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This paper describes the mathematical basis and application of
a probabilistic model for recovering the direction of camera trans-
lation (heading) from optical flow. According to the theorem that
heading cannot lie between two converging points in a stationary
environment, one can compute the posterior probability distribution
of heading across the image and choose the heading with maximum
a posteriori (MAP). The model requires very simple computation,
provides confidence level of the judgments, applies to both linear
and curved trajectories, functions in the presence of camera rota-
tions, and exhibited high accuracy up to 0.1°-0.2° in random dot
simulations.  © 1999 Academic Press
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I. INTRODUCTION

Computing the direction of camera translationheading is
an important problem because heading direction not only i

S

combine these binary constraints (left or right of a particulal
tree) and generate a more precise response. Here we develo
a model based on the same approach: to compute simple, |
nary constraints of the direction of camera translation based ¢
pairs of points in the image, and then combine these constrain
probabilistically to generate a metric heading direction. This
approach has minimal assumptions, because the relative moti
of two points is by and large unaffected by camera rotation:
or by curved trajectory of the camera motion, and the pairwis:
comparison does not require continuous image motion fields.

requires very simple computation, provides confidence measu
of the judgments, and is based on the human visual perceptic
data and therefore can be used to understand and model hun
visual systems.

In this article we first describe the mathematical basis of the
binary constraint for heading judgments (Theorems | and II
based on the relative motion of two points in the image. Thel
we describe the probabilistic model that combines these cot
straints to generate a metric heading direction. Finally we prese

58me simulation data (3D random dot clouds) and real imag

critical parameter for navigation and motor control, but also | .
useful for computing a depth map. Various models to recover
the direction of camera translation based on image motion field
(optical flow), have been proposed in both computer vision and
visual perception literature [1-10]. However, most of them have
assumptions that put various constraints on their applicability. Assume a camera is moving through the environment witt
Some require continuous or differentiable flow fields [11-13finear velocityV(Vx, Vy, Vz) and a rotationn(wy, wy, ;). A
some apply only to pure translation, with no camera rotatiopgrspective projection of the surfaces in the environment form
[14, 15], some are specific to curved paths [16], some requiia image on the plane at distanéefrom the camera’s focal
ordinal depth of the objects [17, 18], and so on. point. Let the origin be at the focal point and the Z axis of the
We take a new approach to this problem. According to recetdimera coordinate system be perpendicular to the image pla
research in human heading perception [17-20], humans can @g. 1).
termine the direction of their translation based on the relativeet the angular position of poimt(x/, y/) with corresponding
motion of pairs of objects in the image sequences. For exampgjectl (x;, y;, z) be defined as
if a near tree on the left and a far tree on the right are moving
closerto each otherinthe image, participants judged their move-
ments to be to the left of the near tree. Furthermore, when there
are more than one pair of trees in the scene, they can apparently

Il. THE MATHEMATICAL BASIS

6, = atanf; /z) = atanf//f)
¢i = atanfi /z;) = atanfy; /f).
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I (X, ¥, Z) 4 Y when there is only rotation around tieaxis (i.e.wx = w, =0),
i Fiy 2
»
doi /dt ~ (% V; — V) /(%2 + Z) — wy. (8)
. ¥ When we consider the relative angular velocity between tw
."‘I : " Image pointsl’ andJ’,
f Ju" | » Heading plane de;; /dt
v * point = d(6; — 6;)/dt = d6, /dt — d¢; /dt
f SN = (V=2 Ve)/(X +Z) — (Vo= ) Ve)/ (G + Z2). (9)
- : - The rotation around th& axis y) cancels out, thus the
A0 X relative angular velocitgé;; /dt relies only on the ratio of two
; parametersy, andV,, which determinea, the angular heading

component in theX direction (Eq. (2).
Equation (9) can be simplified. Let = x2 + z2. We then have
FIG. 1. Anillustration of the camera coordinate system used in the paper.
cost = z/sqrti> + z°) (10)
i 2, 2
Similarly, the direction of camera translation can be decom- SING = X/Sqrte” + 7). (11)

osed into an angulat component, . . .
P g P So the relative velocity betwedhandJ’ is

a = atanly/ V), 3) doj _ (—cosf)tan) + sin@))V;
dt ri

and an angulay component: ) (—cosb;) tan@) + sin@; )V, )

B = atanl{/y/ V). (4) i

or

The two components are independent of each other. Here we
only discuss the computation of tecomponent of the heading doj  (sin@ —a) sin@; —a)\ V; 13
vector ), but the same can be applied to eomponent ). T I N rj cosg)” (13)

