
ABELIAN NETWORKS III. THE CRITICAL GROUP

BENJAMIN BOND AND LIONEL LEVINE

Abstract. The critical group of an abelian network is a finite abelian group
that governs the behavior of the network on large inputs. It generalizes the
sandpile group of a graph. We show that the critical group of an irreducible
abelian network acts freely and transitively on recurrent states of the network.
We exhibit the critical group as a quotient of a free abelian group by a subgroup
containing the image of the Laplacian, with equality in the case that the network
is rectangular. We generalize Dhar’s burning algorithm to abelian networks,
and estimate the running time of an abelian network on an arbitrary input up
to a constant additive error.

1. Introduction

Associated to a finite connected graph G with marked vertex s is a finite abelian
group called its sandpile group. This group arose independently in three different
fields: the Neron model of a curve in arithmetic geometry [Lor89, Lor91], the
abelian sandpile model in statistical physics [Dha90], and discrete potential theory
on graphs [Big99]. In this paper we are going to exhibit the sandpile group as an
instance of a more general construction, the critical group CritN of an abelian
network N.

Deepak Dhar [Dha99] proposed abelian networks as models of self-organized
criticality in physics, generalizing the abelian sandpile model of [BTW87, Dha90].
From the point of view of computer science, abelian networks are an interesting
class of automata networks because they can compute asynchronously: an abelian
network produces the same final output in the same number of steps regardless of
the order of events at individual nodes of the network.

Many examples of abelian networks are surveyed in [BL13]. They include sand-
pile and rotor networks and their non-unary cousins, oil and water networks and
abelian mobile agents. Besides the sandpile groups, critical groups of abelian net-
works have been studied in a few other particular cases: rotor networks [PDDK96]
and height-arrow networks [DR04]. The group Crit Rotor(G, s) associated to a
rotor network with a sink turns out to be isomorphic to the sandpile group,
Crit Sand(G, s) [PDDK96, LL09]. We will see this isomorphism as a case of a

Date: August 30, 2014.
2010 Mathematics Subject Classification. 68Q10, 37B15, 20M14, 20M35, 05C50,
Key words and phrases. abelian distributed processors, asynchronous computation, burning

algorithm, chip-firing, commutative monoid action, Laplacian lattice, sandpile group, script
algorithm.

1

2 BENJAMIN BOND AND LIONEL LEVINE

more general phenomenon: homotopic abelian networks have isomorphic critical
groups (Corollary 3.12).

The sandpile group has several different constructions. Babai and Toumpakari
[BT10] realized the sandpile group as the minimal ideal of a commutative monoid.
Their approach, developed further in [C+13], is well-suited for generalizing to
abelian networks. In §1.2 we review the small amount of monoid theory we will
need. In §2 we recall the definition of an abelian network and relevant results from
[BL13, BL14], and prove a few basic lemmas including a local-to-global principle
for irreducibility, Lemma 2.6.

1.1. Main results. The setting for all of our main results is a finite irreducible
abelian network N that halts on all inputs. In §3.1 we define the critical group
CritN and the set RecN of recurrent states, and show that the former acts freely
and transitively on the latter. In §3.2 we consider a Markov chain defined by
sending random input to the network; we relate the algebraic and probabilistic
definitions of “recurrent,” and show that the stationary distribution of the chain
is uniform on recurrent states. In §3.3 we find the expected time for N to halt on
a given input to a uniform random recurrent state. In §3.4 we give generators and
relations for the critical group, and in §3.5 we compute its order.

In §4 we estimate the time for N to halt on an arbitrary input, up to a constant
additive error.

In §5.1 we give an efficient test for whether a given state of N is recurrent, gen-
eralizing Dhar’s burning algorithm [Dha90] and Speer’s script algorithm [Spe93].
We define a burning element to be an input that returns the network to its initial
state if and only if that state is recurrent. We show that any integer vector satis-
fying a certain set of linear inequalities is a burning element. In §5.2 we give an
efficient way to find such a vector.

1.2. Review of monoid actions. Here we recall a few facts about actions of
finite commutative monoids, which were proved in [BL14].

Let M be a commutative monoid, X a set and µ : M×X → X a monoid action.
Commutativity of M implies that the relation ∼ on X defined by

x ∼ x′ : ∃m,m′ ∈M such that mx = m′x′ (1)

is an equivalence relation. We say that µ is irreducible if∼ has only one equivalence
class.

For the rest of this section we assume that M is finite and µ is irreducible. The
minimal idempotent e :=

∏
f∈M, ff=f f is the unique idempotent accessible from

all of M (that is, ee = e and e ∈Mm for all m ∈M).

Lemma 1.1. eM is an abelian group with identity element e.

Lemma 1.2. (Recurrent Elements Of An Irreducible Monoid Action) The follow-
ing are equivalent for x ∈ X:

(1) x ∈My for all y ∈ X
(2) x ∈M(mx) for all m ∈M
(3) x ∈ mX for all m ∈M

ABELIAN NETWORKS 3

(4) x ∈ eX
(5) x = ex

An element x ∈ X is called recurrent if it satisfies the equivalent conditions
of Lemma 1.2. To explain this terminology, suppose we are given a probability
distribution α on M such that {m ∈ M : α(m) > 0} generates M as a monoid,
and consider the Markov chain onX that transitions from x tomx with probability
α(m). The states x satisfying the equivalent conditions of Lemma 1.2 are precisely
those visited infinitely often by the Markov chain (see §3.2).

We say that m ∈M acts invertibly on a subset Y of X if the map y 7→ my is a
permutation of Y .

Lemma 1.3. Every m ∈M acts invertibly on eX.

We say that a monoid action µ : M ×X → X is faithful if there do not exist
distinct elements m,m′ ∈M such that mx = m′x for all x ∈ X.

Let G be a group with identity element e. Recall that a group action G×Y → Y
is called transitive if Gy = Y for all y ∈ Y , and is called free if for all g 6= e there
does not exist y ∈ Y such that gy = y. If the action is both transitive and free,
then for any two elements y, y′ ∈ Y there is a unique g ∈ G such that gy = y′; in
particular, #G = #Y .

Theorem 1.4. (Group Actions Arising From Monoid Actions) The restriction of
µ to eM × eX is a transitive group action

eµ : eM × eX → eX.

In addition, if µ is faithful, then eµ is free.

2. Abelian networks

We now recall the definition and basic properties of abelian networks, refering
the reader to [BL13, BL14] for details.

2.1. Abelian processors. Let Q be a set and End (Q) the monoid of all set
maps Q → Q with the operation of composition. An abelian processor with
input alphabet I and state space Q is a collection of maps (ta)a∈I where each
ta ∈ End (Q), such that tatb = tbta for all a, b ∈ I.

2.2. Abelian processors with message passing. An abelian processor with
output alphabets (Au)u∈U has in addition to the state transition maps ta a message
passing function oua : Q → A∗u for each a ∈ I and u ∈ U . Here A∗ denotes the
free monoid of all finite words in an alphabet A. These functions are required
to satisfy a commutativity condition: namely, if two input words w,w′ ∈ I∗ are
equal up to permutation, then for each u ∈ U the resulting output words in A∗u
are equal up to permutation.

4 BENJAMIN BOND AND LIONEL LEVINE

2.3. Abelian networks. An abelian network on a directed graph G = (V,E)
with alphabet A = tv∈VAv and state space Q =

∏
v∈V Qv is a collection (Pv)v∈V ,

where each Pv is an abelian processor with input alphabet Av, state space Qv
and output alphabets Au for each edge (v, u) ∈ E. When Pv in state q ∈ Qv
processes letter a ∈ Av, it transitions to state ta(q) and sends the message oua(q)
to each neighboring processor Pu. Note that oua(q) might be the empty word,
which signifies that no message is sent.

The total state of an abelian network N = (Pv)v∈V is described by an element
q ∈ Q indicating the internal states of all processors, together with a vector x ∈ ZA
indicating how many letters of each type are waiting to be processed. We use the
notation x.q for this pair. Note that A is a disjoint union, so each letter belongs
to the input alphabet of a unique processor.

