
ABELIAN NETWORKS II. HALTING ON ALL INPUTS

BENJAMIN BOND AND LIONEL LEVINE

Abstract. Abelian networks are systems of communicating automata satisfy-
ing a local commutativity condition. We show that a finite irreducible abelian
network halts on all inputs if and only if all eigenvalues of its production matrix
lie in the open unit disk.

1. Introduction

Automata networks in general are nondeterministic: the same input can produce
many different outputs depending on the order of events at different nodes of the
network. However, there is a sizable class of automata networks, proposed by
Dhar in [Dha99] and termed abelian networks in [BL13], for which the output is
uniquely determined by the input.

If we take the view that an abelian network is a kind of asynchronous computer,
then one of the most fundamental questions is its halting problem. A countably
infinite abelian network can emulate a Turing machine with infinite tape [Cai15],
so the question of whether a given abelian network halts on a given input is un-
decidable. However, for a finite abelian network it is decidable (below we give an
argument using Dickson’s lemma) and its computational complexity is an inter-
esting question.

The first halting criterion in an abelian network that we know of is due to
Tardos [Tar88], who found an efficient check for finite termination of chip-firing
on an undirected graph. Chip-firing belongs to a subclass of abelian networks
called toppling networks, which can be described informally as follows. Let L
be an integer square matrix with positive diagonal entries nonpositive off-diagonal
entries. Each vertex v has a number of chips cv and is allowed to topple if cv ≥ Lvv;
the result of toppling v is that v loses Lvv chips and each other vertex u 6= v gains
−Luv chips. Halting means that there exists a finite sequence of topplings after
which cv < Lvv for all v.

The Tardos halting criterion applies when L is the Laplacian of an undirected
(or Eulerian directed) graph. The Laplacian of a general directed graph is more
difficult because there exist directed graphs with chip configurations c that require
exponentially many topplings to halt. Björner, Lovász and Shor [BLS91] remarked,

Date: July 31, 2015.
2010 Mathematics Subject Classification. 68Q10, 37B15, 20M14, 20M35, 05C50,
Key words and phrases. abelian distributed processors, asynchronous computation, automata

network, chip-firing, commutative monoid action, Dickson’s lemma, least action principle, M-
matrix, sandpile, torsor.

1

2 BENJAMIN BOND AND LIONEL LEVINE

“one can ask for a characterization of those digraphs and initial chip configura-
tions that guarantee finite termination.” This is a difficult problem: Björner and
Lovász [BL92] gave an algorithm that takes exponential time in the worst case.
Polynomial time algorithms are available for Eulerian and coEulerian graphs, but
the problem is NP-complete for a general directed multigraph [FL15].

The halting problem for abelian networks is at least as hard as the problem
posed by Björner, Lovász and Shor. In this paper we address the softer question
of characterizing which finite abelian networks N halt on all inputs. We associate
to N a production matrix P whose entries are nonnegative rational numbers, and
show that N halts on all inputs if and only if the Perron-Frobenius eigenvalue of P
is strictly less than 1. This result generalizes an unpublished theorem of Gabrielov
[Gab94], who considered the case of a toppling network.

Outline. Section 2 contains mathematical background on commutative monoid
actions, Dickson’s lemma and toppling matrices. Theorem 2.5 is of some indepen-
dent interest: it gives a general mechanism for how torsors (free transitive actions)
of abelian groups arise from monoid actions.

After reviewing the definition of an abelian network in Section 3, we define
two basic algebraic objects associated to an abelian network, the total kernel and
production matrix, in Section 4. We then examine two ways of decomposing an
abelian network: local components and strong components. The former have a
smaller state space, the latter a smaller alphabet.

In Section 5 we prove our criterion for halting on all inputs.
In Section 6 we define the sandpilization S(N) of an abelian network N, and

show that N halts on all inputs if and only if S(N) does.
We conclude in Section 7 with a short discussion of further research directions.

2. Mathematical background

2.1. Commutative monoid actions. Any finite commutative monoid M con-
tains an abelian group whose identity element is the minimal idempotent of M .
Every monoid action of M induces a corresponding group action. The main result
of this section is Theorem 2.5 relating these two actions. We have not seen this
theorem stated explicitly in the literature, but some of the lemmas in this section
are well-known in the semigroup community. They trace their origins to the work
of Green [Gre51] and Schützenberger [Sch57]; see [Gri01, Ste10] for modern treat-
ments. We include their short proofs here in order to highlight the beauty and
simplicity of the commutative case. For refinements of some of the lemmas below,
and extensions to a certain class of infinite semigroups (π-regular semigroups) see
[Gri07].

Let M be a commutative monoid, that is, a set equipped with a commuta-
tive and associative operation (m,m′) 7→ mm′ with an identity element ε ∈ M
satisfying εm = m for all m ∈M . Let

µ : M ×X → X

(m,x) 7→ mx

ABELIAN NETWORKS 3

be a monoid action of M on a set X; that is, εx = x and m(m′x) = (mm′)x for
all m,m′ ∈ M and all x ∈ X. We say that µ is irreducible if there does not exist
a partition of X into nonempty subsets X1 and X2 such that MX1 ⊂ X1 and
MX2 ⊂ X2. Consider the relation ∼ on X defined by

x ∼ x′ : ∃m,m′ ∈M such that mx = m′x′ (1)

Lemma 2.1. ∼ is an equivalence relation, and µ is irreducible if and only if ∼
has just one equivalence class.

Proof. Clearly x ∼ x, and x ∼ y implies y ∼ x. To check transitivity, note that if
mx = m′x′ and m′′x′ = m′′′x′′, then

m′′mx = m′′m′x′ = m′m′′x′ = m′m′′′x′′

where the middle equality uses commutativity of M . Hence x ∼ x′′.
If X1 is any equivalence class of ∼ then MX1 ⊂ X1. Hence if µ is irreducible

then ∼ has just one equivalence class. Conversely, if ∼ has just one equivalence
class then for any partition of X into nonempty subsets X1 and X2, we have
m1x1 = m2x2 for some x1 ∈ X1, x2 ∈ X2 and m1,m2 ∈ M . If MX1 ⊂ X1 then
m1x1 ∈ X1 and hence MX2 6⊂ X2. �

Assume now that M is finite. An idempotent is an element f ∈ M such that
ff = f . Among the powers of any element m ∈ M is an idempotent: by the
pigeonhole principle, mj = mk for some j < k, and then m` = m2` where ` is
any integer multiple of k − j such that ` ≥ j. Now consider the product of all
idempotents in M :

e :=
∏

f idempotent

f.

Note that e is again an idempotent since M is commutative. This minimal idem-
potent e is accessible from all of M : that is, e ∈ mM for all m ∈M .

Lemma 2.2. eM is an abelian group with identity element e.

Proof. Since e is an idempotent we have e(em) = (ee)m = em for all m ∈ M ,
which verifies the identity axiom. Since e is accesible from all of M , we have
e ∈ (eme)M = (em)(eM) which verifies existence of inverses. �

In particular, e 6= ε unless M itself is a group.

