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Abstract

In previous works, we showed that the internal DLA cluster on Zd with t
particles is almost surely spherical up to a maximal error of O(log t) if d = 2 and
O(
√

log t) if d ≥ 3. This paper addresses “average error”: in a certain sense,
the average deviation of internal DLA from its mean shape is of constant order
when d = 2 and of order r1−d/2 (for a radius r cluster) in general. Appropriately
normalized, the fluctuations (taken over time and space) scale to a variant of
the Gaussian free field.
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1 Introduction

1.1 Overview

We study scaling limits of internal diffusion limited aggregation (“internal DLA”),
a growth model introduced in [MD86, DF91]. In internal DLA, one inductively
constructs an occupied set At ⊂ Zd for each time t ≥ 0 as follows: begin with
A0 = ∅ and A1 = {0}, and let At+1 be the union of At and the first place a random
walk from the origin hits Zd \ At. A continuum analogue of internal DLA is the
famous Hele-Shaw model for fluid insertion.1

The purpose of this paper is to study the growing family of sets At. Following
the pioneering work of [LBG92], it is by now well known that, for large t, the
set At approximates an origin-centered Euclidean lattice ball Br := Br(0) ∩ Zd
(where r = r(t) is such that Br(0) has volume t). The authors recently showed
that this is true in a fairly strong sense [JLS09, JLS12a, JLS12b]: the maximal
distance from a point where 1At − 1Br is non-zero to ∂Br(0) is a.s. O(log t) if d = 2
and O(

√
log t) if d ≥ 3. In fact, if C is large enough, the probability that this

maximal distance exceeds C log t (or C
√

log t when d ≥ 3) decays faster than any

1It follows from [LP10] that the internal DLA cluster formed from a finite set of point sources
in Zd has a scaling limit which solves an obstacle problem in Rd. Hele-Shaw flow solves the
same obstacle problem [GV06]. In contrast, the Witten-Sander model of external DLA [WS81], in
which random walkers start “at infinity” and stop when reaching a site neighboring the cluster, is
analogous to the (ill-posed) reverse time direction of Hele-Shaw flow.
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fixed (negative) power of t. Some of these results are obtained by different methods
in [AG10a, AG10b].

This paper will ask what happens if, instead of considering the maximal distance
from ∂Br(0) at time t, we consider the “average error” at time t (allowing inner and
outer errors to cancel each other out). It turns out that in a distributional “average
fluctuation” sense, the set At deviates from Br(0) by only a constant number of
lattice spaces when d = 2 and by an even smaller amount when d ≥ 3. Appropriately
normalized, the fluctuations of At, taken over time and space, define a distribution
on Rd that converges in law to a variant of the Gaussian free field (GFF): a random
distribution on Rd that we will call the augmented Gaussian free field. (It can
be constructed by defining the GFF in spherical coordinates and replacing variances
associated to spherical harmonics of degree k by variances associated to spherical
harmonics of degree k+1; see §1.5.) The “augmentation” appears to be related to a
damping effect produced by the mean curvature of the sphere (as discussed below).2

To our knowledge, no central limit theorem of this kind has been previously
conjectured in either the physics or the mathematics literature. The appearance
of the GFF and its “augmented” variants is a particular surprise. (It implies that
internal DLA fluctuations — although very small — have long-range correlations
and that, up to the curvature-related augmentation, the fluctuations in the direction
transverse to the boundary of the cluster are of a similar nature to those in the
tangential directions.) Nonetheless, the heuristic idea is easy to explain. Before we
state the central limit theorems precisely (§1.3 and §1.4), let us explain the intuition
behind them.

Write a point x ∈ Rd in polar coordinates as ru for r ≥ 0 and u ∈ Rd on the unit
sphere (|u| = 1). Suppose that at each time t the boundary of At is approximately
parameterized by rt(u)u for a function rt defined on the unit sphere. Write

rt(u) = (t/ωd)
1/d + ρt(u)

where ωd is the volume of the unit ball in Rd. The ρt(u) term measures the deviation
from circularity of the cluster At in the direction u. How do we expect ρt to evolve
in time? To a first approximation, the angle at which a random walk exits At is a
uniform point on the unit sphere. If we run many such random walks, we obtain a
sort of Poisson point process on the sphere, which has a scaling limit given by space-
time white noise on the sphere. However there is a smoothing effect coming from
the fact that places where ρt is negative are more likely to be hit by the random
walks than places where ρt is positive, and hence |ρt| is more likely to shrink in
time. There is also secondary damping effect coming from the mean curvature of
the sphere, which implies that even if (after a certain time) particles began to hit

2Consider continuous time internal DLA on the half cylinder (Z/mZ)d−1 × Z+, with particles
started uniformly on (Z/mZ)d−1 × {0}. Though we do not prove this here, we expect the cluster
boundaries to be approximately flat cross-sections of the cylinder, and we expect the fluctuations
to scale to the ordinary GFF on the half cylinder as m→∞.
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all angles with equal probability, the magnitude of the ρt fluctuations would shrink
with increasing t as the existing fluctuations were averaged over larger spheres.