2.4. Sandpiles, rotor networks, toppling networks. These will be our run-
ning examples of abelian networks. Let G = (V,E) be a finite directed graph
and s ∈ V a vertex such that from every other vertex v ∈ V there is a directed
path from v to s. Each processor Pv has alphabet Av = {v} and state space
Qv = Z/rvZ for a positive integer rv called the threshold of v. The state transi-
tion is tv(q) = q + 1 (mod rv).

It remains to describe the message passing. In the networks Sand(G, s) and
Rotor(G, s), processor Ps is a sink (which means it has just one state and never
passes any messages) and we take rv = dv, the outdegree of v, for all v 6= s.
In the sandpile network Sand(G, s), whenever processor Pv transitions from state
dv − 1 to state 0 it passes dv letters: one letter u along each outgoing edge (v, u).
The message passing for the rotor network Rotor(G, s) is specified by fixing an
ordering e1, . . . , edv of the outgoing edges from v. Whenever it transitions from
state q to q + 1 (mod dv), processor Pv passes exactly one letter, along the edge
eq+1.

Toppling networks are a generalization of sandpiles, where we allow rv 6= dv;
however, when processor Pv in a toppling network transitions from state rv − 1 to
state 0, it passes dv letters just as in a sandpile network: one letter u along each
outgoing edge (v, u). The importance of the sink s in Sand(G, s) and Rotor(G, s)
is to ensure the network halts on all inputs. Depending on the thresholds rv, a
toppling network may halt on all inputs even if no vertex is a sink.

Rotor and toppling networks are unary, meaning that each alphabet Av is a
singleton. See [BL13] for two examples of non-unary abelian networks, oil and
water and abelian mobile agents.

2.5. Executions. An execution is a finite word w ∈ A∗. It prescribes an order
in which letters are to be processed. We write πw(x.q) for the result of executing
w starting from x.q; this is another pair x′.q′ that can be computed using the
state transitions and message passing functions. It is important to note that some
coordinates of x′ may be negative! For example, if w consists of a single letter
a and xa = 0, and processing a does not cause any letters a to be passed, then
x′a = −1. The interpretation is that a processor was instructed to process letter
a even though no letter a was present; the processor follows the instruction and

ABELIAN NETWORKS 5

keeps track of the “debt” that it is owed one letter a. Note however that messages
passed from one processor to another are always nonnegative.

The axioms of an abelian network imply that πw(x.q) depends only on the
vector |w| ∈ NA where |w|a is the number of letters a in w. We write πw and
π|w| interchangeably. Writing w = a1 · · · ar and πa1···ai(x.q) = xi.qi, we say that

w is legal for x.q if xi−1ai ≥ 1 for all i = 1, . . . , r. We say that w is complete for
x.q if xr ≤ 0 (inequalities between vectors are coordinatewise). In words, a legal
execution is one that incurs no “debts,” and a complete execution is one that
removes all letters from the network. Note that if w is both legal and complete,
then xi ≥ 0 for i = 1, . . . , r − 1 and xr = 0.

The least action principle [BL13, Lemma 4.3] says that if w is any legal execution
for x.q and w′ is any complete execution for x.q, then |w| ≤ |w′|. It follows that
|w| is the same for all complete legal executions of x.q. If there exists a complete
legal execution for x.q then we say that N halts on input x.q. In this case the
odometer [x.q] is defined as

[x.q] := |w|
where w is any complete legal execution for x.q. The odometer is a vector in NA
whose ath coordinate is the total number of letters a processed.

The final state qrv of each processor Pv can be determined from its initial state
qv and the odometer coordinates [x.q]a for a ∈ Av, namely

qrv =

(∏
a∈Av

t[x.q]aa

)
qv. (2)

where the product denotes composition of the commuting maps ta. To make its
dependence on x explicit we will use the notation x ..q for the final state qr.
Like the odometer [x.q], the state x ..q depends only on x and q and not on the
choice of complete legal execution.

2.6. The global action. Let N be an abelian network that halts on all inputs:
that is, x.q has a finite complete legal execution for all x ∈ NA and all q ∈ Q. We
will see shortly that (x,q) 7→ x ..q defines a monoid action NA ×Q → Q. This
global action is the main object of interest in the present paper: we will use this
action to define the critical group in §3 and characterize the recurrent states of
this action in §5. We have chosen the notation .. to distinguish the global action
from the local action . of [BL14]; below we recall how . is defined and relate the
two actions.

Lemma 2.1. If w is a legal execution from x.q to y.r, then

x ..q = y .. r

and
[x.q] = |w|+ [y.r].

Proof. Let w′ be a complete legal execution for y.r. Then the concatenation ww′

is a complete legal execution for x.q. �

The next lemma verifies that .. defines a monoid action of NA on Q.

6 BENJAMIN BOND AND LIONEL LEVINE

Lemma 2.2. For x,y ∈ NA and q ∈ Q we have

(x + y) ..q = y ..(x ..q)

and

[(x + y).q] = [x.q] + [y.(x ..q)].

Proof. If w is a complete legal execution for x.q, then w is a legal execution from
(x + y).q to y.(x ..q). Since |w| = [x.q] the result follows from Lemma 2.1. �

2.7. The local action. In [BL14] we defined a monoid action . of NA on ZA×Q,

x .(y.q) = πx((x + y).q).

This is called the local action because each processor Pv processes only the letters
that were added at v (namely xa letters a for each a ∈ Av) and not any additional
letters passed from other processors. We write x .q as a shorthand for x .(0.q).

The next lemma relates the local and global actions.

Lemma 2.3. If x .q = y.r, then x ..q = y .. r and [x.q] = x + [y.r].

Proof. If x .q = y.r then there is a legal execution w from x.q to y.r with |w| = x,
so the result follows from Lemma 2.1. �

One way to compute the global action .. is by iterative application of .: given
x ∈ NA and q ∈ Q, set x0 = x and q0 = q and

xn.qn = xn−1 .qn−1 (3)

for n ≥ 1. This amounts to making a particular choice of execution, called parallel
update. In parallel update the execution occurs in rounds n = 1, 2, At the
beginning of round n there are (xn)a letters a waiting to be processed for each
a ∈ A. During round n we execute a word wn with |wn| = xn. The concatenation
w = w1w2 · · · is a legal execution. Since N halts on all inputs, every legal execution
is finite, so there is some N such that all words wn for n > N are empty. Then
xn = 0 for all n ≥ N , and w = w1 · · ·wN is a finite complete legal execution. In
particular, the final state is given by

x ..q = qN

and the odometer is

[x.q] = |w| =
N∑
n=1

xn.

We record a few more identities to be used later. We extend the domain of ..
to NA ×Q by defining for y ∈ NA

x ..(y.q) := (x + y) ..q.

Lemma 2.4. Given x ∈ NA and q ∈ Q, let k = [x.q]. Then

(i) πk(x.q) = 0.(x ..q)
(ii) k .(x.q) = k.(x ..q)
(iii) x ..(y .q) = (x + y) ..q

ABELIAN NETWORKS 7

Proof. Part (i) follows from the definition of x ..q.
Part (ii) follows from (i) since

k .(x.q) = πk((x + k).q) = k.(x ..q).

To prove part (iii), both states x ..(y .q) and (x + y) ..q are the result of
performing a complete legal execution for (x + y).q, and any two complete legal
executions for (x + y).q result in the same final state. �

2.8. Local monoids. The transition monoid of an abelian processor with state
space Q and transition maps ta : Q → Q is the submonoid M = 〈ta〉a∈A ⊆
End (Q), where End (Q) is the monoid of all set maps Q→ Q with the operation
of composition. Since M is defined as a submonoid of End (Q) it has a faithful
monoid action M ×Q→ Q.