Lemma 2.3. (Recurrent Elements Of A Monoid Action) Let M be a finite com-
mutative monoid and µ : M × X → X an irreducible action. The following are
equivalent for x ∈ X:

(1) x ∈My for all y ∈ X
(2) x ∈M(mx) for all m ∈M
(3) x ∈ mX for all m ∈M
(4) x ∈ eX
(5) x = ex

4 BENJAMIN BOND AND LIONEL LEVINE

Proof. (1) ⇒ (2): trivial.
(2) ⇒ (3): Since M is commutative, M(mx) = (Mm)x = (mM)x ⊂Mx.
(3) ⇒ (4): trivial.
(4) ⇒ (5): If x = ey, then ex = e(ey) = (ee)y = ey = x.
(5) ⇒ (1): Here we use irreducibility. By Lemma 2.1, given x, y ∈ X there exist
m,m′ ∈ M such that mx = m′y. Let m′′ be such that m′′m = e. If x = ex, then
x = m′′mx = m′′m′y ∈My. �

Any action of a finite commutative monoid

µ : M ×X → X

induces by restriction a corresponding group action

eM × eX → eX.

To see this, note that for any m ∈ M and x ∈ X we have m(ex) = (me)x =
(em)x = e(mx) ∈ eX, so the action of M on X restricts to a monoid action of M
on eX. Since e(ex) = (ee)x = ex, the element e acts by identity on eX. Since
eM is a group with identity element e, it follows that eM × eX → eX is a group
action.

In fact slightly more is true. We say that m ∈ M acts invertibly on a subset
Y ⊂ X if the map y 7→ my is a bijection Y → Y .

Lemma 2.4. Let M be a finite commutative monoid and µ : M × X → X a
monoid action. Then every m ∈M acts invertibly on eX.

Proof. For any m ∈ M and x ∈ X we have (em)(ex) = (eme)x = (mee)x =
(me)x = m(ex), so em and m have the same action on eX. Since eM × eX → eX
is a group action, em and hence m acts invertibly on eX. �

We say that a monoid action µ : M ×X → X is faithful if there do not exist
distinct elements m,m′ ∈M such that mx = m′x for all x ∈ X. The next theorem
shows that relatively weak properties of a monoid action (faithful and irreducible)
imply stronger properties of the corresponding group action (free and transitive).

Let G be a group with identity element e. Recall that a group action G×Y → Y
is called transitive if Gy = Y for all y ∈ Y , and is called free if for all g 6= e there
does not exist y ∈ Y such that gy = y. If the action is both transitive and free,
then for any two elements y, y′ ∈ Y there is a unique g ∈ G such that gy = y′; in
particular, #G = #Y .

Theorem 2.5. (Group Actions Arising From Monoid Actions) Let M be a finite
commutative monoid and µ : M × X → X an irreducible monoid action. Then
the restriction of µ to eM × eX is a transitive group action

eµ : eM × eX → eX.

If µ is also faithful, then eµ is free.

Proof. To show transitivity, let R =
⋂
y∈X(My). Then for any x ∈ eX we have

R ⊂Mx = M(ex) = (Me)x = (eM)x = e(Mx) ⊂ eX.

ABELIAN NETWORKS 5

ButR = eX by the equivalence of (1) and (4) in Lemma 2.3, so the above inclusions
are equalities. In particular, (eM)x = eX for all x ∈ eX, which shows that eM
acts transitively on eX.

To show freeness, suppose that g(ex) = ex for some g ∈ eM and some x ∈ X.
Now fix y ∈ X. By transitivity, ey = h(ex) for some h ∈ eM , hence

gy = gey = ghex = hgex = hex = ey.

If µ is faithful, it follows that g = e. Hence eM acts freely on eX. �

2.2. Dickson’s Lemma. The following lemma can be proved by induction on k
using the infinite pigeonhole principle. We remark that it is also a case of the
Hilbert basis theorem applied to the monomial ideal (tx1 , tx2 , . . .) in the polyno-
mial ring Q[t] = Q[t1, . . . , tk] (In fact the proof of the basis theorem now found in
many textbooks, due to Gordan in 1900, uses this special case as a stepping stone;
see [Eis95, Ex. 15.15] and [DdJ98] for some history.)

Lemma 2.6. (Dickson’s Lemma, [Dic13]) Let k ≥ 1 be an integer. For any
sequence x1,x2, . . . ∈ Nk, there exist indices m < n such that xm ≤ xn in the
coordinatewise partial ordering.

See [FFSS11] for an effective version, giving bounds on n in terms of k and
the largest jump in the sequence xi. Another bound is obtained in [BS15] from a
formalization of an existence proof.

2.3. Toppling matrices. We will use the following form of the Perron-Frobenius
theorem (see [HJ90, §8] for part (i) and [Ash87] for part (ii)).

Lemma 2.7. (Perron-Frobenius) Let P be a square matrix with nonnegative real
entries.

(i) P has a nonnegative real eigenvector x with nonnegative real eigenvalue λ,
such that the absolute values of all other eigenvalues of P are ≤ λ.

(ii) If P has rational entries and λ is rational, then x can be taken to have
integer entries.

Following [PS04], we call L a toppling matrix if it satisfies the equivalent con-
ditions of the following lemma. See [FK62, Theorem 4.3] for a proof of the equiv-
alence. Such matrices are also known as “M -matrices.”

For a vector x, we write x > 0 to mean that all coordinates of x are nonnegative
and x 6= 0.

Lemma 2.8. (Toppling Matrices) Let L be a square matrix with real entries such
that Lij ≤ 0 for all i 6= j. The following are equivalent.

(1) All principal minors of L are positive.
(2) All eigenvalues of L have positive real part.
(3) There exists a vector x > 0 such that Lx > 0.
(4) There exists a vector y > 0 such that LTy > 0.
(5) L is invertible, and all entries of L−1 are nonnegative.

6 BENJAMIN BOND AND LIONEL LEVINE

3. Abelian networks; Halting Dichotomy

We now recall the definition of an abelian network, refering the reader to [BL13]
for details. In an abelian network on a directed graph G = (V,E), each vertex
v ∈ V has a processor Pv which is an automaton with input alphabet Av and state
space Qv. For each letter a ∈ Av there is a state transition map ta : Qv → Qv,
and these maps are required to commute: tatb = tbta for all a, b ∈ Av. For each
edge (v, u) ∈ E there is a message-passing function Av ×Qv → A∗u specifying the
word (possibly empty) sent to processor Pu in the event that Pv in state q ∈ Qv
processes letter a ∈ Av. Each message-passing function is required to satisfy a
commutativity condition: namely, if two input words to Pv are permutations of
one another, then for each outgoing edge (v, u) the resulting messages passed to
Pu must be permutations of one another.

To give a concrete example, let L be an integer V × V matrix with positive
diagonal entries nonpositive off-diagonal entries. The (locally recurrent) toppling
network Topp(L) has Av = {v} and Qv = Z/LvvZ. The state transition is tv(q) =
q + 1 (mod Lvv). Whenever processor Pv transitions from state Lvv − 1 to state
0 it sends −Luv letters u to each processor Pu for u ∈ V . The sandpile network
Sand(G) of a directed graph G without self-loops is the special case where Lvv
is the outdegree of vertex v and −Luv is the number of edges from v to u. The
commutativity conditions in the previous paragraph hold vacuously for a toppling
network because it is unary : each alphabet Av has just one letter. See [BL13] for
many other examples of abelian networks, including non-unary examples.