The white noise should correspond to adding independent Brownian noise terms
to the spherical Fourier modes of ρt. The rate of smoothing/damping in time should
be approximately given by Λρt for some linear operator Λ mapping the space of func-
tions on the unit sphere to itself. Since the random walks approximate Brownian
motion (which is rotationally invariant), we would expect Λ to commute with or-
thogonal rotations, and hence have spherical harmonics as eigenfunctions. With
the right normalization and parameterization, it is therefore natural to expect the
spherical Fourier modes of ρt to evolve as independent Brownian motions subject
to linear “restoration forces” (a.k.a. Ornstein-Uhlenbeck processes) where the mag-
nitude of the restoration force depends on the degree of the corresponding spherical
harmonic. It turns out that the restriction of the (ordinary or augmented) GFF on
Rd to a centered volume t sphere evolves in time t in a similar way.

Of course, as stated above, the “spherical Fourier modes of ρt” have not really
been defined (since the boundary of At is complicated and generally cannot be
parameterized by rt(u)u). In the coming sections, we will define related quantities
that (in some sense) encode these spherical Fourier modes and are easy to work
with. These quantities are the martingales obtained by summing discrete harmonic
polynomials over the cluster At.

The heuristic just described provides intuitive interpretations of the results given
below. Theorem 1.3, for instance, identifies the weak limit as t→∞ of the internal
DLA fluctuations from circularity at a fixed time t: the limit is the two-dimensional
augmented Gaussian free field restricted to the unit circle ∂B1(0), which can be
interpreted in a distributional sense as the random Fourier series

1√
2π

[
α0/
√

2 +
∞∑
k=1

αk
cos kθ√
k + 1

+ βk
sin kθ√
k + 1

]
(1)

where αk for k ≥ 0 and βk for k ≥ 1 are independent standard Gaussians. The
ordinary two-dimensional GFF restricted to the unit circle is similar, except that√
k + 1 is replaced by

√
k.

The series (1) — unlike its counterpart for the one-dimensional Gaussian free
field, which is a variant of Brownian bridge — is a.s. divergent, which is why we use
the dual formulation explained in §1.4. The dual formulation of (1) amounts to a
central limit theorem, saying that for each k ≥ 1 the real and imaginary parts of

Mk =
1

r

∑
z∈Aπr2

(z
r

)k
converge in law as r → ∞ to normal random variables with variance π

2(k+1) (and

that Mj and Mk are asymptotically uncorrelated for j 6= k). See [FL12, §6.2] for
numerical data on the moments Mk in large simulations.
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1.2 FKG inequality statement and continuous time

Before we set about formulating our central limit theorems precisely, we mention a
previously overlooked fact. Suppose that we run internal DLA in continuous time
by adding particles at Poisson random times instead of at integer times: this process
we will denote by AT (t) (or often just AT ) where T (t) is the counting function for
a Poisson point process in the interval [0, t] (so T (t) is Poisson distributed with
mean t). We then view the entire history of the IDLA growth process as a (random)
function on [0,∞)×Zd, which takes the value 1 or 0 on the pair (t, x) accordingly as
x ∈ AT (t) or x /∈ AT (t). Write Ω for the set of functions f : [0,∞)×Zd → {0, 1} such
that f(t, x) ≤ f(t′, x) whenever t ≤ t′, endowed with the coordinate-wise partial
ordering. Let P be the distribution of {AT (t)}t≥0, viewed as a probability measure
on Ω.

Theorem 1.1. (FKG inequality) For any two increasing functions F,G ∈ L2(Ω,P),
the random variables F ({AT (t)}t≥0) and G({AT (t)}t≥0) are nonnegatively correlated.

One example of an increasing function is the total number #AT (t)∩X of occupied

sites in a fixed subset X ⊂ Zd at a fixed time t. One example of a decreasing
function is the smallest t for which all of the points in X are occupied. Intuitively,
Theorem 1.1 means that on the event that one point is absorbed at a late time,
it is conditionally more likely for all other points to be absorbed late. The FKG
inequality is an important feature of the discrete and continuous Gaussian free fields
[She07], so it is interesting (and reassuring) that it appears in internal DLA at the
discrete level.