Each processor in an abelian network N = (Pv)v∈V has a transition monoid

Mv := 〈ta〉a∈Av ⊂ End (Qv). (4)

We call this Mv the local monoid at v. The product
∏
v∈V Mv acts coordinatewise

on Q =
∏
v∈V Qv. To relate this action to the global and local actions defined

above, let tv : NAv → Mv be the monoid homomorphism sending basis elements
1a to the commuting generators ta, and (recalling A = tAv) write

t : NA →
∏
v∈V

Mv

for the Cartesian product of the maps tv. Each tv is surjective, so t is surjective.
Equations (2) (there is one equation for each v ∈ V) can be written more succinctly
as the single equation

x ..q = t([x.q])q. (5)

To relate t to the local action, note that if x .q = y.r then r = t(x)q.

2.9. Global monoid. If N halts on all inputs, then we can view the entire network
as a single abelian processor (see [BL13, Lemma 4.7]) with input alphabetA = tAv
and state space Q =

∏
Qv. In this case N has a global monoid, defined by

M := 〈τa〉a∈A ⊂ End (Q) (6)

where τa(q) := 1a ..q. Note that M is not the same as the product of local
monoids

∏
Mv of (4): the local monoids depend only on the state transition maps

ta, but M depends also on the message passing functions (because .. does).
Write

τ : NA →M (7)

for the monoid homomorphism sending basis elements 1a to generators τa. By
Lemma 2.2 we have x ..q = τ(x)q.

If N is a finite abelian network (that is, V is finite, and the alphabet Av and
the state space Qv of each processor are finite) then M is a finite commutative
monoid. In this case we denote by e the minimal idempotent of M (§1.2). We will
use the following property of e repeatedly.

Lemma 2.5. For any x ∈ NA there exists z ≥ x such that τ(z) = e.

8 BENJAMIN BOND AND LIONEL LEVINE

Proof. Since e is accessible from all of M we have τ(x)m = e for some m ∈ M .
Since τ is surjective we have m = τ(y) for some y ∈ NA. Now take z = x + y. �

2.10. Locally irreducible implies globally irreducible. An abelian processor
with transition monoid M and state space Q is called irreducible if the defining
action M ×Q→ Q is irreducible (§1.2). Next we prove a local-to-global principle
for irreducibility.

Lemma 2.6. Let N = (Pv)v∈V be an abelian network that halts on all inputs. If
each processor Pv is irreducible, then N is irreducible.

Proof. Let q,q′ ∈ Q. For each v ∈ V , since Pv is irreducible, there exist mv,m
′
v ∈

Mv such that mvqv = m′vq
′
v. Since t is surjective we can choose x,x′ ∈ NA with

t(x) = m and t(x′) = m′. Write

x .q = y.r, x′ .q′ = y′.r′

where r = r′ since rv = mvqv = m′vq
′
v = r′v for all v ∈ V . Then by Lemma 2.4(iii),

(x + y′) ..q = y′ ..(x .q)

= y′ ..(y.r)

= (y + y′) .. r

= y ..(y′.r)

= y ..(x′ .q′)

= (x′ + y) ..q′.

Hence τ(x+y′)q = τ(x′+y)q′, so the global action M×Q→ Q is irreducible. �

In light of Lemma 2.6 we will drop “locally” from “locally irreducible” when
referring to an abelian network that halts on all inputs.

2.11. Total kernel and production matrix. In [BL14] we used the local action
to associate two basic algebraic objects to an irreducible abelian network, the total
kernel K and production map P : K → ZA. Together K and P constitute a kind
of course-grained description of an abelian network. In this paper we will see that
many properties of interest depend only on K and P .

Let ev be the minimal idempotent of the local monoid Mv. A state q ∈ Q is
called locally recurrent if qv ∈ evQv for all v ∈ V . By Lemma 1.3, each m ∈ Mv

acts invertibly on evQv, so we have a group action of ZAv on evQv. The total
kernel is defined as

K =
∏
v∈V

Kv ⊂ ZA

where Kv is the kernel of the action ZAv × evQv → evQv. If N is a finite abelian
network, then its total kernel K is a finite index subgroup of ZA. In particular, it is
generated as a group by K∩NA. The nonnegative points in K can be characterized
as follows.

Lemma 2.7. [BL14, Lemma 4.8] If N is finite and irreducible, then the following
are equivalent for x ∈ NA.

ABELIAN NETWORKS 9

(1) t(x)q = q for some locally recurrent q.
(2) t(x)q = q for all locally recurrent q.
(3) x ∈ K.

The total kernel depends only on the state transition maps. Next we define the
production map, which depends also on the message passing functions. Given a
locally recurrent state q and a vector k ∈ K ∩ NA we have

k .q = Pq(k).q (8)

for some vector Pq(k) ∈ NA. Nonnegative elements of the total kernel can be
thought of as reset vectors: if k ∈ K ∩ NA then processing ka letters a for all
a ∈ A returns all processors to their initial (locally recurrent) states, and the
vector Pq(k) specifies how many letters of each type are passed as a result.

Lemma 2.8. [BL14, Lemmas 4.6 and 4.9] Let N be a finite abelian network.

(1) Pq : K ∩ NA → NA extends to a group homomorphism K → ZA.
(2) If N is irreducible then Pq = Pr for all q, r ∈ Q.

In light of (2), when N is irreducible we will often drop the subscript and denote
the production map simply by P . In a slight abuse of notation, we also denote
by P the A × A matrix of the linear map QA → QA obtained by tensoring the
production map with Q. The Laplacian of N is defined as the A×A matrix

L = (I − P)D (9)

where I is the A×A identity matrix and D is the diagonal matrix with diagonal
entries

ra = min{m ≥ 1 : m1a ∈ K}.

Theorem 2.9. [BL14, Theorem 5.6 and Corollary 6.4] Let N be a finite irreducible
abelian network N with production matrix P and Laplacian L. The following are
equivalent.

(1) N halts on all inputs.
(2) The spectral radius of P is strictly less than 1.
(3) All principal minors L are positive.

3. Critical Group

Throughout this section, we take N to be a finite irreducible abelian network
that halts on all inputs.

3.1. Action on recurrent states. Since the global monoid M of (6) is finite
and commutative it has a minimal idempotent e, and eM is a finite abelian group
with identity element e (see §1.2).

Definition 3.1. The critical group CritN is the group eM .

Definition 3.2. A state x ∈ Q is recurrent if it satisfies the equivalent conditions
of Lemma 1.2 for the defining action M ×Q→ Q.

Denote by RecN the set of recurrent states of N.

10 BENJAMIN BOND AND LIONEL LEVINE

For example, if N = Rotor(G, s) is a simple rotor network on a directed graph G
with sink vertex s, then RecN can be identified with spanning trees of G oriented
toward s [H+08, Lemma 3.16]. The critical group of N is isomorphic to the sandpile
group Crit Sand(G, s) [PDDK96, LL09]. We will deduce this isomorphism as a
special case of Theorem 3.11, below.

The following theorem generalizes [H+08, Lemmas 3.13 and 3.17], where it was
shown that Crit Rotor(G, s) acts freely and transitively on the set of spanning
trees of G oriented toward s.

Theorem 3.3. Let N be a finite irreducible abelian network that halts on all inputs.
The action of the critical group on recurrent states

CritN × RecN→ RecN

is free and transitive. In particular, #CritN = #RecN.

Proof. Let M be the transition monoid of N, and let e be the minimal idempotent
of M . Then CritN = eM and RecN = eQ. The monoid action M × Q → Q
is faithful by definition and irreducible by Lemma 2.6. Hence the group action
eM × eQ→ eQ is free and transitive by Theorem 1.4. �

3.2. Markov chain. Next we formalize one way in which CritN and its action on
RecN govern the “long term behavior” of N. Let α be a probability distribution
on the total alphabet A. Consider the Markov chain (qn)n≥0 on state space Q
where the initial state q0 can be arbitrary, and subsequent states are defined by

qn+1 = 1an ..qn, n ≥ 0 (10)

where the inputs an ∈ A for n ≥ 0 are drawn independently at random with
distribution α.