The total state of an abelian network N = (Pv)v∈V is described by an element
q ∈ Q :=

∏
v∈V Qv giving the internal states of the processors, together with a

vector x ∈ ZA where A = tv∈VAv indicating how many letters of each type are
waiting to be processed. We use the notation x.q for this pair. Note that A is a
disjoint union, so x also specifies the locations of the letters (the xa letters a are
located at the unique vertex v such that a ∈ Av).

An execution is a word w = a1 · · · ar ∈ A∗. It prescribes an order in which letters
are to be processed. We write πw(x.q) for the result of executing w starting from
x.q. By definition πw is the composition πa1 ◦ · · · ◦ πar . Each πa has three effects:
change the internal state qv to taqv, where v is the unique vertex such that a ∈ Av;
decrement xa by one; and increment each coordinate xb by the number of letters
b passed (as specified by the message passing function T(v,u) where b ∈ Au). Note
that decrementing xa may cause it to become negative, which is the reason for
taking x in ZA rather than NA. Writing πa1···ai(x.q) = xi.qi, we say that w is
legal for x.q if xi−1ai ≥ 1 for all i = 1, . . . , r. We say that w is complete for x.q if
xr ≤ 0. The least action principle [BL13, Lemma 4.3] says that if w is any legal
execution for x.q and w′ is any complete execution for x.q, then |w|a ≤ |w′|a for
all a ∈ A, where |w|a is the number of letters a in the word w. A consequence of
particular importance in this paper is the following.

Lemma 3.1. (Halting Dichotomy, [BL13, Lemma 4.4]) For a given initial state
q and input x to an abelian network N, either

(1) There does not exist a finite complete execution for x.q; or

ABELIAN NETWORKS 7

(2) Every legal execution for x.q is finite, and any two complete legal execu-
tions w,w′ for x.q satisfy |w| = |w′|.

It follows readily from the axioms of an abelian network (see [BL13, Lemma 4.2])
that πa◦πb = πb◦πa for all a, b ∈ A and hence πw depends only on |w|. For y ∈ NA,
write πy to mean πw for any word w such that |w| = y. We record here two basic
properties of πy.

Lemma 3.2. For all y, z ∈ NA we have

(i) πy+z = πy ◦ πz.
(ii) For all x,w ∈ ZA and all q ∈ Q, if πy(x.q) = x′.q′, then

πy((x + w).q) = (x′ + w).q′.

Proof. For part (i), if |w| = y and |w′| = z then πy+z = πww′ = πw ◦πw′ = πy ◦πz.
Part (ii) is immediate from [BL13, eq. (4)]; it says that any additional letters w
present during an execution affect neither the messages passed x′−x nor the final
state q′. �

4. Total kernel and production matrix

In this section we continue the development of the foundations of abelian net-
works begun in [BL13]. We associate two algebraic objects to an abelian network,
the total kernel K and production matrix P . Only P figures in our criterion for
halting on all inputs, but we will see that K is the natural domain of P considered
as a Z-linear map. In the sequel [BL14], both K and P play an essential role in
analyzing the critical group of an abelian network that halts on all inputs.

4.1. The local action. Given x ∈ NA and q ∈ Q, define

x .q := πx(x.q).

In words, x .q ∈ NA×Q is the result of performing the following operation starting
from state q: “for each a ∈ A add xa letters of type a and process each letter
once.” If x .q = y.r then message passing produced a total of ya letters of type
a for each a ∈ A, and the resulting state of the processor at vertex v was rv for
each v ∈ V .

For any z ∈ ZA we also write

x .(z.q) := πx((x + z).q).

The next lemma shows that . defines a monoid action of NA on ZA ×Q. We call
this the local action because each processor Pv processes only the letters xv that
were added at v.

Lemma 4.1. For any x,y ∈ NA and z ∈ ZA and any q ∈ Q,

x .(y .(z.q)) = (x + y) .(z.q).

8 BENJAMIN BOND AND LIONEL LEVINE

Proof. Write y .q = y′.q′. By Lemma 3.2(i), since πx+y = πx ◦ πy, we have

(x + y) .(z.q) = πx+y((x + y + z).q)

= πx(πy((x + y + z).q))

= πx((x + y′ + z).q′)

= x .((y′ + z).q′)

= x .(y .(z.q))

where in the third and last equalities we have used Lemma 3.2(ii). �

The local monoid Mv of a vertex v is the set of maps Qv → Qv generated by
the maps ta for a ∈ Av under composition. Write tv : NAv → Mv for the monoid
homomorphism sending 1a 7→ ta for a ∈ Av. Denote by

t : NA →
∏
v∈V

Mv

the Cartesian product of the maps tv. Each tv is surjective by the definition of Mv,
so t is surjective. Note that if y .q = z.r, then r = t(y)q. Given m ∈ ∏v∈V Mv,
write mq = (mvqv)v∈V . In general, knowing y .q = z.r does not determine
y .(mq), but the next lemma shows that it does in the case r = q.

Lemma 4.2. If y .q = z.q, then y .(mq) = z.(mq) for all m ∈∏v∈V Mv.

Proof. Since t is surjective there exists u ∈ NA such that t(u) = m. Then u .q =
w.mq for some w ∈ NA. By Lemma 4.1,

y .(w.mq) = y .(u .q) = u .(y .q) = u .(z.q) = (w + z).mq.

From Lemma 3.2(ii) it follows that y .mq = z.mq. �

4.2. Production matrix. From here on we assume that N is a finite abelian
network: that is, the underlying graph G = (V,E) is finite, and the alphabet
and state space of each vertex are finite sets. The main ingredients that rely on
finiteness are the results from §2.1.

Let ev be the minimal idempotent of the local monoid Mv. The recurrent
elements (Lemma 2.3) of the monoid action Mv ×Qv → Qv play a special role in
this section.

Definition 4.3. A state q ∈ Q is locally recurrent if qv ∈ evQv for all v ∈ V .
(Equivalently, qv = evqv for all v ∈ V .)

By Lemma 2.4, every m ∈ Mv acts invertibly on evQv. Thus for each a ∈ Av
the map q 7→ Tv(a, q) is a permutation of evQv, so we have a group action

ZAv × evQv → evQv.

Let Kv be the set of vectors in ZAv that act as the identity on evQv.

Definition 4.4. The total kernel of N is the subgroup of ZA given by

K =
∏
v∈V

Kv.

ABELIAN NETWORKS 9

Lemma 4.5. If N is finite, then K is a subgroup of finite index in ZA. In partic-
ular, K is generated as a group by K ∩ NA.