Note that sampling a continuous time internal DLA cluster at time t is equivalent
to first sampling a Poisson random variable T with expectation t and then sampling
an ordinary internal DLA cluster of size T . (By the central limit theorem, |t − T |
has order

√
t with high probability.) Although using continuous time amounts to

only a modest time reparameterization (chosen independently of everything else) it
is aesthetically natural. Our use of “white noise” in the heuristic of the previous
section implicitly assumed continuous time. (Otherwise the total integral of ρt would
be deterministic, so the noise would have to be conditioned to have mean zero at
each time.)

1.3 Main results in dimension two

For x ∈ Z2 write
F (x) := inf{t : x ∈ AT (t)}

and
L(x) :=

√
F (x)/π − |x|.

In words, L(x) is the difference between the radius of the area t disk — at the time
t that x was absorbed into AT — and |x|. It is a measure of how much later or
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(a) (b)

Figure 1: (a) Continuous-time IDLA cluster AT (t) for t = 105. Early points (where
L is negative) are colored red, and late points (where L is positive) are colored blue.
(b) The same cluster, with the function L(x) represented by red-blue shading.

earlier x was absorbed into AT than it would have been if the sets AT (t) were exactly
centered discs of area t. By the main result of [JLS12a], almost surely

lim sup
x∈Z2

L(x)

log |x|
<∞.

The coloring in Figure 1(a) indicates the sign of the function L(x), while Fig-
ure 1(b) illustrates the magnitude of L(x) by shading. Note that the use of contin-
uous time means that the average of L(x) over x may differ substantially from 0.
Indeed we see that — in contrast with the corresponding discrete-time figure of
[JLS12a] — there are noticeably fewer early points than late points in Figure 1(a),
which corresponds to the fact that in this particular simulation T (t) was smaller
than t for most values of t. Since for each fixed x ∈ Z2 the quantity L(x) is a
decreasing function of At(x), the FKG inequality holds for L as well. The positive
correlation between values of L at nearby points is readily apparent from the figure.

To state a limit theorem for the lateness function, consider its rescaling for R > 0

GR((x1, x2)) := L((bRx1c, bRx2c)).

Identify R2 with C and let H0 be the linear span of the set of functions on C of the
form Re(azk)f(|z|) for a ∈ C, k ∈ Z≥0, and f smooth and compactly supported on
R>0. The space H0 is obviously dense in L2(C), and it turns out to be a convenient
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space of test functions. The augmented GFF (and its restriction to ∂B1(0)) will be
defined precisely in §1.4 and §1.5.

Theorem 1.2. (Weak convergence of the lateness function) As R→∞, the function
GR converges to the augmented Gaussian free field h in the following sense: for each
set of test functions φ1, . . . , φk in H0, the joint law of the inner products (φj , GR)
converges to the joint law of (φj , h).

Figure 2: Top: Symmetric difference between IDLA cluster AT (t) at continuous

time t = 105 and the disk of radius
√
t/π. Bottom: closeup of a portion of the

boundary. Sites outside the disk are colored red if they belong to AT (t); sites inside
the disk are colored blue if they do not belong to AT (t).

Our next result addresses the fluctuations from circularity at a fixed time, as
illustrated in Figure 2.

Theorem 1.3. (Fluctuations from circularity) Consider the distribution with point
masses on R2 given by

Et := r−1
∑
x∈Z2

(
1x∈AT (t)

− 1x∈Br
)
δx/r, (2)

where r =
√
t/π. As t → ∞, the Et converge to the restriction of the augmented

GFF to ∂B1(0), in the sense that for each set of test functions φ1, . . . , φk in H0,
the joint law of (φj , Et) converges to the joint law of Φh(φj , π) (a Gaussian process
defined in §1.4).
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1.4 Main results in general dimensions

In this section, we will extend Theorem 1.3 to general dimensions and to a range
of times (instead of a single time). That is, we will try to understand scaling limits
of the discrepancies of the sort depicted in Figure 2 (interpreted in some sense
as random distributions) in general dimensions and taken over a range of times.
However, some caution is in order. By classical results in number theory (see the
survey [IKKN04] for their history), the size of Br = Br(0)∩Zd is approximately the
volume of Br(0) — but with errors of order rd−2 (i.e., both O(rd−2) and Ω(rd−2))
in all dimensions d ≥ 5. The errors in dimension d = 4 are of order rd−2 times
logarithmic factors that grow to infinity. It remains a famous open problem in
number theory to estimate the errors when d ∈ {2, 3}. (When d = 2 this is called
Gauss’s circle problem.)

These number theoretic results imply that #Br(t) is, as a function of t, much
more irregular than the size T (t) of the cluster obtained in continuous time internal
DLA, at least when d ≥ 5. The results also imply that even if points were added
to At precisely in order of increasing radius, the difference between the radius of At
and the radius of Br(t)(0) would fail to be o(r−1) when d ≥ 5 and fail to be O(r−1)
when d = 4.