Then the two angular components can be combined to recover
the heading vectoW (up to a scale factor) according to the Equation (12) is linear on tamj; thus if the scaled distances
inverse of Eqgs. (3) and (4). of I (r;/V,) andJ (r;/V,) are known, the above equation can
Let us consider the angular velocity of polhin the image: be solved directly and trivially. Unfortunately, distances them
selves are difficult to compute. When distances are unknow

dg; /dt = d(atan; /z))/dt we haven + 1 unknown parameters givempoints in the vi-
— sual field, but there are onty— 1 independent equations. Given
= (zdx/dt — xdz/dt) / (x* + Z°). (3)  these measurements alone the problem seems unsolvable.

_ _ . _ _ Various assumptions have been made in previous models
Since the relative motion dfin the camera coordinate systeMeqyce the unknowns. Our approach seeks simple, binary cc

1S straints on the heading anglebased on the relative motion of
I andJ. Let us consider two points in the image getting close
(dx/dt,dy/dt, dz/dt) = -V — | x o, (6) inthe X direction (converging),
we have (6 — 6;)de;; /dt < O, (14)

doi/dt = (% Vo — z V) /(X2 + Z2) + X Viox [ (X2 + Z2) that is,

—wy+ Yiziw, [ (X2 + 7). (7) sin@ — sin@; —

y i Zi Z/(I |) < (;’ Ol)_ (rj a))(gi_ej)<0. (15)
The first term comes from the camera translation and the last I J
three terms come from the rotations. When the points are not todsupposer /2 > 6; > 6; > —x /2. If the direction of camera

far from theX axis in the image plane (i.e4,/(x?+22) ~ 0), or translation alongX is between andJ (i.e., 6 > « > 6;), we
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have I11. THE PROBABILISTIC MODEL

Although ultimately simple, the above theorems are quite gen
eral. However, the constraintthey provide is very rough. Namely
one can only tellwhether the camera is moving toward the left 0
Then Eq. (15) does not hold, which medrendJ are not con- right side of a point. To calculate the precise translation vecto
verging. Therefore if andJ are moving closer then one’s aim-one needs to combine constraints provided by multiple pairs c
point must be on either side of them. points in the image. One way of doing that is to take a Bayesia

approach that has been quite successful in many areas of p

THeorem |.  If, during camera motionthe projections of ception and cognition [23—29]. For example, one can measul
two stationary points’(6;, #1) and J'(9;, ¢;) moves closer to the probability of the translation vector at all possible directions
each otheye.qg, in X direction(i.e., (6 — 6;)d6;; /dt < 0), then given these constraints. The directions between a pair of col
the direction of camera translation can be to either side of therging points have a low posterior probability value, while those
two points but not in between thefine., « > max6;, 6} or outside a converging pair of points have a higher probability o
o <minf6;, 6;}). being the aimpoint. With only one pair of points this posterior

probability distribution (x)) may be quite flat and there may be

When the relative depth order is known for the corresponfly clear peak (see Fig. 2, the upper left panel). However, direc
ing objectsl andJ (6 > 6;) in the front (i.e.,lo — 0] <7/2), tions between two pairs of converging points have a much lowe
we havex <6; (if ri >rj) anda > 6 (if ri <rj). The proofis probability. The more points in the image, the more sharpene

sin@ —a) >0 and singj —oa) <0. (16)

straightforward. the probability distribution, and the more accurate the judgmer
i i o (see Fig. 2, the upper right and the lower panels).
Theorewm Il If, during camera motionthe projections of ~ | ot p(x) be the probability of the camera heading toward

two stationary objects (1. 0, ¢;) and J(rj, 0, ¢;) cONVerge  positionx. LetC;; be 1 if two points at positionsand j form

e.g, in the X directioni.e., (dé; /dt)(6 — 6;) <0), and their 5 conyerging pair, and let it be 0 if they do not. LEC;; /x) be

relative dept_h order is kone.g? ri <rj), then the headmg IS the probability of detectingQ; = 1) or not detecting@;; = 0)

always outside of the object with smaller degte., o > 6 if 5 converging pair between positionand j given the aimpoint

6 >0j,a <6 if 6 <0)). atx (the likelihood). Assume that the probability of detecting a
converging pair on different sides of the aimpointjsand on