Recall that q is called recurrent for the Markov chain if

Pr(qn = q for some n ≥ 1 |q0 = q) = 1. (11)

Next we relate this notion of recurrence to the algebraic notion. Let Mα be the
submonoid of M generated by {τa : α(a) > 0}. We say that q is accessible from
q′ if q ∈Mαq′. By the elementary theory of Markov chains, (11) holds if and only
if

q is accessible from mq for all m ∈Mα (12)

(here we are using the assumption that Q is finite). Mutual accessibility is an
equivalence relation on Q. Its equivalence classes are called communicating classes.

Write eα for the minimal idempotent of Mα.

Lemma 3.4. q is recurrent for the Markov chain (10) if and only if eαq = q.

Proof. Given m ∈ Mα, let g be the inverse of eαm in the group eαMα. Since
g = geα we have gm = g(eαm) = eα, so for any q ∈ Q

g(mq) = eαq.

Therefore if eαq = q then (12) holds. Conversely, if (12) holds then in particular
q is accessible from eαq, so q ∈ eαQ and hence eαq = q. �

ABELIAN NETWORKS 11

If the support of α is too small, it may happen that eα 6= e, or it may happen
that eα = e but eMα is a proper subgroup of eM . We say that α has adequate
support if

eαMα = eM.

Note that this holds trivially if α(a) > 0 for all a ∈ A (in which case Mα = M).

Lemma 3.5. If α has adequate support, then RecN is the unique communicating
class of recurrent states for the Markov chain (10).

Proof. If eαMα ⊆ eM then eα = e. By Lemma 3.4 the set of recurrent states for
the Markov chain is eαQ = eQ = RecN.

By Theorem 3.3, the group eM acts transitively on RecN, so if eM ⊆ eαMα

then any two states of RecN are mutually accessible. �

The next two theorems generalize results of [Dha90], where they are proved for
sandpile networks.

Theorem 3.6. For any α, the uniform distribution on RecN is stationary for the
Markov chain (10). If α has adequate support, then the stationary distribution is
unique.

Proof. Fix q0 ∈ RecN, and let g be uniform random element of CritN. By The-
orem 3.3, g ..q0 is a uniform random element of RecN. If a ∈ A is independent
of g, then τag is also a uniform random element of CritN; hence if qn is uniform
on RecN, then qn+1 is again uniform on RecN.

If α has adequate support, then RecN is the unique recurrent communicating
class by Lemma 3.5, so the stationary distribution is unique. �

3.3. Expected time to halt. Recall our assumptions that N is finite and irre-
ducible and halts on all inputs. In particular, the production matrix P is well
defined and has spectral radius < 1 by Theorem 2.9, so I−P is invertible where I
is the A×A identity matrix. Our next result gives an interpretation for the entry
(I − P)−1ab : it is the expected number of letters a processed before the network
halts, when one letter b is input to a uniform recurrent state.

Theorem 3.7. (Expected Time To Halt) Let q be a uniform random element of
RecN. Then for all x ∈ NA we have

E[x.q] = (I − P)−1x.

Later, in Theorem 4.2, we will bound the difference [x.q]−E[x.q]. To build up
to the proofs of these results, consider the group homomorphism

φ : ZA → CritN

defined on generators by 1a 7→ eτa for each a ∈ A. For x ∈ NA and q ∈ Q we have

φ(x)q =

(∏
a∈A

(eτa)
xa

)
q =

(∏
a∈A

τxa
a

)
eq = x .. eq. (13)

First we observe that input vectors in the kernel of φ act trivially on recurrent
states.

12 BENJAMIN BOND AND LIONEL LEVINE

Lemma 3.8. If x ∈ (kerφ) ∩ NA and q ∈ RecN, then x ..q = q.

Proof. For q ∈ RecN we have q = eq. Now by (13), since φ(x) = e,

x ..q = x .. eq = φ(x)q = eq = q. �

Write ev for the minimal idempotent of the local monoid Mv (§2.8).

Lemma 3.9. (Recurrent Implies Locally Recurrent) If eq = q then evqv = qv
for all v ∈ V .

Proof. By Lemma 2.5 there exists z ≥ 1 be such that τ(z) = e. Let u = [z.q] ≥ 1.
For each v ∈ V let yv ∈ NAv be such that tv(yv) = ev. Then for all sufficiently
large n we have nuv ≥ yv and hence tv(nuv) ∈ evMv. Since evMv is a finite group,
there exists nv ∈ N such that tv(nvuv) = ev.

Now if eq = q then for all n ∈ N we have (nz) ..q = q and [nz.q] = nu by
Lemma 2.2, and hence t(nu)q = q by (5). Taking n = nv we obtain

evqv = tv(nvuv)qv = qv. �

The converse of Lemma 3.9 is usually false: For example, all states of Rotor(G, s)
and Sand(G, s) are locally recurrent, but states of the former containing an ori-
ented cycle of rotors are not recurrent, nor are states of the latter containing
“forbidden” subconfigurations (the simplest of which is a pair of adjacent vertices
both in state 0). Theorem 3.19 gives conditions when the converse does hold.

Now we come to the main ingredient in the proof of Theorem 3.7: if the network
starts in a locally recurrent state q and halts in the same state q, then the odometer
[x.q] belongs to the total kernel K.

Lemma 3.10. Fix x ∈ NA and a locally recurrent state q ∈ Q. Let k = [x.q]. If
x ..q = q, then k ∈ K and x = (I − P)k.

Proof. If x ..q = q, then t(k)q = q by equation (5). By Lemma 2.7 it follows
that k ∈ K. Now by Lemma 2.4(ii) and the definition (8) of the production
matrix,

k.q = k .(x.q) = (P (k) + x).q

Hence k = P (k) + x. �

Proof of Theorem 3.7. Since CritN is a finite group, for any x ∈ ZA there is a
positive integer n such that nx ∈ kerφ. Fix q ∈ RecN and let k = [nx.q]. We
have nx ..q = q by Lemma 3.8. Moreover q is locally recurrent by Lemma 3.9,
so by Lemma 3.10 it follows that nx = (I − P)k. In particular, since I − P is
invertible, k does not depend on q.

Now by Lemma 2.2,

k =
n−1∑
j=0

[x.(jx ..q)].

By Theorem 3.6, if q is uniform on RecN then jx ..q is uniform on RecN for all
j ∈ N. Taking expectations, we obtain

k = Ek = nE[x.q].

ABELIAN NETWORKS 13

Dividing by n yields the result. �

3.4. Generators and relations. In this section we give generators and relations
for the critical group. The group homomorphism φ : ZA → CritN sending a 7→ eτa
is surjective, since CritN = eM and M is generated by {τa}a∈A. To describe the
kernel of φ we will use the production map from §2.11,

P : K → ZA

where K ⊂ ZA is the total kernel. Write I for the inclusion K ↪→ ZA.

Theorem 3.11. The natural map φ : ZA → CritN induces an isomorphism of
abelian groups

CritN ' ZA/(I − P)K.

Proof. We must show that kerφ = (I−P)K. Fix q ∈ RecN. For any k ∈ K ∩NA
we have

k .q = P (k).q

so k ..q = P (k) ..q by Lemma 2.3. Hence φ(k)q = φ(P (k))q by (13). By
Theorem 3.3 the action of CritN on RecN is free, so we conclude φ(k) = φ(P (k)).
This shows that (I − P)k ∈ kerφ for all k ∈ K ∩ NA. Since K is generated as a
group by K ∩ NA, it follows that (I − P)K ⊂ kerφ.