Proof. Since each evQv is a finite set, for any x ∈ ZAv we have nx ∈ Kv for some
n ≥ 1. Thus Kv has finite index in ZAv . Since V is a finite set, K =

∏
v∈V Kv has

finite index in ZA. In particular, K contains a vector with all coordinates strictly
positive, which implies that K is generated as a group by K ∩ NA. �

Note that

K ∩ NA = {x ∈ NA | t(x)q = q for all locally recurrent q ∈ Q}. (2)

Fix a locally recurrent state q ∈ Q. For any k ∈ K ∩ NA we have

k .q = Pq(k).q (3)

for some vector Pq(k) ∈ NA. Next we show that

Pq : K ∩ NA → NA

extends to a group homomorphism.

Lemma 4.6. Let N be a finite abelian network. Then Pq extends to a group
homomorphism K → ZA.

Proof. Write P = Pq. Let k1,k2 ∈ K ∩ NA. By Lemma 4.1,

(k1 + k2) .q = k1 .(P (k2).q) = (P (k1) + P (k2)).q

hence

P (k1 + k2) = P (k1) + P (k2). (4)

By Lemma 4.5, every k ∈ K can be written as k1 − k2 for k1,k2 ∈ K ∩ NA.
Define P (k) = P (k1) − P (k2). Equation (4) now implies that this extension is
well defined and a group homomorphism. �

By tensoring Pq : K → ZA with Q, we obtain a linear map Pq : QA → QA. To
be more explicit, for any x ∈ QA, by Lemma 4.5 there is an integer n ≥ 1 such
that nx ∈ K, and we define

Pq(x) :=
1

n
Pq(nx).

So far we have defined Pq only for locally recurrent q. We extend the definition
to all states q = (qv)v∈V by setting Pq := Pq̂, where q̂ = (evqv)v∈V .

Definition 4.7. The production matrix of a finite abelian network N with initial
state q is the matrix of the linear map Pq : QA → QA.

The (a, b) entry pab of the production matrix says “on average” how many
letters a are created by processing the letter b: specifically, if n1b ∈ K, then
pab = 1

npab(n), where pab(n) = N(bn, q)a is the number of a’s created by executing
the word bn. We have chosen the term “production matrix” to evoke [DFR05].
Indeed the succession rules studied in that paper can be modeled by an abelian
network whose underlying graph is a single vertex with a loop.

10 BENJAMIN BOND AND LIONEL LEVINE

We remark that the production matrix can be also defined for some networks
that are not finite by setting

pab := lim
n→∞

1

n
pab(n)

if this limit exists.

4.3. Local components. An abelian finite automaton P with state space Q and
alphabet A is specified by transition maps ta : Q → Q for a ∈ A, such that
ta ◦ tb = tb ◦ ta for all a, b ∈ A. The transition monoid of P is the submonoid
M ⊂ End (Q) generated by {ta}a∈A, where End (Q) denotes the monoid of all set
maps Q → Q under composition. (For example, the local monoid Mv of §4.1 is
the transition monoid of Pv.)

By construction, the transition monoid of P has a faithful action M × Q →
Q. We say that P is irreducible if this monoid action is irreducible (§2.1). The
irreducible components Pα of P are the automata with alphabet A and state space
Qα, whereQ = tQα is the partition ofQ into equivalence classes under the relation
q ∼ q′ if there exist m,m′ ∈M such that mq = m′q′ (see Lemma 2.1).

We say that an abelian network N = (Pv)v∈V is locally irreducible if each
processor Pv is irreducible. The local components of N are the abelian networks
Nα = (Pαv

v)v∈V where each Pαv
v is an irreducible component of Pv. Note that

the local components have the same underlying graph G and alphabet A, with a
possibly smaller state space at each vertex.

The next lemma should be compared with (2).

Lemma 4.8. If N is finite and locally irreducible, then for any fixed locally recur-
rent q ∈ Q we have

K ∩ NA =
{
k ∈ NA | t(k)q = q

}
.

Proof. By Theorem 2.5 the action of evMv on evQv is free. If k ∈ NA and t(k)q = q
for one locally recurrent q, then for all v ∈ V

tv(kv)evqv = tv(kv)qv = qv.

By freeness it follows that tv(kv)ev = ev, so t(k)r = r for all locally recurrent r.
Hence k ∈ K. �

For q, r ∈ Q we write q ∼ r if q and r belong to the same local component (that
is, qv ∼ rv for all v ∈ V). We denote by Nq the local component of N containing
state q. The next lemma shows that within a local component all states have the
same production matrix.

Lemma 4.9.

(i) In a locally irreducible finite abelian network, the production matrix Pq

does not depend on the initial state q.
(ii) In any finite abelian network, if q ∼ r then Pq = Pr.

ABELIAN NETWORKS 11

Proof. (i) Let q1,q2 ∈ Q be locally recurrent states. By Theorem 2.5 each group
action evMv × evQv → evQv is transitive, so there exists x ∈ NA such that
t(x)q1 = q2. Let z be such that

x .q1 = z.q2.

Fix k ∈ K ∩ NA, and let yi = Pqi(k) for i = 1, 2. Then

x .(k .q1) = x .(y1.q1) = (y1 + z).q2

while
k .(x .q1) = k .(z.q2) = (y2 + z).q2.

By Lemma 4.1,
k .(x .q) = x .(k .q)

hence y1 + z = y2 + z, and hence y1 = y2. Since k ∈ K ∩ NA was arbitrary we
conclude that Pq1 = Pq2 .

Part (ii) follows by applying part (i) to the local component Nq. �

4.4. Strong components. Let N be a locally irreducible finite abelian network
with production matrix P = (pab)a,b∈A. In this section we describe another way
to break N into smaller pieces by reducing its alphabet A. (The results of this
section are not used anywhere else in this paper, so the reader who wishes to skip
to the halting problem in §5 can safely do so.)

Definition 4.10. The production graph Γ = Γ(N) of N is the directed graph with
vertex set A and edge set {(a, b) | pba > 0}.

Write a 99K b if there is a directed path in Γ from a to b. The strong components
of Γ are the equivalence classes of the relation {(a, b) | a 99K b and b 99K a}.
Definition 4.11. The strong components of N are the subnetworks N1, . . . ,Ns

with alphabets A1, . . . , As, where A1, . . . , As are the strong components of Γ.

Note that the local components of §4.3 are defined by restricting the state
space, whereas the strong components are defined by restricting the alphabet. The
strong components of a locally irreducible network need not be locally irreducible
(Figure 1). However, Lemma 4.13 below shows that the local components of a
strong component do not decompose any further. Moreover, all local components
of a given strong component are homotopic.

Definition 4.12. (Homotopy) Locally irreducible abelian networks N and N′ on
the same graph with the same total alphabet are called homotopic, written N ≈ N′,
if they have the same total kernel K and the same production matrix P .

The reason for calling this homotopy comes from a method of diagraming states
described in [BL13]. The locally recurrent states of each processor correspond to
points on the discrete torus ZAv/Kv, with state transitions given by adding a
basis vector 1a for a ∈ Av. Message passing can be visualized by surfaces cutting
between the states, with each surface labeled by the letter to be passed. If N

and N′ have the same total kernel K, then for each vertex v the state diagrams
of processors Pv and P ′v live on the same discrete torus. Then N and N′ have

12 BENJAMIN BOND AND LIONEL LEVINE

M N

M1 M2 N1 N2

M1
q ≈ M1

q′ N1
r ≈ N1

r′

abelian network

local components

strong components

local subcomponents

Figure 1. The local components of an abelian network may de-
compose into strong components, which may further decompose
further into local subcomponents. Solid arrows represent restric-
tions of the state space, and dashed arrows represent restrictions
of the alphabet.

the same production matrix if and only if for each v the state diagram of P ′v can
be obtained from the state diagram of Pv by altering message surfaces without
changing the homotopy type of any surface.