On the other hand, we will see that the kinds of fluctuations that emerge from
internal DLA randomness are of the order that one would obtain by spreading an
extra rd/2 ∼

√
t particles over a constant fraction of the spherical boundary, which

is also what one obtains by changing the radius (along some or all of the boundary)
by r1−d/2. This implies that the higher dimensional analog of Theorem 1.3 cannot
be true exactly the way it is stated if d ≥ 4. Indeed, suppose that we define Et
analogously to (2) as

Et = r−d/2
∑
x∈Zd

(
1x∈AT (t)

− 1x∈Br
)
δx/r,

and let φ be a test function that is equal to 1 in a neighborhood of ∂B1(0). Then
the results mentioned above imply that

(Et, φ) = r−d/2
(
T (t)−#Br

)
cannot converge in law to a finite random variable if d ≥ 4.

It is therefore a challenge to formulate a central limit theorem for the (small)
fluctuations of internal DLA that is not swamped by these (potentially large) number
theoretic irregularities. We will see below that this can be achieved by replacing Br

with different ball approximations (the so-called “divisible sandpiles”) that are in
some sense even “rounder” than the lattice balls themselves. We will also have to
define and interpret the (augmented) GFF in a particular way.

Given smooth real-valued functions f and g on Rd, write

(f, g)∇ =

∫
Rd
∇f(x) · ∇g(x)dx.
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Here and below dx denotes Lebesgue measure on Rd. Given a bounded domain
D ⊂ Rd, let H(D) be the Hilbert space closure in (·, ·)∇ of the set of smooth
compactly supported functions on D. We define H = H(Rd) analogously except
that the functions are taken modulo additive constants. The Gaussian free field
(GFF) is defined formally by

h :=
∞∑
i=1

αifi, (3)

where the fi are any fixed (·, ·)∇ orthonormal basis for H and the αi are i.i.d. mean
zero, unit variance normal random variables. (One also defines the GFF on D
similarly, using H(D) in place of H.) The augmented GFF will be defined similarly
below, but with a slightly different inner product.

Since the sum (3) a.s. does not converge within H, one has to think a bit about
how h is defined. Note that for any fixed f =

∑
βifi ∈ H, the quantity (h, f)∇ :=∑

(αifi, f)∇ =
∑
αiβi is almost surely finite and has the law of a centered Gaussian

with variance ‖f‖∇ =
∑
|βi|2. However, there a.s. exist some functions f ∈ H for

which the sum does not converge, and (h, ·)∇ cannot be considered as a continuous
functional on all of H. Rather than try to define (h, f)∇ for all f ∈ H, it is often
more convenient and natural to focus on some subset of f values (with dense span)
on which f 7→ (h, f)∇ is a.s. a continuous function (in some topology). Here are
some sample approaches to defining a GFF on D:

1. h as a random distribution: For each smooth, compactly supported φ,
write (h, φ) := (h,−∆−1φ)∇, which (by integration by parts) is formally the
same as

∫
h(x)φ(x)dx. This is almost surely well defined for all such φ and

makes h a random distribution [She07]. (If D = Rd and d = 2, one requires∫
φ(x)dx = 0, so that (h, φ) is defined independently of the additive constant.

When d > 2 one may fix the additive constant by requiring that the mean of
h on Br(0) tends to zero as r →∞ [She07].)

2. h as a random continuous (d + 1)-real-parameter function: For each
ε > 0 and x ∈ Rd, let hε(x) denote the mean value of h on ∂Bε(x). For each
fixed x, this hε(x) is a Brownian motion in time parameterized by − log ε in
dimension 2, or −ε2−d in higher dimensions [She07]. For each fixed ε, the
function hε can be thought of as a regularization of h (a point of view used
extensively in [DS10]).

3. h as a family of “distributions” on origin-centered spheres: For each
polynomial function ψ on Rd and each time t, define Φh(ψ, t) to be the integral
of hψ over ∂Br(0) where Br(0) is the origin-centered ball of volume t. We
actually lose no generality in requiring ψ to be a harmonic polynomial on Rd,
since the restriction of any polynomial to ∂Br(0) agrees with the restriction
of a (unique) harmonic polynomial.
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The difference between these three approaches boils down to what test functions
or measures we want to be able to integrate h against. In the first case we consider
smooth test functions, in the second uniform measures on spheres, and in the third
uniform measures on origin-centered spheres weighted by harmonic polynomials.