To show the reverse inclusion, given x ∈ (kerφ) ∩ NA we have φ(x) = e and
hence x .. eq = eq for all q ∈ Q by (13). By Lemma 3.10, x = (I − P)k where
k = [x.eq] ∈ K. It follows that (kerφ) ∩ NA ⊂ (I − P)K. Since CritN is finite,
kerφ is a full rank subgroup of ZA, so it is generated as a group by (kerφ) ∩ NA,
which shows that kerφ ⊂ (I − P)K. �

Irreducible abelian networks N and N′ on the same graph with the same total
alphabet are called homotopic, written N ≈ N′, if they have the same total kernel
K and the same production map P . An example of homotopic networks are the
sandpile and simple rotor networks on a connected graph G = (V,E). These have
total kernel K =

∏
v∈V (dvZ) where dv is the degree of vertex v: in the sandpile

case processing dv letters v causes v to topple exactly once, while in the rotor
case it causes the rotor at v to serve each neighbor u of v exactly once. In both
cases exactly one letter is sent to each neighbor, so the production map is given
by P (k)u =

∑
(v,u)∈E kv/dv.

By Theorem 3.11 the critical group depends only on the total kernel K and
production matrix P , so homotopic networks have isomorphic critical groups.

Corollary 3.12. If N ≈ N′, then CritN ' CritN′.

Corollary 3.12 generalizes the isomorphism Crit Rotor(G, s) ' Crit Sand(G, s)
between the rotor and sandpile groups of a graph with sink vertex s.

Next we relate the critical group to the cokernel of the Laplacian (9).

Definition 3.13. An abelian network N is rectangular if its total kernel is K =∏
a∈A(raZ) (that is, K is a rectangular sublattice of ZA).

14 BENJAMIN BOND AND LIONEL LEVINE

a

b

0 1 0 1

01 0 1

0 1 0 1

01 0 1

0 1 0 1

Figure 1. State diagram of an abelian processor with two states
0, 1 and two inputs a, b. Its kernel is {(m,n) ∈ Z2 : m + n ≡ 0
(mod 2)}, so it is not rectangular. Each line crossed results in
output of one letter c.

Corollary 3.14. The natural map ZA → CritN induces a surjective group homo-
morphism

φ : ZA/LZA � CritN.

If N is rectangular, then φ is an isomorphism.

Proof. By definition, DZA ⊂ K with equality if N is rectangular. Since L =
(I − P)D, we have LZA ⊂ (I − P)K with equality if N is rectangular. �

Note that any unary network (and in particular any toppling network) is rect-
angular. In [BL14] we defined the sandpilization S(N) as the locally recurrent
toppling network with the same Laplacian as N.

Corollary 3.15. Crit S(N) ' ZA/LZA and Crit S(N) � CritN.

Example. To see that the map Crit S(N)→ CritN need not be an isomorphism,
consider the following non-rectangular network with vertices i, j where j is a sink.
Let Qi = {0, 1}, Ai = {a, b}, Aj = {c},

Ti(q, a) = Ti(q, b) = q + 1 (mod 2)

and
T(i,j)(0, a) = c

T(i,j)(1, a) = cc

T(i,j)(0, b) = ε

T(i,j)(1, b) = c.

Figure 1 shows the state diagram of Pi.

ABELIAN NETWORKS 15

The production matrix and Laplacian of this network, with rows and columns
indexed by a, b, c in that order, are:

P =

 0 0 0
0 0 0
3
2

1
2 0

 L =

 2 0 0
0 2 0
−3 −1 1

We have Crit S(N) = Z3/LZ3 = (Z/2Z)2. On the other hand, τa = τb in CritN
(both send 0 7→ 1 7→ 0) so CritN = Z/2Z.

Processor Pi in this example has another curious feature: The input words
aa, ab, bb to state 0 all result in the same sequence of states 0, 1, 0 yet they produce
different outputs (ccc, cc, c respectively). �

3.5. Order of the critical group. Now we turn to the problem of counting
recurrent states, or equivalently (by Theorem 3.3) finding the order of the critical
group. Let

ι = [K : DZA]

be the index of DZA as a subgroup of K. Recalling that K =
∏
v∈V Kv, we can

write ι =
∏
v∈V ιv as a product of local indices

ιv = [Kv : DvZAv]

where DvZAv :=
∏
a∈Av

(raZ). Note ι = 1 if and only if N is rectangular.

Theorem 3.16.

#RecN = #CritN =
detL

ι
.

Proof. The first equality follows from Theorem 3.3. For the second, we have by
Theorem 3.11

#CritN = [ZA : (I − P)K] =
[ZA : LZA]

[(I − P)K : LZA]

=
|detL|

[(I − P)K : (I − P)DZA]
.

By Theorem 2.9, since N halts on all inputs, I − P has full rank and detL > 0,
so the right side equals detL

[K:DZA]
. �

Definition 3.17. The production graph of N is the directed graph with vertex set
A and edge set {(a, b) : Pba > 0}.

Lemma 3.18. Let S be a toppling network with production graph Γ. For each
directed cycle a1 → . . .→ am → a1 of Γ we have

max{q(a1), . . . ,q(am)} ≥ 1

for all q ∈ Rec S.

Proof. Let r = (ra)a∈A be the vector of toppling thresholds. By Lemma 2.5 there
exists z ≥ r such that τ(z) = e. If q ∈ Rec S then z ..q = q and each vertex
topples at least once during the stabilization of z.q. If ai is the last vertex on

16 BENJAMIN BOND AND LIONEL LEVINE

the cycle to finish toppling, then ai+1 receives a chip from ai and does not topple
thereafter, so q(ai+1) ≥ 1. �

Theorem 3.19. Let N be a finite irreducible abelian network that halts on all
inputs. The following are equivalent.

(1) Every locally recurrent state of N is recurrent.
(2) detL = detD.
(3) Every state of S(N) is recurrent.
(4) The state 0 of S(N) is recurrent.
(5) Γ has no directed cycles.
(6) P is nilpotent.

Proof. Recall from §2.11 the action of ZAv on evQv for each vertex v. Since N is
irreducible this action is transitive, and its kernel is Kv. So the number of locally
recurrent states of N is∏

v∈V
#(evQv) =

∏
v∈V

#(ZAv/Kv) = [ZA : K].

By Theorem 3.16, the number of recurrent states of N is

detL

[K : DZA]
=

detL

detD
[ZA : K].

Now from Lemma 3.9 it follows that (1) ⇔ (2).
All states of the sandpilization S(N) are locally recurrent, and S(N) has the

same matrices L and D as N, so (2) ⇒ (3).
Trivially (3) ⇒ (4).
If Γ has a directed cycle, then the state 0 of S(N) is not recurrent by Lemma 3.18,

which shows (4) ⇒ (5).
If Γ has no directed cycles, then each entry of P k is a weighted sum over directed

paths in Γ with k + 1 distinct vertices. Taking k = #A we obtain P k = 0, which
shows (5) ⇒ (6).

If λ1, . . . , λn are the eigenvalues of P with multiplicity, then

detL

detD
= det(I − P) =

n∏
i=1

(1− λi).

If P is nilpotent then λ1 = · · · = λn = 0, so detL = detD. Hence (6) ⇒ (2),
completing the proof. �

4. Time to halt

In this section we show that the production matrix of N determines its running
time on any input up to an additive constant (Theorem 4.2). In the special
case of rotor networks, additive error bounds of this type appear in the work of
Cooper and Spencer [CS06] and Holroyd and Propp [HP10]. For an upper bound
in the case of sandpiles, see [H+08, Prop. 4.8]. A related but distinct question
is: given x and q, how quickly can one compute the final state x ..q and the
odometer [x.q]? According to Theorem 4.2 the abelian network N performs this

ABELIAN NETWORKS 17

computation (asynchronously) in time approximately 1T (I − P)−1x, but in some
cases [BS13, FL13] one can design a (sequential) algorithm that is much faster.

As usual we take N to be a finite irreducible abelian network that halts on all
inputs. Let K be its total kernel and P : K → ZA its production map. Write I
for the inclusion K ↪→ ZA.

Lemma 4.1. Suppose k ∈ K satisfies Pk ≤ k. If q ∈ RecN, then

(I − P)k ..q = q.