Lemma 4.13. Let N be a locally irreducible finite abelian network with strong
components Ni, total kernel K and production matrix P . Let Ni

q be the local

component of Ni containing state q. The following hold for all q,q′ ∈ Q.

(i) The total kernel of Ni
q is the group generated by K ∩ NAi

.

(ii) The production matrix of Ni
q is the Ai ×Ai submatrix Pii of P .

(iii) Ni
q has only one strong component.

(iv) Ni
q ≈ Ni

q′.

Proof. Since Ni
q = Ni

q̂ where q̂ = (eivqv)v∈V , we may assume that q is a locally

recurrent state of Ni.

ABELIAN NETWORKS 13

(i) By Lemma 4.5, the total kernel Ki
q of Ni

q is generated as a group by Ki
q∩NA

i
.

Since both Ni
q and N are locally irreducible, by Lemma 4.8 we have for k ∈ NAi

k ∈ Ki
q ⇐⇒ t(k)q = q ⇐⇒ k ∈ K.

Hence

Ki
q ∩ NA

i
= K ∩ NA

i
.

(ii) Write . for the local action of N and .i for the local action of Ni. For

k ∈ NAi
the only difference between these actions is that k .q may produce some

letters in A−Ai in addition to the letters in Ai produced by k .i q. Hence, writing

P iq for the production matrix of Ni
q, if k ∈ K ∩ NAi

then k .q = y.q, where

y = P iqk + z for some z ∈ NA−Ai
. Letting r = (evqv)v∈V , we have k . r = y.r by

Lemma 4.2. Since r is locally recurrent for N, it follows that y = Pk. Writing ρi
for the projection NA → NAi

, we conclude that

P iqk = ρi(Pk) = Piik

and hence P iq = Pii.

(iii) By part (ii), the production graph of Ni
q is the strong component Ai of Γ,

so Ni
q has only one strong component.

(iv) By parts (i) and (ii), Ki
q and P iq do not depend on q, so all local components

of Ni are homotopic. �

The strong components are partially ordered by the accessibility relation 99K.
If we label them so that Ai 99K Aj implies i ≥ j, then the production matrix is
block triangular

P =


P11 P12 · · · P1s

0 P22 · · · P2s
...

...
. . .

...
0 0 · · · Pss


and the diagonal block Pii is the production matrix of Ni.

5. Halting criterion

Let N be an abelian network with total state space Q, and fix a state q ∈ Q.
If case (2) of Lemma 3.1 holds for all inputs x ∈ NA, then we say that N halts
on all inputs to initial state q. If this is the case for all q ∈ Q, then we say that
N halts on all inputs. The main result of this section is Theorem 5.6, which gives
an efficient way to decide whether a finite abelian network halts on all inputs to a
given initial state.

If x ≤ y, then any legal execution for x.q is a legal execution for y.q. It follows
that halting is a monotone property:

If N halts on input y.q, then N halts on all inputs x.q for x ≤ y. (5)

Recall the equivalence relation ∼ on Q introduced in §4.3.

14 BENJAMIN BOND AND LIONEL LEVINE

Lemma 5.1. If q1 ∼ q2, then N halts on all inputs to initial state q1 if and only
if N halts on all inputs to initial state q2.

Proof. If q1 ∼ q2 then t(y1)q1 = t(y2)q2 for some y1,y2 ∈ NA. Thus it suffices
to show for all y ∈ NA and all q ∈ Q that N halts on all inputs to initial state q
if and only if N halts on all inputs to initial state t(y)q.

Let y .q = z.r. Then r = t(y)q. For any x ∈ NA, we have

(x + y) .q = x .(y .q) = x .(z.r)

so both (x + y).q and (x + z).r have legal executions resulting in (x + y) .q.
Thus N halts on input (x + y).q if and only if N halts on input (x + z).r. By
monotonicity (5), it follows that N halts on all inputs to initial state q if and only
if N halts on all inputs to initial state r. �

Definition 5.2. A state x.q is an amplifier if x ∈ NA and there exists a nonempty
legal execution w from x.q such that πw(x.q) = y.q for some y ≥ x.

Definition 5.3. A state x.q is a strong amplifier if x ∈ NA−{0} and x .q = y.q
for some y ≥ x.

In words, a strong amplifier is a pair x.q with the property that after processing
all letters once, the network has returned to the same state q with at least as many
letters of each type as before.

Example. In the sandpile network Sand(G) of an undirected graph with no sink,
let x = (dv)v∈V be the configuration where each vertex has the same number of
letters (“chips”) as its degree. For any initial state q, processing all letters once
causes each vertex to topple once, so that each vertex v receives one letter from
each of its dv neighbors. Hence x .q = x.q, and x.q is a strong amplifier.

Lemma 5.4. The following are equivalent for a finite abelian network N.

(1) N has an amplifier.
(2) N has a strong amplifier.
(3) N fails to halt on some input.

Proof. If N has an amplifier x.q, then there is a legal execution πu(x.q) = y.q for
some y ≥ x and u ∈ NA − {0}. Then u .q = πu(u.q) = (u + y− x).q, where the
second equality follows from Lemma 3.2(ii). Therefore u.q is a strong amplifier,
which shows that (1) ⇒ (2).

Next if N has a strong amplifier u.q, then there is a legal execution w with
|w| = u ∈ NA − {0} starting with u.q and ending with (u + v).q for some v ≥ 0.
Then for any n ≥ 0 the same w is a legal execution starting with (u + nv).q and
ending with (u + (n + 1)v).q. Hence wn is a legal execution starting from u.q
for all n ≥ 0. Since there exist arbitrarily long legal executions, we conclude from
Lemma 3.1 that N does not halt on input u.q, which shows that (2) ⇒ (3).

Lastly, suppose that N fails to halt on some input y.q. Then there is an infinite
word w1w2 · · · such that w1 · · ·wn is a legal execution for all n ≥ 1. Let yn.qn =
πw1···wn(y.q). Since the total state space Q is finite, there exists q ∈ Q such that
qn = q for infinitely many n. By Dickson’s Lemma 2.6, there exist indices j < k

ABELIAN NETWORKS 15

such that qj = qk = q and yj ≤ yk. This yj .qj is an amplifier, which shows that
(3) ⇒ (1). �

The next lemma is a variant of Lemma 5.4 with distinguished initial state.
Recall from §4.3 the local component Nq containing state q.

Lemma 5.5. The following are equivalent for a finite abelian network N and
state q.

(1) Nq has an amplifier.
(2) Nq has a strong amplifier.
(3) N fails to halt on some input to initial state q.

