward 3D random dot clouds showed that performance
the algorithm approaches human performance in accuracy.
model was tested on real images and generated similar re
as in simulations.

One limitation of this model is that the probability distributio
applies only to positions inside the image. When the camer
moving toward a point that is out of view, the model can on
tell that the vector is outside the image but not how far o
Heading judgments from optical flow in humans were shown
be significantly less accurate under these conditions [36]. O
nonvisual information may provide estimation of the self-moti
direction when one looks to the side while walking or driving

Another factor concerns the column size (“image reso
tion”).2 Because the probability distribution is measured on
discrete variablex, the accuracy of the judgment cannot exce
half the width of the column. In the current simulations, the c
umn width was set at about 0.5◦. When there were 1600 dot
(that is, 20 dots per column) the accuracy reached 0.6◦, suggest-
ing that the model only missed about one column on avera
Further testing showed that when the column size was redu
to 0.1◦, judgment error dropped to 0.1◦–0.2◦ accordingly. The
model’s performance thus approximately matches human
formance in similar simulations.

Comparison to other models.The current model performed
very well in the random dot simulation tests, with the best perf
mance reaching 0.1◦–0.2◦. Most previous models did not matc
human performance [3, for review]. The performance of t
current model is comparable to or exceeds that of other m
els (e.g., Rieger and Lawton [9], about 0.4◦; Hatsopoulos and
Warren [33], about 1◦; Hildreth [3], about 1.5◦). However, the
relative performance of different models may vary in differe
situations depending on the violation of the specific assumpti
of each model.

Although under some conditions (with dense optical flo
field, little noise in optical flow calculation, small rotations, etc
the model reached accuracy approaching human performa
this does not mean that human heading perception must be b
on the same mechanism. Previous studies have shown that d
cues are used in heading judgments when available [17–
these were omitted for purposes of computer implementa
in the current model. Large rotations have been shown to
pair judgment accuracy of the translation direction [34], den

2 Here we mean the angular size (visual angle) of each column when
applied the model, not the absolute image resolution. However, in real im

owsprocessing, the column size can be set at pixel width; then column size is directly
associated with image resolution.
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motion field and large depth variations can improve performa
[1, 35], as current model would predict. However, the effects
rotation around theZ axes in combination with the spatial dis
tribution of the dots, and the influence of moving objects in t
visual field need to be studied more systematically in hum
comparing to the model performance to get a better underst
ing of the processes involved in heading perception in huma
Studies are planned to investigate these issues.
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