Proof. Let x = (I − P)k ∈ NA. By Theorem 3.11, if k ∈ K then x ∈ kerφ. The
conclusion now follows from Lemma 3.8. �

Remark. Recalling that I − P is injective (Theorem 2.9) and that the matrix of
(I−P)−1 has nonnegative entries (Theorem 3.7), we see that the condition Pk ≤ k
in the above lemma implies k ≥ 0.

For u ∈ ZA write ‖u‖∞ = maxa∈A |ua|.

Theorem 4.2. (Time To Halt) Let N be an irreducible finite abelian network that
halts on all inputs. There is a constant C depending only on N, such that for all
x ∈ NA and all q ∈ Q, ∥∥ [x.q]− (I − P)−1x

∥∥
∞ ≤ C.

Proof. Since (I −P)K has full rank in ZA, there is a constant c such that for any
x ∈ NA there exists y = (I − P)k ∈ (I − P)K such that 0 ≤ y − x ≤ c1. Since
(I − P)−1 has nonnegative entries,

0 ≤ k− (I − P)−1x ≤ (I − P)−1c1.

Therefore it suffices to bound ‖[x.q]− k‖∞.
To do this, fix z ∈ NA with τ(z) = e. We will show

‖[x.eq]− k‖∞ ≤ C1 (14)

and

‖[x.eq]− [x.q]‖∞ ≤ C2 (15)

where C1 = maxq′∈Q ‖[c1.q′]‖∞ and C2 = maxq′∈Q ‖[z.q′]‖∞.
Since y ≥ 0, we have Pk ≤ k, so y .. eq = eq by Lemma 4.1. Hence by

Lemmas 3.10 and 2.2

k = [y.eq] = [x.eq] + [(y − x).(x .. eq)]

which shows (14). Two more applications of Lemma 2.2 give

[z.q] + [x.eq] = [(x + z).q] = [x.q] + [z.(x ..q)]

which shows (15). �

By Theorem 4.2 and the triangle inequality,

‖[x.q]− [x.r]‖∞ ≤ 2C

for all x ∈ NA and all q, r ∈ Q. We will use this bound in the next section.

18 BENJAMIN BOND AND LIONEL LEVINE

5. Burning test

Dhar’s burning test [Dha90] is an efficient algorithm for determining whether a
state of Sand(G, s) recurrent. In its simplest form it applies to Eulerian directed
graphs G (strongly connected, indegree(v) = outdegree(v) for v ∈ V); see [H+08,
§4]. Speer [Spe93] treated general directed graphs. A variant of Speer’s algorithm
can be found in [PPW11]. The goal of this section is to generalize these algorithms
to the setting of an arbitrary finite irreducible abelian network N that halts on all
inputs.

Definition 5.1. A burning element for N is a vector β ∈ NA such that for q ∈ Q
q ∈ RecN ⇔ β ..q = q.

To see that burning elements exist, we can use Lemma 1.2(5): q ∈ RecN if and
only if q = eq, where e is the minimal idempotent of the transition monoid M .
Recalling the map τ of (7), any β ∈ NA such that τ(β) = e is a burning element.
However, such elements are typically large. The power of the burning test derives
from the fact that one can often identify a small burning element β to reduce the
running time [β.q].

In the classical setting of N = Sand(G, s), where G is a directed graph with
globally accessible sink s, there is a pointwise minimal burning element β. In the
case that G is Eulerian, the usual formula for the burning element is βv = dvs, the
number of edges into v from s. The special role of the sink is undesirable for us
(since in general, an abelian network need not have a sink in order to halt on all
inputs). To remove it, notice that

β = L1

where L is the Laplacian of (9). (To make the connection to the graph Laplacian
∆G = DG − AG, where DG is the diagonal matrix of outdegrees, and AG is the
adjacency matrix of G, we have L = ∆G′ where G′ is the graph obtained from G
by removing all outgoing edges from s. Since G is Eulerian we have ∆G1 = 0, so
L1 = −∆G1s = β.)

When G is not Eulerian, L1 may have negative entries. Speer [Spe93] observed
that there is a pointwise smallest vector y ≥ 1 such that Ly ≥ 0, and showed that
β = Ly is a burning element. Our burning test for abelian networks, Theorem 5.5,
reduces to Speer’s in the case N = Sand(G, s).

5.1. Large inputs. To lay the ground for the burning test, we show in this section
that states obtained from sufficiently large inputs to N must be recurrent. We
consider two interpretations of “large”: either the number of letters in the input
x is large (Lemma 5.2), or the odometer [x.q] is large (Lemmas 5.3 and 5.4).

Lemma 5.2. Let z ∈ NA be such that τ(z) = e. If x ≥ z then x ..q is recurrent
for all q ∈ Q.

Proof. Writing x = y + z for y ∈ NA, we have

x ..q = z ..(y ..q) = emq.

where m = τ(y). By Lemma 1.2(4) the state emq is recurrent. �

ABELIAN NETWORKS 19

Given q, r ∈ Q we say that q is locally accessible from r if q = mr for some
m ∈

∏
v∈V Mv. In particular, if there is an execution (say w) from x.r to y.q,

then q is locally accessible from r (namely q = t(|w|)r).

Lemma 5.3. If there exists x ∈ NA such that x .. r = r and [x.q] ≥ 1 for all
states q locally accessible from r, then r is recurrent.

Proof. Let z ∈ NA be such that τ(z) = e. We will find a y ≥ z and a state q such
that r = y ..q.

Let n =
∑

a∈A za. Fix any sequence a1, . . . , an such that z =
∑n

i=1 1ai . Let

q0 = r and inductively define states q1, . . . ,qn, all locally accessible from r, as
follows.

For each i = 1, . . . , n, since qi−1 is locally accessible from r we have [x.qi−1]ai ≥
1, so there is a legal execution wi from x.qi−1 to some state yi.qi satisfying
yiai ≥ 1. The concatenation w1 · · ·wn is a legal execution from (nx).r to y.qn

with y = y1 + · · ·+ yn ≥ z. Hence by Lemma 2.1,

r = (nx) .. r = y ..qn

and the right side is recurrent by Lemma 5.2. �

For u ∈ NA and q ∈ Q, define

Ru(q) =
{
x ..q

∣∣ x ∈ NA, [x.q] ≥ u
}
.

and write Ru for the set of states q ∈ Q such that q ∈ Ru(q).
We have defined recurrent states in Lemma 1.2 by a list of equivalent monoid-

theoretic properties. Now we can add to this list a characterization that is specific
to abelian networks. According to the next lemma, a state q is recurrent if and
only if it there exist inputs with arbitrarily large odometers that fix q.

Lemma 5.4.

RecN =
⋂

u∈NA

Ru.

Proof. Suppose that r ∈
⋂
Ru. Then for any u ∈ NA there is an input x ∈ NA

with r = x .. r and [x.r] ≥ u. Take u = (2C + 1)1. By Theorem 4.2 it follows
that [x.q] ≥ 1 for all q ∈ Q. Now from Lemma 5.3 it follows that r is recurrent.

It remains to show that RecN ⊂ Ru for all u ∈ NA. Since CritN is a finite
group, the kernel of φ : ZA → CritN has nonempty intersection with NA + u. Let
x be a point in this intersection. Then for any q ∈ RecN we have x ..q = q by
Lemma 3.8. Since [x.q] ≥ x ≥ u, it follows that q ∈ Ru. �

Finally, we show that if k ≥ 1 then the converse to Lemma 4.1 holds.

Theorem 5.5. (Burning Test) Let k ∈ K be such that k ≥ 1 and Pk ≤ k. Then
q ∈ Q is recurrent if and only if (I − P)k ..q = q.

Proof. If q is recurrent, then (I − P)k ..q = q by Lemma 4.1.