Proof. By Lemma 5.4 it suffices to show that (3) is equivalent to the statement
that Nq fails to halt on some input. Any execution for x.q in N is also an execution
for x.q in Nq, so (3) is equivalent to the statement that Nq fails to halt on some
input to initial state q. By Lemma 5.1, if Nq fails to halt on some input, then Nq

fails to halt on some input to initial state q, which completes the proof. �

Theorem 5.6. (Halting Criterion 1) A finite abelian network N halts on all inputs
to initial state q if and only if every eigenvalue of the production matrix Pq has
absolute value strictly less than 1.

Proof. Let P = Pq, and let x and λ be the Perron-Frobenius eigenvector and
eigenvalue of P ; if λ = 1 then we may take x to have integer entries (Lemma 2.7).
By Lemma 5.5 it suffices to show that (1) if λ ≥ 1, then Nq has an amplifier; and
(2) if Nq has a strong amplifier, then λ ≥ 1.

(1) If λ ≥ 1, then there is a vector y ∈ QA such that x ≤ y ≤ λx. Then Py ≥
Px = λx ≥ y. Choosing n ≥ 1 such that ny ∈ K, we have ny .q = P (ny).q, so
ny.q is an amplifier.

(2) If Nq has a strong amplifier y.q′, then by Lemma 4.2, y.mq′ is also a strong
amplifier for any m ∈ ∏v∈V Mv. In particular, taking m = (ev)v∈V we obtain
a strong amplifier y.r with r locally recurrent and r ∼ q′ ∼ q. By Lemma 4.9,
Pq(y) = Pr(y) ≥ y, which shows that λ ≥ 1. �

Remark. In the case that N is locally irreducible, the production matrix Pq does
not depend on q by Lemma 4.9. In this case Theorem 5.6 gives a criterion for N

to halt on all inputs regardless of initial state.

If Pq has Perron-Frobenius eigenvalue λ ≥ 1, then N runs forever on some
inputs to initial state q. In the next section we examine how to tell whether this
is the case for a given input.

6. Laplacian matrix; Sandpilization

An abelian network N is called locally finite if the state space and alphabet of
each processor are finite. Let N be a locally finite and locally irreducible abelian
network with total alphabet A = tAv and total kernel K =

∏
Kv. Then each

Kv has finite index in ZAv . For each letter a ∈ Av, let ra be the smallest positive
integer such that ra1a ∈ Kv.

16 BENJAMIN BOND AND LIONEL LEVINE

Denote by D the A×A diagonal matrix with diagonal entries ra, and by I the
A×A idenity matrix. Let P be the production matrix of N, which is well defined
by Lemma 4.9.

Definition 6.1. The Laplacian of N is the A×A matrix

L = (I − P)D.

Lemma 6.2. L has integer entries.

Proof. If x ∈ NA then Dx ∈ K, so (Dx) .q = (PDx).q by the definition of the
production matrix P . In particular, PDx ∈ NA. It follows that Lx ∈ NA for all
x ∈ NA, so L has integer entries. �

The class of toppling matrices, defined in §2.3, is one of several extensions of
the notion of “positive definite” to non-symmetric matrices. The next lemma
encapsulates how toppling matrices arise in our setting.

Lemma 6.3. Let L = (I −P)D, where P is a nonnegative n×n matrix, D is an
n × n positive diagonal matrix, and I is the n × n identity matrix. Then L is a
toppling matrix if and only if the Perron-Frobenius eigenvalue of P is strictly less
than 1.

Proof. The off-diagonal entries of L are nonpositive, so Lemma 2.8 applies. Let x
and λ be a Perron-Frobenius eigenvector and eigenvalue of P , and let y = D−1x.
Then y > 0 and

Ly = (I − P)x = (1− λ)x. (6)

If λ < 1, then Ly > 0, so L is a toppling matrix. Conversely, if L is a toppling
matrix, then L−1 has nonnegative entries. Applying L−1 to (6) yields y = (1 −
λ)L−1x. Since L−1x > 0 and y > 0, we conclude that λ < 1. �

If N is any finite abelian network and q ∈ Q, let Lq = (I−Pq)Dq be the Lapla-
cian of the local component Nq. Using Lemma 6.3, we can rephrase Theorem 5.6
in terms of the Laplacian as follows. The case of a toppling network is due to
Gabrielov [Gab94].

Corollary 6.4. (Halting Criterion 2) A finite abelian network N halts on all inputs
to initial state q if and only if Lq is a toppling matrix.

Example. Let N be a toppling network with three vertices a, b, c and thresholds
ra = 3, rb = 4, rc = 5. For the messages passed we have:

a topples → b receives 2 chips, c receives 2 chips.

b topples → a receives 1 chip,s c receives 2 chips.

c topples → a receives 0 chips, b receives 2 chips.

Note that no vertex is a sink, and vertex a is productive (it “creates” a chip each
time it topples). The production matrix and Laplacian of this network are:

P =

 0 1
4 0

2
3 0 2

5
2
3

1
2 0

 , L =

 3 −1 0
−2 4 −2
−2 −2 5

 .

ABELIAN NETWORKS 17

Since all principal minors of L are positive, L is a toppling matrix. Therefore N

halts on all inputs. �

To any locally finite, locally irreducible abelian network N we associate a unary
network S(N) called its sandpilization.

b

a

c

d

b

a

c

d

Figure 2. Left: State diagram of an abelian processor with 5
states, input alphabet {a, b} and output alphabet {c, d}; the boxed
dots all represent the same state. Right: State diagram of its
sandpilization, which has 25 states.

Definition 6.5. (Sandpilization) Let N be a locally finite and locally irreducible
abelian network N with Laplacian L. The sandpilization S(N) of N is Topp(L),
the locally recurrent toppling network with Laplacian L.

The underlying graph of S(N) is the production graph of N (Definition 4.10),
which may be larger than the underlying graph of N. For each a ∈ A the processor
Pa of S(N) has state space Qa = {0, 1, . . . , ra − 1} with transition ta(q) = q + 1
(mod ra). It passes no messages except during transitions from state ra − 1 to
state 0, when it passes raPba letters b to each processor Pb. For example, if N is
a simple rotor network Rotor(G), then S(N) is the sandpile network Sand(G).

Since N and S(N) have the same Laplacian, the following is immediate from
Corollary 6.4.

Corollary 6.6. Let N be a finite locally irreducible abelian network. Then N halts
on all inputs if and only if S(N) halts on all inputs.

6.1. Certifying that a network never halts. How long must we run an abelian
network until we can be sure it will not halt? The next lemma shows that any
strong amplifier gives an upper bound.

18 BENJAMIN BOND AND LIONEL LEVINE

Recall the least action principle [BL13, Lemma 4.3], which says that if w is a
legal execution for x.r and w′ is a complete execution for x.r, then |w| ≤ |w′|. If
N halts on input x.r, then the odometer of x.r is defined as [x.r] = |w|, where w
is any complete legal execution for x.r.

Lemma 6.7. Let N be a locally irreducible finite abelian network. Suppose that
α.q is a strong amplifier for N. If r is locally recurrent and N halts on input x.r,
then any legal execution w for x.r satisfies |w|a < αa for some a ∈ A.