The last approach is the least intuitive, but it turns out to be particularly natural
for our purposes. We define the augmented GFF h as a distribution corresponding
to this class of test measures by defining the random variables Φh(ψ, t) for all t > 0
and harmonic polynomials ψ, as follows. Let Φh be the centered Gaussian function
for which

Cov
(
Φh(ψ1, t1),Φh(ψ2, t2)

)
=

∫
Br(0)

ψ1(x)ψ2(x)dx, (4)

for all harmonic polynomials ψ1 and ψ2, where Br(0) is the origin-centered ball of
volume min{t1, t2}. In particular, taking ψ1 = ψ2 = ψ, we find that

Var
(
Φh(ψ, t)

)
=

∫
Br(0)

ψ(x)2dx. (5)

Though not immediately obvious from the above, we will see in §1.5 that this
definition is very close to that of the ordinary GFF. Now, for each integer m and
harmonic polynomial ψ, there is a discrete harmonic polynomial ψ(m) on 1

mZd (de-
fined precisely in §2.2) that approximates ψ in the sense that ψ − ψ(m) is a poly-
nomial of degree at most k − 2, where k is the degree of ψ. In particular, if we
fix ψ and limit our attention to x in a fixed bounded subset of Rd, then we have
|ψ(m)(x)− ψ(x)| = O(1/m2).

Discrete harmonic functions obey a mean value property: for each r > 0 there is
a function w supported on the discrete ball B = Br(0) ∩ 1

mZd, such that w closely
approximates the indicator function 1B, and

∑
x∈B w(x)(f(x) − f(0)) = 0 for all

functions f that are discrete harmonic on B; see the remark following Theorem 1.4.
To measure the deviation of the IDLA cluster from circularity (more precisely, its
deviation from w) we define

Φm
A (ψ, t) := m−d/2

 ∑
x∈A

T (mdt)

ψ(m)(x/m)

−mdtψ(m)(0)

 . (6)

When ψ(m)(0) = 0, this random variable measures to what extent the mean value
property for the discrete harmonic polynomial ψ(m) fails for the set AT (mdt). When
ψ(m) is a constant function, it measures fluctuations in the size of the cluster.

Theorem 1.4. Let h be the augmented GFF, and Φh as discussed above. Then
as m → ∞, the random functions Φm

A converge in law to Φh (w.r.t. the smallest
topology that makes Φ 7→ Φ(ψ, t) continuous for each ψ and t). In other words,
for any finite collection of pairs (ψ1, t1), . . . , (ψk, tk), the joint law of the Φm

A (ψi, ti)
converges to the joint law of the Φh(ψi, ti).
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Remark. The reason for the variance formula (5) in the definition of augmented
GFF boils down to a very simple calculation: Supposing ψ(0) = 0, consider the
discrete time process

M(n) =
∑
x∈An

ψ(1)(x).

Since ψ(1) is discrete harmonic, M is a martingale, and

EM(n)2 = E
n∑
j=1

((M(j)−M(j − 1))2 = E
n∑
j=1

ψ(1)(Xj)
2

where {Xj} = Aj \ Aj−1. Because An is close to the origin-centered ball Br(n) of
volume n, the right side divided by

∫
Br(n)

ψ(x)2dx tends to 1 as n → ∞ Except

for minor complications about continuous time, the proof in Section 2.3 proceeds
exactly on these lines.

Theorem 1.4 does not really address the discrepancies between AT and Br

(which, as we noted earlier, can be very large, in particular in the case that ψ is a
constant function). Rather, it can be interpreted as a measure of the discrepancy
between AT and the so-called divisible sandpile, which is a function wt : Zd → [0, 1]
defined for all t ≥ 0. The quantity wt(x) represents the amount of mass that ends
up at x if one begins with t units of mass at the origin and then “spreads” the
mass around according to certain rules that ensure that the final amount of mass
at each site is at most one. We will not give the construction here, but just list
the properties of wt that are important to us. For proofs of these properties, see
[JLS12b, Lemma 6], which in turn is a restatement of [LP09, Theorem 1.3].

For fixed x, the quantity wt(x) is a continuously increasing function of t, and
moreover there exists a constant c depending only on the dimension d, such that
wt(x) = 1 if |x| < r(t) − c and wt(x) = 0 if |x| > r(t) + c. An important property
of wt is that for any function f on Zd that is discrete harmonic on Br(t)+c we have∑

x∈Zd wt(x)(f(x)− f(0)) = 0. It is natural to replace (2) with

Ẽt := r−d/2
∑
x∈Zd

(
1x∈AT (t)

− wt(x)
)
δx/r, (7)

and interpret Theorem 1.4 as a statement about the distributional limit of Ẽt.
Even with this replacement, Theorem 1.4 differs from Theorem 1.3, since it ad-

dresses only harmonic polynomial test functions ψ and also requires that we replace
them with approximations ψ(m) on the discrete level. It is natural to ask, in general
dimensions, what happens when we try to modify the statement of Theorem 1.4
(interpreted as a sort of distributional limit statement for (7)) to make it read like
the distributional convergence statement of Theorem 1.3. We will discuss this in
more detail in §3.4, but we can summarize the situation roughly as follows:

The restriction to harmonic ψ (as opposed to a more general test function φ)
seems to be necessary in large dimensions because otherwise the derivative of the
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Modification When it matters

Replacing wt in (7) with 1Br No effect when d = 2.
Invalidates result when d > 3.