The theorems apply to both continuous and discrete motiﬂ?}3 same side of the aimpointiis Therefore foii < |
n

fields; they hold in the case of camera rotations and for any ki
of movement trajectories, either curved or straight. However,

two problems need to be solved for these rules to be useful in e ifi<x<j

visual perception and image processing. First, the theorems do P(Cij = 1/x) = { n o ifx<iorx> | @n
assume that the world is stationary, that the image velocity mea-

surement is accurate, and that the field of view is reasonably 1-¢ ifi<x<]j

small in the case of camera rotations (see Discussions below). P(Cij = 0/x) = { 1—y fifx<iorx>j. (18)
In the real world these assumptions are usually violated to a

certain degree. Therefore the theorems need to be modified

t . . . . .
L . . d?Jnder ideal situations should be 0 because the aimpoint
accommodate incidences of exceptions. Instead of making har

. : cannot lie between a converging pair. However, because there

absolute exclusions they can also be used to provide soft, prob- . o . .
e N . always various violations of the assumptions, Theorem | is nc

abilistic measurements of the direction of camera translatloq

That is, the aimpoint of the camera translation is more like ways true. Therefore in practiedis usually a small number.

. ) . . . hen noise increases and when the environment is unstab

to be outside of a pair of converging points than in between . . . i

X o . .[.e., some objects are movingshould increase. In contrastis
them. This probability measure allows a certain number of vio- L . o
. .7 ; ; , . generally a larger number but it is not necessarily 1 even in ide
lations, such as noise in the image velocity calculation (opti . . . .
. : . . : environments, because two points on the same side of headi
flow), small moving objects, and peripheral motion with camera . .
: ) . X . Can be a converging pair but not always'so.
rotation, because they are unlikely to give a consistent biasin

the overall calculation. Second, both theorems can only provide
crude constraints on the direction of camera translation instead
of calculating the exact translation vector. In order to get a met-
ric measurement, one needs to consider more than one pair OF andn are free parameters for the probability calculation. We used fixed

points in the image. By combining multiple constraints provide@'”es_ In the current paper, but in principle they can be modified according t
the noise level of the optical flow calculation, the amount of dots in the image

by.multlple pairs of points the pOSSIb|e direction of ?am_era trangfc. The actual values of these two parameters are not critical to the mod
lation can be narrowed down. As the number of points increasgssormance, but fine tuning can be done. The method for fine tuning thes

one approaches metric measurement of the translation vect@iarameters is not discussed in the current paper.
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The demonstration of the probabilistic model based on Theorem 1. Each panel consists of an optical flow illustration at the top and the corres

probability distribution at the bottom. In the optical flow image, the thin line deviating from each dot represent the direction and magnitudags itetion.
The black square represents the true heading point. The upper left panel shows two dots moving apart (divergiKgjinet¢tien. According to the model, the
posterior probabilities between the two dots are relatively high, and that outside the two dots are relatively low. The panels on the upper tg)lar(@dhdo
lower left (100 dots) show that as the number of dots increase, the probability distribution sharpens, and peaks approximately at the truertheBdénlpywer
right panel shows the optical flow with a large camera rotation to the righi=(5°/s); the probability distribution is almost unaffected.
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According to Bayes’ rule, we have Suppose we have the flow field of an imadelfy K pixels)
as input. Let the angular velocity at pixakin X andY direc-
p(x/Cij) = p(Cij /X)p(x)/ p(Cij). (19) tions betnk & Ynk. To computex, we need only thé, set. Let

S« = maX{&w, &x, - . . Enk} be the maximum value of theh col-
Sincep(Ci;) is the same for alk’s, it is a normalization factor umn, and letq = min{&ay, &, . . . ni} be the minimum. Let the
and we can leave it out. Thus we can compute the posterigitial probability of the aimpoint (prior) be equal among tke
probability of heading ak given observation of the relative possible directions(x) =1/K forall x=1,2,..., K). Then
motion of two points andj. If they convergeGij = 1), search all column pairgai(v) foru=1toK —2andv=u+2
to K to compute whether the pair of columns has a convergin
P(X/Cij = 1) = ep(x), ifi <X < | (20) Pairofpoints:

1) — i i i 1 if ty
p(x/Cij = 1) =np(x), ifx<iorx> j. (21) Cop = S > _ (26)
0 otherwise
Similarly, if they do not converge; = 0),
Then computep(x/Cy,) for all x’s according to Egs. (20)—
(1 . . (23). In total there ar& (K — 2)/2 cycles. Finally, thex with
PO/Cij =0) = (1—#)p(), ifi <x<] (22) the maximump(x) can be taken to compute the&component

p(x/Cij =0)=(1—n)p(x), ifx <iorx> j. (23) ofheadingaccordingto Eq. (25).