Proof. Suppose for a contradiction that N halts on input x.r but [x.r] ≥ α. Write
u = [x.r] = α + v for some v ≥ 0. Write πv(x.r) = y.s where s = t(v)r. We
will show that y ≤ 0, so there is a complete execution w′ for x.r with |w′| = v.
However, by the definition of the odometer there is also a legal execution w for
x.r with |w| = u. This contradicts the least action principle since u − v = α ∈
NA − {0}.

Since α.q is a strong amplifier we have α.q = β.q for some β ≥ α. Now by
Lemma 2.3(1) (which applies to each local action of Mv on Qv, as N is finite and
locally irreducible) since r is locally recurrent we have r = mq for some m ∈∏Mv.
So s = (t(v)m)q, and by Lemma 4.2 it follows that α. s = β.s. By the definition
of the odometer, no messages remain after executing w, so πu(x.r) = 0.s′ for some
state s′. Using πu = πα ◦ πv, we have

0.s′ = πα(y.s) = (y + β − α).s

where the last equality uses Lemma 3.2(ii). Hence y = α− β ≤ 0 as desired. �

In the special case of a locally recurrent toppling network Topp(L), if y ∈
NV − {0} and Ly ≤ 0 then (Dy).0 is a strong amplifier. In this case Lemma 6.7
implies that if for a particular input x.r there is a legal execution in which each
vertex v processes at least Lvvyv letters, then Topp(L) does not halt on input x.r.
In particular, we recover the criterion of Björner and Lovász [BL92, Prop. 4.4]:
for the sandpile network Sand(G) on a directed graph G, if y ∈ NV − {0} and
Ly = 0 and each vertex v topples at least yv times, then toppling persists forever.
When G is undirected (or Eulerian directed) we can take y = 1 and we recover the
criterion of Tardos [Tar88, Lemma 4]: if each vertex topples at least once, then
toppling persists forever.

7. Concluding Remarks

We indicate here a few directions for further research on abelian networks.

Halting problem for a given input. Theorem 5.6 gives a polynomial time
algorithm to check whether a finite abelian network N halts on all inputs. Under
what conditions is there an efficient algorithm to check whether N halts on a given
input x0.q0?

An inefficient algorithm runs as follows. Let xn.qn = xn−1 .qn−1 for n ≥ 1. By
Dickson’s Lemma 2.6 there exist m < n such that qm = qn and xm ≤ xn. Each
time we generate a new state xn.qn, exhaustively check for such an m < n. When

ABELIAN NETWORKS 19

we find one, if xn = 0 then N has already halted, and if xn 6= 0 then N will never
halt.

Bounds obtained from Dickson’s Lemma grow very quickly [FFSS11]. Lemma 6.7
suggests a possibly more efficient approach. Given a strong amplifier α.q, what
is a bound for the time it takes for N either to halt or be certified by Lemma 6.7
to run forever? With such a bound in hand, there remains the question of which
abelian networks have small (i.e. polynomial in the size of description of N) strong
amplifiers.

Infinite abelian networks. Questions about the recurrence or transience of ro-
tor walk [LL09, AH11a, AH11b, FGLP14, FLP14] and the explosiveness of sand-
piles [FLP10] are cases of the halting problem for spatially infinite abelian net-
works. In this setting, “halting” means that each processor processes only finitely
many letters, even though the total number of letters processed may be infinite.
Generalizing the least action principle to infinite executions, along the lines of
[FMR09], may be useful in approaching these and related questions.

Among the many hard questions in this area, let us single out one. Suppose N

is a toppling network whose underlying graph is the square grid Z2. Let q be an
initial state, and suppose that N and q are periodic in the sense that there is a
full rank sublattice Λ ⊂ Z2 such that Pv and qv depend only on v+ Λ. Given the
finite data of Pv and qv on a fundamental domain, is it decidable whether there
exists an input x with finite support such that N does not halt on x.q? Cairns
[Cai15], using sandpile circuits designed by Moore and Nilsson [MN99], has shown
that the analogous problem in Z3 is undecidable.

Homotopy via embedding. Does Lemma 4.13 have a converse? Given irre-
ducible, strongly connected abelian networks N1 and N2 with N1 ≈ N2 is there an
irreducible N such that N1 and N2 are local components of a strong component of
N?

Abelian networks with coefficients. We can define an abelian network purely
in terms of monoids and without any reference to automata. The free commutative
monoid NA played an important role in our theory. In particular, we used heavily
the fact that NA is cancellative (for instance in the proof of Lemma 4.9). What
happens if we replace NA by a different monoid?

To make this question more precise, suppose M and M ′ are commutative
monoids, written additively. Define an action of M on Q metered by M ′

as a monoid action ν : M ×Q→ Q together with a map

µ : M ×Q→M ′

satisfying µ(0,q) = 0′ and

µ(x + y,q) = µ(x, ν(y,q)) + µ(y,q) (7)

for all x,y ∈ M and all q ∈ Q. The interpretation is that µ(x,q) measures the
“cost” (or “byproduct”) of x acting on q, and that costs are additive.

20 BENJAMIN BOND AND LIONEL LEVINE

An example of a metered action is the local action . of an abelian network
(§4.1): we take M = M ′ = NA with µ and ν defined by

x .q = µ(x,q).ν(x,q).

The byproduct of x acting on q is that some messages are passed, namely µ(x,q).
Let us define an abstract abelian network on a directed graph G = (V,E) as

a collection of 4-tuples (Mv, Qv, µv, νv) indexed by v ∈ V , such that Mv is a
commutative monoid, Qv is a set, and (µv, νv) is an action of Mv on Qv metered
by ∏

(v,u)∈E

Mu.

As a special case, fix a commutative monoid C and an alphabet A = tv∈VAv.
An abelian network with coefficients in C is an abstract abelian network with
Mv = CAv for all v ∈ V .

It would be interesting to compare the computational power of such networks
for different monoids C. For example, taking C = Z we obtain the class of locally
recurrent abelian networks (i.e., those satisfying Qv = evQv for all v ∈ V). Taking
C = R+ gives a class of networks with continuous input, which includes the
abelian avalanche model of [Gab93] and the divisible sandpile of [LP09]. The latter
computes the linear program relaxation of the integer programs that sandpiles
compute [BL13, Remark 4.9]. Other R+-networks (analogous to the oil-and-water
model of [BL13]) should compute the linear programs of [Tse90]. What about
C = Z/pZ?

Let us point out that the definition (7) of a metered action makes sense for ar-
bitrary monoids M and M ′, which allows us to define networks with coefficients in
an arbitrary monoid C. Are there interesting examples with C noncommutative?

Acknowledgments

This research was supported by an NSF postdoctoral fellowship and NSF grants
DMS-1105960 and DMS-1243606, and by the UROP and SPUR programs at MIT.

References

[AH11a] Omer Angel and Alexander E. Holroyd, Rotor walks on general trees. SIAM J. Discrete
Math. 25(1):423–446, 2011. arXiv:1009.4802

[AH11b] Omer Angel and Alexander E. Holroyd, Recurrent rotor-router configurations. 2011.
arXiv:1101.2484

[Ash87] Jonathan Ashley, On the Perron-Frobenius eigenvector for nonnegative integral matrices
whose largest eigenvalue is integral, Lin. Alg. Appl. 94:103–108, 1987.