Keeping wt in (7) but
Replacing ψ(m) with ψ

No effect if d ∈ {2, 3, 4, 5}.
Unclear if d > 5.

Keeping wt in (7) but
Replacing ψ(m) with general

smooth test function φ.

No effect if d ∈ {2, 3}.
Probably invalidates result if d > 3.

test function along ∂B1(0) appears to have a non-trivial effect on (7) (see §3.4).
This is because (7) has a lot of positive mass just outside of the unit sphere and a
lot of negative mass just inside the unit sphere. It may be possible to formulate a
version of Theorem 1.4 (involving some modification of the “mean shape” described
by wt) that uses test functions that are constant in the radial direction in a neigh-
borhood of the ∂B1(0) (instead of using only harmonic test functions), but we will
not address this point here. Deciding whether Theorem 1.2 as stated extends to
higher dimensions requires some number theoretic understanding of the extent to
which the discrepancies between wt and 1Br (as well as the errors that come from
replacing a ψ(m) with a smooth test function φ) average out when one integrates
over a range of times. We will not address these points here either.

1.5 Comparing the GFF and the augmented GFF

Using the last of the three approaches to GFF discussed in Section 1.4, we will
compare the functionals Φg(ψ, t) and Φh(ψ, t), where g is the ordinary GFF and h
is the augmented GFF.

We may write a general vector in Rd as ru where r ∈ [0,∞) and u ∈ Sd−1 :=
∂B1(0). We write the Laplacian in spherical coordinates as

∆ = r1−d
∂

∂r
rd−1

∂

∂r
+ r−2∆Sd−1 . (8)

A polynomial ψ ∈ R[x1, . . . , xd] is called harmonic if ∆ψ is the zero polynomial.
Suppose that ψ is harmonic and homogeneous of degree k. Letting f = ψ|Sd−1 , we
have ψ(ru) = f(u)rk for all u ∈ Sd−1 and r ≥ 0. Setting (8) to zero at r = 1 yields

∆Sd−1f = −k(k + d− 2)f,

i.e., f is an eigenfunction of ∆Sd−1 with eigenvalue −k(k + d − 2). Note that the
expression −k(k + d − 2) is unchanged when the nonnegative integer k is replaced
with the negative integer k′ := −(d − 2) − k. Thus f(u)rk

′
is also harmonic on

Rd \ {0}.

12



Lemma 1.5. Let ψ ∈ R[x1, . . . , xd] be a homogeneous harmonic polynomial of de-
gree k ≥ 0, normalized so that ∫

Sd−1

ψ(u)2du = 1. (9)

Let R be such that the ball BR(0) in Rd has volume t. Then

Var Φg(ψ, t) =
R2k+d

2k + d− 2
(10)

and

Var Φh(ψ, t) =
R2k+d

2k + d
. (11)

Proof. By scaling, the integral of ψ2 over ∂Br(0) is given by rd−1r2k. By the defi-
nition (5) of the augmented GFF, the variance of Φh(ψ, t) equals the L2 norm of ψ
on BR(0):

Var Φh(ψ, t) =

∫
BR(0)

ψ(z)2dz =

∫ R

0
rd−1r2kdr =

Rd+2k

d+ 2k
.

Next we compute the variance of Φg(ψ, t). Consider the function ψR that equals
ψ on the ball BR(0) and is extended harmonically outside BR(0) by the formula

ψR(ru) = Rk−k
′
f(u)rk

′

for r > R. Then −∆ψR = cψσR for a constant c = k−k′
R , where σR is the surface

measure on the sphere ∂BR(0). Hence

Φg(ψ, t) := (g, ψσR) = (g,−1

c
∆ψR) =

1

c
(g, ψR)∇

so that

Var Φg(ψ, t) =
1

c2
(ψR, ψR)∇. (12)

The calculation that remains is to find the Dirichlet energy (ψR, ψR)∇. A stan-
dard identity states that the Dirichlet energy of f , as a function on Sd−1, is given
by the L2 inner product (−∆f, f) = k(k + d− 2). The square of ‖∇ψ‖ is given by
the square of its component along Sd−1 plus the square of its radial component. We
thus find that the Dirichlet energy of ψ on BR(0) is given by∫

BR(0)
‖∇ψ(z)‖2dz = k(k + d− 2)

∫ R

0
rd−1r2(k−1)dr +

∫ R

0
rd−1r2(k−1)k2dr

=
k(k + d− 2)

2k + d− 2
R2k+d−2 +

k2

2k + d− 2
R2k+d−2

= kR2k+d−2.