20 BENJAMIN BOND AND LIONEL LEVINE

For the converse, let x = (I − P)k and u = [x.q]. Suppose that x ..q = q.
Then x = (I − P)u by Lemma 3.10. Since I − P is injective, we obtain u = k.
Now for any n ∈ N we have nx ..q = q and [nx.q] = nk. Hence

q ∈
⋂
n≥1

Rnk.

Since k ≥ 1 the right side equals
⋂

u∈NA Ru, which equals RecN by Lemma 5.4. �

Remark. The preceding theorem can be improved slightly by weakening k ≥ 1
to k ≥ 1C , where C is the set of all a ∈ A that lie on a directed cycle of the
production graph Γ (Definition 3.17). The reason is that if a ∈ A does not lie on
a directed cycle, then {a} is a strong component of Γ, and all locally recurrent
states of the strong component Na are recurrent. Writing aω for the minimal
idempotent of the transition monoid of Na, one checks that e =

∏
a∈C a

ω and
hence that RecN =

⋂
a∈C RecNa. See [C+13] where this improvement is carried

out in detail for sandpile networks.

5.2. Finding a burning element. In this section we show that there is always
a burning element β satisfying 0 ≤ β ≤ r, where ra is the smallest positive integer
such that ra1a ∈ K.

Definition 5.6. A burning odometer is a vector k satisfying

(I − P)k ≥ 0, k ≥ 1, k ∈ K. (16)

The corresponding burning element is β = (I − P)k.

According to Theorem 5.5, to check whether q is recurrent it suffices to find a
burning odometer k and then compute β ..q, where β = (I − P)k. The proof
also shows that if q is recurrent, then the local run time of this computation is
[β.q] = k (that is, for each a ∈ A it requires processing ka letters a). Therefore
we are interested in finding a burning odometer k as small as possible.

Recall that K ⊂ DZA, with equality if N is rectangular. For a sandpile network
N = Sand(G, s), a burning odometer is k = Dy where y is the “burning script”
of [Spe93]. More generally, if N is rectangular, then writing k = Dy, (16) is
equivalent to

Ly ≥ 0, y ≥ 1, y ∈ ZA (17)

where L = (I −P)D is the Laplacian of N. Setting x = y− 1 we find that (16) is
equivalent to

Lx ≥ −L1, x ≥ 0, x ∈ ZA. (18)

Minimizing 1Tx subject to these constraints is an integer program of the class
solved by toppling networks [BL13, Remark 4.9]. Specifically, consider the sand-
pilization S(N), enlarged to allow negative chip counts. In this network, vertex a
has toppling threshold ra, where r is the vector of diagonal entries of the diagonal
matrix D. By Theorem 2.9, if N halts on all inputs then S(N) halts on all inputs
(since S(N) has the same Laplacian as N). For a chip configuration q ∈ ZA, write
q◦ for the stabilization of q in S(N).

ABELIAN NETWORKS 21

Corollary 5.7. (S(N) computes a minimal burning element for N) Let N be an
irreducible rectangular network that halts on all inputs. Then N has a pointwise
smallest burning odometer k = Dy. The corresponding burning element is given
by

β = Ly = r− 1− (r− 1− L1)◦.

Moreover, 0 ≤ β ≤ r.

Proof. Let q = r− 1−L1, and for a ∈ A let xa be the number of times a topples
during the stabilization of q in S(N). By [BL13, Remark 4.9], x is the pointwise
smallest vector satisfying (18), and q◦ = q− Lx. Setting y = x + 1, we conclude
that k = Dy is the pointwise smallest vector satisfying (16), and

β = (I − P)k = L(x + 1) = L1 + q− q◦ = r− 1− q◦.

Noting that L1 ≤ r, we have −1 ≤ q◦ ≤ r− 1 and hence 0 ≤ β ≤ r. �

Remark. If we replace 1 by 1C in (16), then we obtain a slightly smaller burning
element β which satisfies 0 ≤ β ≤ r − 1. To compute this smaller element using
S(N), take q = r− 1− L1C .

In practice, it is more direct to find the burning element by “untopplings”
instead of topplings, which amounts to the following procedure to find the minimal
y satisfying (17).

Procedure 5.8. Start with y = 1. If Ly ≥ 0, then stop. Otherwise, choose some
a ∈ A such (Ly)a < 0 and increase ya by 1. Repeat until Ly ≥ 0.

Remark. In the case that the row sums of L are nonnegative, the procedure
halts immediately with y = 1. In particular, this includes the special case
N = Sand(G, s) for an Eulerian graph G.

In the case N is not rectangular, the inclusion K ⊂ DZA is strict. Corollary 5.7
and Procedure 5.8 will identify the minimal burning odometer Dy ∈ DZA. Unlike
the rectangular case, there may not be a unique minimal burning odometer in K.

If k = Dy is the minimal burning odometer in DNA, then the global burning
test (I − P)k ..q runs in time k. Since β = (I − P)k ≤ r, an upper bound for
this run time is k ≤ (I − P)−1r.

6. Concluding Remarks

We conclude with a few directions for future research.

Combinatorics of recurrent states. The recurrent states of the rotor net-
work Rotor(G, s) are the oriented spanning trees of G rooted at s. The recurrent
states of the sandpile network Sand(G, s) on an undirected (or Eulerian directed)
graph G have a characterization in terms of “forbidden subconfigurations” [Dha90]
which puts them naturally in bijection with the G-parking functions of Postnikov
and Shapiro [PS04]. Recently Guzmán and Klivans [GK14] have generalized this
correspondence to toppling networks. Hopkins and Perkinson [HP14] relate the G-
parking functions to chambers of a bigraphical hyperplane arrangement. It would

22 BENJAMIN BOND AND LIONEL LEVINE

be interesting to find combinatorial characterizations of the recurrent states of
other abelian networks.

The rank function in Baker and Norine’s Riemann-Roch theorem for graphs
[BN07] has the following interpretation: given a state of the sandpile network
Sand(G) with no sink, what is the smallest number of letters that can be input to
cause it to run forever? Are there analogues of the Baker-Norine theorem and the
Lorenzini zeta function [Lor12] for more general abelian networks?

Duval, Klivans and Martin [DKM09, DKM13] define a higher dimensional crit-
ical group as the cokernel (over Z) of the Laplacian of a simplicial complex. Does
this group have a dynamical interpretation in terms of a network in which a set
of nodes can interact if they form a face of the simplicial complex?

Critical networks. Let us call an abelian network N critical if its production
matrix has spectral radius 1. By Theorem 2.9, a critical network has inputs that
cause it to run forever, so it does not have a critical group in the sense of §3.
However, one could try to define CritN by generalizing the sinkless construction
of the sandpile group: (ZV)0/LZV , where (ZV)0 is the kernel of the map x 7→ 1Tx.

For α, β ∈ NA × Q, write α → β if there exists a legal execution from α to β.
Let us call α recurrent if for any β such that α→ β we have β → α. In a critical
network N, is there an efficient test analogous to the burning algorithm to check
whether α is recurrent?

In the case of a simple rotor network Rotor(G) with no sink, a state α = 1v.q
with just one letter is recurrent in this sense if and only if its rotors (u,qu)u∈V
form a cycle-rooted spanning tree (a spanning subgraph with a single oriented
cycle) with v lying on the cycle [H+08, Theorem 3.8]. Does this result extend to
networks of abelian mobile agents (a non-unary generalization of rotors proposed
in [BL13])? What about states α with more than one letter?

Finer algebraic invariants. The critical group CritN depends only on the ho-
motopy type of N (Corollary 3.12). On the other hand, the global monoid M of (6)
can detect finer information about N. To see that the monoid action M ×Q→ Q
is not a homotopy invariant, note that the sandpile network Sand(G, s) has a state
0 ∈ Q which can access all other states: M0 = Q. If G−{s} has two directed cy-
cles that share an edge, then Rotor(G, s) has no such state, because a progressed
cycle of rotors once broken can never be reformed.

Neither is M itself a homotopy invariant: for instance, for the discrete torus G =
Z/n× Z/n one can show that the minimal burning element β of M(Rotor(G, s))
has βn = e, whereas the corresponding exponent for β in M(Sand(G, s)) grows
quadratically in n.