[BS15] Josef Berger and Helmut Schwichtenberg, A bound for Dickson’s lemma.
arXiv:1503.03325

[BLS91] Anders Björner, László Lovász and Peter Shor, Chip-firing games on graphs, European
J. Combin. 12(4):283–291, 1991.

[BL92] Anders Björner and László Lovász, Chip-firing games on directed graphs, J. Algebraic
Combin. 1(4)305–328, 1992.

[BL13] Benjamin Bond and Lionel Levine, Abelian networks I. Foundations and examples.
arXiv:1309.3445

http://arxiv.org/abs/1009.4802
http://arxiv.org/abs/1101.2484
http://arxiv.org/abs/1503.03325
http://arxiv.org/abs/1309.3445

ABELIAN NETWORKS 21

[BL14] Benjamin Bond and Lionel Levine, Abelian networks III. The critical group.
arXiv:1409.0170

[Cai15] Hannah Cairns, Some halting problems for abelian sandpiles are undecidable in dimension
three. Preprint, 2015.

[DdJ98] Wolfram Decker and Theo de Jong, “Gröbner bases and invariant theory.” In Buchberger,
B., Winkler, F. eds, Gröbner Bases and Applications, LNS 251, pp. 61–89, 1998.

[DFR05] Emeric Deutsch, Luca Ferrari and Simone Rinaldi, Production matrices, Adv. Appl.
Math. 34(1):101–122, 2005.

[Dha99] Deepak Dhar, The abelian sandpile and related models, Physica A 263:4–25, 1999.
arXiv:cond-mat/9808047

[Dic13] Leonard E. Dickson, Finiteness of the odd perfect and primitive abundant numbers with
distinct prime factors, Amer. J. Math. 35(4):413–422, 1913.

[Eis95] David Eisenbud, Commutative Algebra With A View Toward Algebraic Geometry,
Springer, 1995.

[FL15] Matthew Farrell and Lionel Levine, CoEulerian graphs. arXiv:1502.04690
[FLP10] Anne Fey, Lionel Levine and Yuval Peres, Growth rates and explosions in sandpiles, J.

Stat. Phys. 138:143–159, 2010. arXiv:0901.3805
[FMR09] Anne Fey, Ronald Meester, and Frank Redig, Stabilizability and percolation in the

infinite volume sandpile model, Ann. Probab. 37(2):654-675, 2009. arXiv:0710.0939
[FK62] M. Fiedler and V. Ptak, On matrices with non-positive off-diagonal elements and positive

principal minors, Czechoslovak Math. J. 12:382–400, 1962.
[FFSS11] Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen, Acker-

mannian and primitive-recursive bounds with Dickson’s lemma, 26th Annual IEEE Sympo-
sium on Logic in Computer Science, 2011. arXiv:1007.2989

[FGLP14] Laura Florescu, Shirshendu Ganguly, Lionel Levine and Yuval Peres, Escape rates
for rotor walks in Zd, SIAM Journal on Discrete Mathematics 28(1):323–334, 2014.
arXiv:1301.3521.

[FLP14] Laura Florescu, Lionel Levine and Yuval Peres, The range of a rotor walk.
arXiv:1408.5533

[Gab93] Andrei Gabrielov, Abelian avalanches and Tutte polynomials, Physica A 195:253–274,
1993.

[Gab94] Andrei Gabrielov, Asymmetric abelian avalanches and sandpiles. Preprint, 1994. http:
//www.math.purdue.edu/~agabriel/asym.pdf

[Gre51] J. A. Green, On the structure of semigroups, Ann. of Math. 54:163–172, 1951.
[Gri01] Pierre A. Grillet, Commutative semigroups, Klower Academic Publishers, 2001.
[Gri07] Pierre A. Grillet, Commutative actions, Acta Sci. Math. (Szeged) 73:91–112, 2007.
[HJ90] Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge Univ. Press, 1990.
[LL09] Itamar Landau and Lionel Levine, The rotor-router model on regular trees, J. Combin.

Theory A 116: 421–433, 2009. arXiv:0705.1562
[LP09] Lionel Levine and Yuval Peres, Strong spherical asymptotics for rotor-router aggregation

and the divisible sandpile, Potential Anal. 30:1–27, 2009. arXiv:0704.0688
[MN99] Cristopher Moore and Martin Nilsson. The computational complexity of sandpiles. J.

Stat. Phys. 96:205–224, 1999.
[PS04] Alexander Postnikov and Boris Shapiro, Trees, parking functions, syzygies, and

deformations of monomial ideals. Trans. Amer. Math. Soc. 356(8):3109–3142, 2004.
arXiv:math.CO/0301110

[Sch57] Marcel-Paul Schützenberger, D représentation des demi-groupes, C. R. Acad. Sci. Paris
244:1994–96, 1957.

[Ste10] Benjamin Steinberg, A theory of transformation monoids: combinatorics and representa-
tion theory, Electr. J. Combin. 17:R164, 2010. arXiv:1004.2982

[Tar88] Gábor Tardos, Polynomial bound for a chip firing game on graphs, SIAM J. Disc. Math.
1(3):1988.

http://arxiv.org/abs/1409.0170
http://arxiv.org/abs/cond-mat/9808047
http://arxiv.org/abs/1502.04690
http://arxiv.org/abs/0901.3805
http://arxiv.org/abs/0710.0939
http://arxiv.org/abs/1007.2989
http://arxiv.org/abs/1301.3521
http://arxiv.org/abs/1408.5533
http://www.math.purdue.edu/~agabriel/asym.pdf
http://www.math.purdue.edu/~agabriel/asym.pdf
http://arxiv.org/abs/0705.1562
http://arxiv.org/abs/0704.0688
http://arxiv.org/abs/math.CO/0301110
http://arxiv.org/abs/1004.2982

22 BENJAMIN BOND AND LIONEL LEVINE

[Tse90] Paul Tseng, Distributed computation for linear programming problems satisfying a cer-
tain diagonal dominance condition, Mathematics of Operations Research 15(1):33–48, 1990.

Benjamin Bond, Department of Mathematics, Stanford University, Stanford, Cal-
ifornia 94305. http://stanford.edu/~benbond

Lionel Levine, Department of Mathematics, Cornell University, Ithaca, NY 14853.
http://www.math.cornell.edu/~levine

http://stanford.edu/~benbond
http://www.math.cornell.edu/~levine

	1. Introduction
	Outline

	2. Mathematical background
	2.1. Commutative monoid actions
	2.2. Dickson's Lemma
	2.3. Toppling matrices

	3. Abelian networks; Halting Dichotomy
	4. Total kernel and production matrix
	4.1. The local action
	4.2. Production matrix
	4.3. Local components
	4.4. Strong components

	5. Halting criterion
	6. Laplacian matrix; Sandpilization
	6.1. Certifying that a network never halts

	7. Concluding Remarks
	Halting problem for a given input
	Infinite abelian networks
	Homotopy via embedding
	Abelian networks with coefficients

	Acknowledgments
	References