13



Likewise, the Dirichlet energy of ψR outside of BR(0) can be computed as

R2(k−k′)k(k + d− 2)

∫ ∞
R

rd−1r2(k
′−1)dr +R2(k−k′)

∫ ∞
R

rd−1r2(k
′−1)(k′)2dr,

which (recalling k′ = −(d− 2)− k) simplifies to

−k
2 + k(d− 2) + (k′)2

2k′ + (d− 2)
R2k+d−2 = (k + d− 2)R2k+d−2.

Combining the inside and outside contributions, we obtain (ψR, ψR)∇ = (2k + d −
2)R2k+d−2. Recalling that c = k−k′

R = 2k+d−2
R , the result now follows from (12).

In some ways, the augmented GFF is very similar to the ordinary GFF: when
we restrict attention to an origin-centered annulus, it is possible to construct inde-
pendent Gaussian random distributions h1, h2, and h3 such that h1 has the law of
a constant multiple of the GFF, h1 + h2 has the law of the augmented GFF, and
h1 + h2 + h3 has the law of the ordinary GFF.

In light of Theorem 1.3, the following implies that (up to absolute continuity)
the scaling limit of fixed-time At fluctuations can be described by the GFF itself.

Proposition 1.6. When d = 2, the law ν of the restriction of the GFF to the unit
circle (modulo additive constant) is absolutely continuous w.r.t. the law µ of the
restriction of the augmented GFF restricted to the unit circle.

Proof. The relative entropy of a Gaussian of density e−x
2/2 with respect to a Gaus-

sian of density σ−1e−x
2/(2σ2) is given by

F (σ) =

∫
e−x

2/2
(
(σ−2 − 1)x2/2 + log σ

)
dx = (σ−2 − 1)/2 + log σ.

Note that F ′(σ) = −σ−3 + σ−1, and in particular F ′(1) = 0. Thus the relative
entropy of a centered Gaussian of variance 1 with respect to a centered Gaussian
of variance 1 + a is O(a2). This implies that the relative entropy of µ with respect
to ν — restricted to the jth component αj — is O(j−2). The same holds for the
relative entropy of ν with respect to µ. Because the αj are independent in both µ
and ν, the relative entropy of one of µ and ν with respect to the other is the sum
of the relative entropies of the individual components, and this sum is finite.

2 General dimension

2.1 FKG inequality: Proof of Theorem 1.1

We recall that increasing functions of a Poisson point process are non-negatively
correlated [GK97]. (This is easily derived from the more well known statement
[FKG71] that increasing functions of independent Bernoulli random variables are

14



non-negatively correlated.) Let µ be the simple random walk probability measure
on the space Ω′ of walks W beginning at the origin. Then the randomness for
internal DLA is given by a rate-one Poisson point process on µ × ν where ν is
Lebesgue measure on [0,∞). A realization of this process is a random collection of
points in Ω′ × [0,∞). It is easy to see (for example, using the abelian property of
internal DLA discovered by Diaconis and Fulton [DF91]) that adding an additional
point (w, s) increases the value of AT (t) for all times t. The AT (t) are hence increasing
functions of the Poisson point process, and are non-negatively correlated. Since F
and G are increasing functions of the AT (t), they are also increasing functions of the
point process — and are thus non-negatively correlated.

2.2 Discrete harmonic polynomials

Let ψ(x1, . . . , xd) be a polynomial that is harmonic on Rd, that is

d∑
i=1

∂2ψ

∂x2i
= 0.

Let m ≥ 1. In this section we give a recipe for constructing a polynomial ψ(m) that

is discrete harmonic on the lattice 1
mZd and such that ψ(m) − ψ has degree at most

k − 2, where k is the degree of ψ.
We begin by constructing ψ(1). The requirement of discrete harmonicity is that

d∑
i=1

D2
i ψ(1) = 0

where
D2
i ψ(1) = ψ(1)(x+ ei)− 2ψ(1)(x) + ψ(1)(x− ei)

is the symmetric second difference in direction ei. The construction described below
is nearly the same as the one given by Lovász in [Lov04], except that we have tweaked
it in order to obtain a smaller error term: if ψ has degree k, then ψ−ψ(1) has degree
at most k − 2 instead of k − 1. Discrete harmonic polynomials have been studied
classically, primarily in two variables: see for example Duffin [Duf56], who gives a
construction based on discrete contour integration.

