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A (Z, , Z,) has no zeros as the unit hypercircle, however, for the 
optimal PLSI case the correctness of the modified Shanks’ con- 
jecture needs to be investigated. 

V. CONCLUSIONS 

A classification of LSI polynomials into optimal and subopti- 
mal LSI polynomials is presented in this note. By an example it is 
shown that a suboptimal LSI polynomial can be unstable even if 
the original polynomial does not have any zeros on the unit 
circle. This has invalidated the proof for modified Shanks’ con- 
jecture in the 2-D case as presented in the paper’ leaving the 
conjecture to remain a conjecture. We also hope that this note 
will clarify the well-known Robinson’s result regarding the sta- 
bilization using least squares approach. 
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Dynamical System State Need not Have Spectrum 

STEPHEN BOYD AND LEON 0. CHUA 

Recently there has been much study of nonlinear dynamical 
systems (differential equations) which have chaotic solutions. 
While there is not precise definition of what a chaotic solution is, 
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it is generally agreed upon that a chaotic trajectory should have a 
conlinuous spectrum, in particular, it should not be almost peri- 
odic [l]. A natural question is, therefore, does a (bounded) 
trajectory of a dynamical system always have a spectrum?. In this 
short note we give a simple example which shows that it need not. 

What exactly do we mean by spectrum? In this case the 
appropriate definition of spectrum is that from Generalized 
Harmonic Analysis (GHA), introduced by Kolmogorov and 
Wiener in the 1930’s to describe bounded signals which persist, 
that is, never fade. In GHA, the spectrum of a real-valued signal 
u(t) is defined via its autocorrelation R,(T), given by 

R,(~)=~lim_~~~u(t)u(t+~)dt (1) 

if the limit exists (it need not).’ If R,(.) is continuous at r = 0, 
then it can be represented as 

R,(T) =/ei”TU( dv) 

where S,, is a positive bounded measure called the spectral 
measure of u. The spectrum of u is simply the support of S,, 
roughly speaking, the set of v’s for which S,( dv) is nonzero. 
Those v where S,, has a point mass are the spectral lines of u, 
and the rest of the spectrum is the continuous spectrum of u [2], 
131. 

Consider the dynamical system: 

d Xl - x2x3 

z ;: = [I[ 1 x1x3 (2) -xx2 
3 

Note that the vector field is smooth, indeed it is quadratic. 
The system (2) has a simple system-theoretic interpretation: .x1 

and x2 are the states of an oscillator, frequency modulated by 
x3, which evolves according to i3 = - xi. The general solution of 
(2) is easily found. For x3(O) 2 0, we have 

Xl 

[I[ 

Rcos(log(l+ tx3(0))+6) 

x2 = Rsin(log(l+ tx3(0))+8) 

x3(0)(1+ tx3(W 

/L 

1 
where R = x1 (0)+x:(O) and 6= tar-‘(x,(0),x,(O)). Note in 
particular the trajectories are bounded when x3(O) > 0. 

If x3(O) > 0, then the trajectory x has no autocorrelation, that 
is, the limit in (1) does not exist, and hence x has no spectrum. 
To simplify matters, we will demonstrate this for a specific initial 
condition. Suppose that x(O) = [l,O,llT, so that 

[ j=[ ‘fz$q. 

We will now show that xi has no average power, that is, R,,(O) 

‘For vector valued u, the integrand is u(t)u(t + T)~; if u is a sequence (1) is 
replaced in the obvious way by 

T-l 
;?I T-1 c u(t)u(t + T) 

,=O 

where f, 7, and T are now integers. 
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is not defined. Let 

Then U, does not converge as T + co, in fact 

Thus X, has no autocorrelation, and a fortiori x has no autocor- 
relation. 

To establish (3) we simply note that 

II,=~+~(cos2log(l+T)+Zsin2log(l+T)) (44 

+~T(cos210g(l+T)+2sin210g(l+T)-1). (4b) 

As T + 00, the term in (4b) converges to zero, and the expression 
in (4a) oscillates between the limits given in (3), which establishes 
our claim. 

We close with a final comment. The skeptical reader may not 
accept that the GHA notion of spectrum, defined via the autocor- 
relation, is the only correct one here. That x does not have an 
autocorrelation is not simply a curious mathematical fact, but 
will manifest itself in purely operational terms, whenever an 
attempt is made to measure or estimate the spectrum of, say, x1. 
For example, it is easy to verify that x1 has no average or dc 
value, so that estimates of its average value made over larger and 
larger windows will not converge, but oscillate. 
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Accurate Determination of Threshold Voltage Levels 
of a Schmitt Trigger 

C. J. F. RIDDERS 

Ahstruct -In this paper the two threshold voltages of a Schmitt trigger 
are determined. It is shown that for most practical values of the feedback 
factor substantial errors can arise when one employs the commonly used 
expression for the width of the hysteresis region. 

Fig. 1 represents a Schmitt trigger built up with n-p-n tran- 
sistors and Fig. 2 graphs the voltage transfer characteristic V, 
versus r/;. We assume base currents small enough to be fully 
neglected; further we can choose resistors R, and R, such that 
they do not create a substantial load to the collector of transistor 
T,. By properly choosing m and the other parameters of the 
circuit, the transistors will be non-saturated, thus enabling us to 
use a one-sided Ebers-Moll model. 
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Fig. 1. A Schmitt-trigger circuit 

Fig. 2. Voltage transfer characteristic. 

Let v,=‘V,.R,/(R,+R,)=m.V, and Z,=Z,expcp,,,; I*= 
Z, exp qaE2, Z, is the saturation current of TI and T2: 

RI = v,/v T, VT = kT/q 

where we have also assumed Z1, Z2 X- Z,. 
With 

z1 + z, = IO 

(1) 

ZI = Z,.exp( y - V,)/VT 

v,=m*(E,-Z,R,) 

Vz=Ec-Z,R, 

we can start to determine the two input threshold voltages yL 
and yM. To accomplish this we have to derive an expression for 
D = d&/d5 in order to let D-’ = 0. 

We define x = exp (V; - V,)/ VT from which it follows: 

With Z1 = Z,(x/(x + 1)) it follows from (2): 

1 dx =-- mZ,R,-----.- 
(x+1) 

2 dV, 

so 

VT dx IoR1 dx l-x.*=-m-.- 
(x+1) 

2 dy 

From (2) and Z, = I, (l/(x + 1)) we find 

dV, dV, dx ZoR, dx -c-.-c-.- 
dy dx dY (x+l)2 dY:’ 
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