In a series of searches for all j pairs in a given image V. EXPERIMENTAL RESULTS
velocity field, the posterior probabilitg(x/Cij) of the previous _
pair of points becomes the prior probabilipfx) for the next Simulations
pair. After running through the whole image, one can normalize e first tested this algorithm on simulations of 3D random
the probability to 1 and get the final probability distribution ofjo: cjouds. We generated a number of dot} &t random im-

heading: age positions and assigned a random depth to each dot varyi
between 2-10 focal lengths. Then we randomly chose a tran
p'(x) = p(x)/ Zk(pK)). (24) lation vectorV and set a rotation vecter, so that the aimpoint

fell inside the image. The image velocity of each dot was calcu
The x with maximum p’ value can be taken to recover thelatec_i according to Eq. (7). This calcglated image velocity fielc
heading angle: (optical flow) was then taker_1_as t_he _|an_1t to the model, gnd th
model computed the probability distribution and gave the judge:

angular translation component aloKg
The simulation was run using a PowerBase 240 maching

o o Each data point was averaged over 200 trials. The ang{dar
Similarly, the angulaY-component of the heading direction cantomponent of heading direction was computed according to th

be computed. The overall heading can be recovered from the figpy|ementation described in the previous section, and then tt
heading components accordingto the inverses of Egs. (3) and éﬂ/}arage angular heading error was calculated. The prameter:
andn were set at = 0.01 andn = 0.5. The distance separation
IV. THE IMPLEMENTATION between the two planes relative to the distance of the near
plane (Az/z;), the total number of dots in the imaghl), the
In practice, one may not want to compute the posterior profage height (IH), the rotational componenis @ndw,), and

ability for every pair of points in an image. Instead, one cage amount of random noise added to the image motion fiel
gather evidence on a “column by column” basis. First, dividgere systematically varied.
the image intoK columns. Next, compute the posterior prob-

ability distribution according to pairs of columns, considerin | dat d tational models h ted that |
only the fastest and slowest moving points in each column. H ata and computational modeis have suggested that farg
epth variations [1, Exps. 9-11, 35] and richer environment

¢ refers to the probability that there exists a converging pair be- L
tween the t\Norz:qumns?/That is, at least one of thgpgirﬁ)t pai gore dots) [18, 20, 30, 31] lead to more accurate heading jud

one from column and one from columi, forms a converging ments fron|1t opilcaLflow. _TTﬁ currentlmf?del ISI C?E_S'Stgnt W]!th
pair. n therefore means no converging pairs exist between tWeese resutis. As shown In the upper ‘ett panet ot F1g. s, perior

two columns. The computation is significantly simplified. Genrpan(;e !m{)hroyed Wh‘?” elther(tjhe depin separation or the numb
erally, when an image is not too large columns can take the sal éjo S Inthe image increased.

width as pixels, as described in the following, although the sameAssumptions. Theorem 1 has three assumptions: A stable
principle can be applied to larger column widths. environment, accurate/noise-free optical flow calculation, an

a = atank/f). (25)

Number of dots and depth separatiorivarious psycholog-
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FIG.3. Judgmentaccuracy in simulated camera motion toward 3D random dot clouds. Unless otherwise specified, there were totally 800 dots with depth
z1 andz; + Az. The depth separatiomg/z;) was 4, the translation velocity was 1 focal length/s toward a random point within the image, the rotation was ar
(0, 1, 0) at 6/s, and the image size was“fy 30° in the X andY directions, respectively. The upper left panel shows the angular judgment efros{ponent)

in simulations with varying total number of dotd)and the depth separation of the two plar®gAz;). The upper right panel shows judgment errors with different
distances of the dotg and average noise component measured as percentage to average flow vector size (Noise %). The lower panels show judgment e
different image height (measured as visual angles) in degrees (IH) and rotation arodnailew,, left panel) and theX axis (x, right panel).

relatively small visual field in case of camera rotations. Howguite large. When the image was relatively narrow (abdut 2
ever, when the probability measurementis introduced, the moedvisual angle along/, i.e., IH=2°), performance was not af-
ments of a small proportion of the environment and the smddicted by any camera rotations. Only when the image heig
distortions of the velocity fields in the periphery should prowas larger than 8 and the rotation around was above G's,
duce random, inconsistent biases in the probability distributiogid performance begin to drop significantly. Rotation around th
just as does the random noise in the velocity calculation. Weaxis does not affect the computation of tKecomponent of
tested the effect on judgment accuracy of Image Height (li)e translation when optical flow is noise-free, as shown in Eq
in combination with rotations around th¢ and Z axes to see (5)—(7) (also see Fig. 2, lower right panel).