Recall that there are many distinct rotor networks Rotor(G, s) depending on
the choice of ordering of the outgoing edges of each vertex. An interesting question
is whether M can distinguish between these networks.

ABELIAN NETWORKS 23

Acknowledgments

This research was supported by an NSF postdoctoral fellowship and NSF grants
DMS-1105960 and DMS-1243606, and by the UROP and SPUR programs at MIT.
A few of the concluding remarks were inspired by discussions at the AIM workshop
on generalizations of chip-firing and the critical group in July, 2013. The full list
of open problems proposed at the workshop can be found at http://aimath.org/
WWN/chipfiring/aim_chip-firing_problems.pdf.

References

[BT10] László Babai and Evelin Toumpakari, A structure theory of the sandpile monoid for
directed graphs, 2010. http://people.cs.uchicago.edu/~laci/REU10/evelin.pdf

[BTW87] Per Bak, Chao Tang and Kurt Wiesenfeld, Self-organized criticality: an explanation
of the 1/f noise, Phys. Rev. Lett. 59(4):381–384, 1987.

[BN07] Matthew Baker and Serguei Norine. Riemann-Roch and Abel-Jacobi theory on a finite
graph, Adv. Math. 215(2):766–788, 2007.

[BS13] Matthew Baker and Farbod Shokrieh, Chip-firing games, potential theory on graphs, and
spanning trees, J. Combin. Theory A 120(1):164–182, 2013

[Big99] Norman L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Com-
bin. 9(1):25–45, 1999.

[BL13] Benjamin Bond and Lionel Levine, Abelian networks I. Foundations and examples.
Preprint, 2013. arXiv:1309.3445

[BL14] Benjamin Bond and Lionel Levine, Abelian networks II. Halting on all inputs. Preprint,
2014. arXiv:1409.0169

[C+13] Scott Chapman, Rebecca Garcia, Luis David Garca-Puente, Martin E. Malandro and
Ken W. Smith, Algebraic and combinatorial aspects of sandpile monoids on directed graphs,
J. Comb. Theory A 120(1):245–265, 2013. arXiv:1105.2357

[CS06] Joshua Cooper and Joel Spencer, Simulating a random walk with constant error, Combin.
Probab. Comput. 15:815–822, 2006.

[DR04] Arnoud Dartois and Dominique Rossin, Height-arrow model, Formal Power Series and
Algebraic Combinatorics, 2004.

[Dha90] Deepak Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev.
Lett. 64:1613–1616, 1990.

[Dha99] Deepak Dhar, The abelian sandpile and related models, Physica A 263:4–25, 1999.
arXiv:cond-mat/9808047

[DKM09] Art M. Duval, Caroline J. Klivans and Jeremy L. Martin, Simplicial matrix-tree theo-
rems, Trans. Amer. Math. Soc. 361(11):6073–6114, 2009. arXiv:0802.2576

[DKM13] Art M. Duval, Caroline J. Klivans and Jeremy L. Martin, Critical groups of simplicial
complexes, Ann. Combin. 17:53–70, 2013. arXiv:1101.3981

[FL13] Tobias Friedrich and Lionel Levine, Fast simulation of large-scale growth models, Random
Struct. Alg. 42:185–213, 2013. arXiv:1006.1003.

[GK14] Johnny Guzmán and Caroline Klivans, Chip-firing and energy minimization on M -
matrices. arXiv:1403.1635

[H+08] Alexander E. Holroyd, Lionel Levine, Karola Mészáros, Yuval Peres, James Propp and
David B. Wilson, Chip-firing and rotor-routing on directed graphs, in In and out of equilibrium
2, pages 331–364, Progress in Probability 60, Birkhäuser, 2008. arXiv:0801.3306

[HP10] Alexander E. Holroyd and James G. Propp, Rotor walks and Markov chains, in Algorith-
mic Probability and Combinatorics, American Mathematical Society, 2010. arXiv:0904.4507

[HP14] Sam Hopkins and David Perkinson, Bigraphical arrangements, Trans. Amer. Math. Soc.,
to appear, 2014. arXiv:1212.4398

http://aimath.org/WWN/chipfiring/aim_chip-firing_problems.pdf
http://aimath.org/WWN/chipfiring/aim_chip-firing_problems.pdf
http://people.cs.uchicago.edu/~laci/REU10/evelin.pdf
http://arxiv.org/abs/1309.3445
http://arxiv.org/abs/1409.0169
http://arxiv.org/abs/1105.2357
http://arxiv.org/abs/cond-mat/9808047
http://arxiv.org/abs/0802.2576
http://arxiv.org/abs/1101.3981
http://arxiv.org/abs/1006.1003
http://arxiv.org/abs/1403.1635
http://arxiv.org/abs/0801.3306
http://arxiv.org/abs/0904.4507
http://arxiv.org/abs/1212.4398

24 BENJAMIN BOND AND LIONEL LEVINE

[LL09] Itamar Landau and Lionel Levine, The rotor-router model on regular trees, J. Combin.
Theory A 116: 421–433, 2009. arXiv:0705.1562

[Lor89] Dino J. Lorenzini, Arithmetical graphs, Math. Ann. 285(3):481–501, 1989.
[Lor91] Dino J. Lorenzini, A finite group attached to the Laplacian of a graph, Discrete Math.

91(3):277–282, 1991.
[Lor12] Dino J. Lorenzini, Two-variable zeta-functions on graphs and Riemann-Roch theorems,

Int. Math. Res. Notices 22:5100–5131, 2012.
[PPW11] David Perkinson, Jacob Perlman and John Wilmes, Primer for the algebraic geometry

of sandpiles, in Tropical and Non-Archimedean Geometry, pages 211–256, Contemp. Math.
605, American Mathematical Society, 2013. arXiv:1112.6163

[PS04] Alexander Postnikov and Boris Shapiro, Trees, parking functions, syzygies, and
deformations of monomial ideals. Trans. Amer. Math. Soc. 356(8):3109–3142, 2004.
arXiv:math.CO/0301110

[PDDK96] V. B. Priezzhev, Deepak Dhar, Abhishek Dhar and Supriya Krishnamurthy, Euler-
ian walkers as a model of self-organised criticality, Phys. Rev. Lett. 77:5079–5082, 1996.
arXiv:cond-mat/9611019

[Spe93] Eugene R. Speer, Asymmetric abelian sandpile models. J. Stat. Phys. 71:61–74, 1993.

Benjamin Bond, Department of Mathematics, Stanford University, Stanford, Cal-
ifornia 94305. http://stanford.edu/~benbond

Lionel Levine, Department of Mathematics, Cornell University, Ithaca, NY 14853.
http://www.math.cornell.edu/~levine

http://arxiv.org/abs/0705.1562
http://arxiv.org/abs/1112.6163
http://arxiv.org/abs/math.CO/0301110
http://arxiv.org/abs/cond-mat/9611019
http://stanford.edu/~benbond
http://www.math.cornell.edu/~levine

	1. Introduction
	1.1. Main results
	1.2. Review of monoid actions

	2. Abelian networks
	2.1. Abelian processors
	2.2. Abelian processors with message passing
	2.3. Abelian networks
	2.4. Sandpiles, rotor networks, toppling networks
	2.5. Executions
	2.6. The global action
	2.7. The local action
	2.8. Local monoids
	2.9. Global monoid
	2.10. Locally irreducible implies globally irreducible
	2.11. Total kernel and production matrix

	3. Critical Group
	3.1. Action on recurrent states
	3.2. Markov chain
	3.3. Expected time to halt
	3.4. Generators and relations
	3.5. Order of the critical group

	4. Time to halt
	5. Burning test
	5.1. Large inputs
	5.2. Finding a burning element

	6. Concluding Remarks
	Combinatorics of recurrent states
	Critical networks
	Finer algebraic invariants

	Acknowledgments
	References