the tolerance of the model to these violations. As shown in theAnother inevitable violation to Theorem | arises from noise
lower panels of Fig. 3, rotation around the axis (x) had errorsinthe motion field (optical flow calculation). We tested th
little effect on judgment accuracy, even when the image wasodel’s performance on noisy motion fields by adding rando
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errors to the calculated correct velocity of each dot, and the VI. DISCUSSIONS

noise% was calculated as the average percentage of error size rel-

ative to the final velocity for each dot. The algorithm’s resistance This paper describes a new approach to computing the dire

to noise is shown in the upper right panel of Fig. 3. As expecteiépn of camera translatiomgading from optical flow. Based on

performance dropped as the noise increased, though judgniBatrelative velocity of pairs of points in the image, the algorithm

was reasonab|y accurate when the noise was under 15%. calculates the posterior probability distribution of the aimpoint
and chooses heading direction with MAP. Simulations of head

Real Images ing toward 3D random dot clouds showed that performance c

the algorithm approaches human performance in accuracy. Tl

We tested the model on real images, both indoor and outd@Qp e/ \as tested on real images and generated similar resu
scenes. The optical flow was calculated according to Horn adin simulations

Schunck[32]. Figure 4 shows an example of the implementation.q o |imitation of this model is that the probability distribution
The top panel shows the image, the middle panel shows W&, a5 only to positions inside the image. When the camera

o_ptic_al flpwcalculated,andthelowerpanelshowsthe pmbabi"r%ving toward a point that is out of view, the model can only
distribution calculated by the model. tell that the vector is outside the image but not how far out
Heading judgments from optical flow in humans were shown tc
be significantly less accurate under these conditions [36]. Othe
nonvisual information may provide estimation of the self-motion
direction when one looks to the side while walking or driving.

Another factor concerns the column size (“image resolu:
tion”).? Because the probability distribution is measured on ¢
discrete variable, the accuracy of the judgment cannot exceec
half the width of the column. In the current simulations, the col-
umn width was set at about®. When there were 1600 dots
(thatis, 20 dots per column) the accuracy reach6d 8uggest-
ing that the model only missed about one column on averag
Further testing showed that when the column size was reduce
to 0.1°, judgment error dropped to.’-0.2° accordingly. The
model’s performance thus approximately matches human pe
formance in similar simulations.

Comparison to other models.The current model performed
very wellin the random dot simulation tests, with the best perfor
mance reaching.0°—0.2. Most previous models did not match
human performance [3, for review]. The performance of the
current model is comparable to or exceeds that of other moc
els (e.g., Rieger and Lawton [9], abou#iQ Hatsopoulos and
Warren [33], about %, Hildreth [3], about 15°). However, the
relative performance of different models may vary in different
situations depending on the violation of the specific assumptior
of each model.

Although under some conditions (with dense optical flow
field, little noise in optical flow calculation, small rotations, etc.)

the model reached accuracy approaching human performanc
0.k ﬁ this does not mean that human heading perception must be bas

= 04 on the same mechanism. Previous studies have shown that de
B 04 || cues are used in heading judgments when available [17-2Z
0. l | these were omitted for purposes of computer implementatio
0 . in the current model. Large rotations have been shown to im

! 1 2 A 41 il pair judgment accuracy of the translation direction [34], dens

FIG. 4. An example of the real images tested. The top panel is the middle

frame of the image sequence used to calculate optical flow. The middle panél Here we mean the angular size (visual angle) of each column when w
is the calculated flow field according to Horn and Schunck [32]. The bladpplied the model, not the absolute image resolution. However, in real imag
square indicates the true camera translation direction. The lower panel shpnecessing, the column size can be set at pixel width; then column size is direct
the probability distribution calculated by the model, using 0.3 andn =0.5.  associated with image resolution.
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motion field and large depth variations can improve performance
[1, 35], as current model would predict. However, the effects of
rotation around th& axes in combination with the spatial dis-

tribution of the dots, and the influence of moving objects in th€"
visual field need to be studied more systematically in humans

comparing to the model performance togeta better underStaTg.' J. E. Cutting, Wayfinding from multiple sources of local information in

ing of the processes involved in heading perception in humans.

Studies are planned to investigate these issues.
20.
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