Consider the linear map

Ξ : R[x1, . . . , xd]→ R[x1, . . . , xd]

defined on monomials by

Ξ(xk11 · · ·x
kd
d ) = Pk1(x1) · · ·Pkd(xd)

where Pk is the one-variable polynomial defined by

Pk(y) =

(k−1)/2∏
j=−(k−1)/2

(y + j).
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Lemma 2.1. If ψ ∈ R[x1, . . . , xd] is a polynomial of degree k that is harmonic on
Rd, then the polynomial ψ(1) = Ξ(ψ) is discrete harmonic on Zd, and ψ − ψ(1) is a
polynomial of degree at most k − 2.

Proof. An easy calculation shows that

D2Pk = k(k − 1)Pk−2

from which we see that

D2
i Ξ[ψ] = Ξ[

∂2

∂x2i
ψ].

If ψ is harmonic, then the right side vanishes when summed over i = 1, . . . , d, which
shows that Ξ[ψ] is discrete harmonic.

Note that Pk(y) is even for k even and odd for k odd. In particular, Pk(y)− yk
has degree at most k− 2, which implies that ψ−ψ(1) has degree at most k− 2.

To obtain a discrete harmonic polynomial ψ(m) on the lattice 1
mZd, let k be the

degree of ψ and write ψ = φ + ξ, where φ is homogeneous of degree k, and ξ has
degree at most m − 1. Since ψ is harmonic on Rd, both φ and ξ are harmonic on
Rd. Now set

ψ(m)(x) := m−kφ(1)(mx) +m1−kξ(1)(mx).

Lemma 2.1 ensures that ψ(m) is discrete harmonic on 1
mZd, and that φ − φ(1) and

ξ − ξ(1) have degree at most k − 2. Hence

ψ(x)− ψ(m)(x) = φ(x)−m−kφ(mx) + ξ(x)−m1−kξ(mx) + ε(x)

with ε of degree at most k − 2. Since φ is homogeneous and ξ has degree at most
k − 1, the right side has degree at most k − 2 as desired. Moreover, by adding a
constant to ψ(m) we may also assume that

ψ(0) = ψ(m)(0).

2.3 General-dimensional CLT: Proof of Theorem 1.4

We have defined a discrete time IDLA cluster At = Abtc in which new particles arrive
at integer times, and a continuous time cluster AT (t) where they arrive at Poisson
random times. Both of these are “jump” processes: the former changes suddenly
at integer times, and the latter at Poisson times. For the proof of Theorem 1.4, we
introduce a smoother continuous time process Ãt (used already in [JLS12a]) that
interpolates {An}n∈N.

To define Ã, let G denote the grid comprised of the edges connecting nearest
neighbor vertices of Zd. (As a set, G consists of the points in Rd with at most one
non-integer coordinate.) Now suppose that at each integer time n, a new particle

is added at the origin and performs a Brownian motion {B(n)
t }t≥n on G (instead of
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simple random walk on Zd), starting at B
(n)
n = 0 and stopping at time Tn when it

first hits the set Zd \An. By applying a deterministic time change to the Brownian
motion, we can ensure that Tn < n+ 1. Then for t ∈ [n, n+ 1) we set

Ãt := An ∪ {B(n)
t∧Tn}.

Thus Ãt consists of Abtc plus a single additional point, the location of the currently

active particle; note that Ãt is a multiset at those times t when B
(n)
t ∈ An.

Now let f be a discrete harmonic function on Zd with f(0) = 0. Extend f
linearly along each segment of the grid G, and define

Y (t) =
∑
x∈Ãt

f(x), Z(t) =
∑
x∈Ãt

f(x)2. (13)

For n ≤ s < t ≤ n+ 1 we have Y (t)− Y (s) = F (t)− F (s), where F (t) = f(B
(n)
t∧Tn).

Since f is discrete harmonic and linear on segments of G, we have that F is a
martingale, and hence Y is a martingale. Let

S(t) := lim sup
0=t0<t1<···<tn=t
|ti+1−ti|→0

n−1∑
i=0

(Y (ti+1)− Y (ti))
2.

be the quadratic variation of Y on the interval [0, t]. Write Ft = σ(Ãs|s ≤ t). Then
for n ≤ s < t ≤ n+ 1 we have

E[S(t)− S(s)|Fs] = E[(F (t)− F (s))2|Fs]
= E[F (t)2 − F (s)2|Fs]
= E[Z(t)− Z(s)|Fs].

Thus the process
N(t) := S(t)− Z(t) (14)

is a martingale, a fact that will be useful in the proof below.
Finally, to accommodate Poisson arrivals in the above discussion, write tn =

inf {t : T (t) ≥ n} for the time of the n-th particle’s arrival at 0. Let T̃ be the
random function that coincides with T at all times tn and is linear on each interval
[tn, tn+1] for n ∈ N. Then Ã

T̃ (n)
= AT (n) for n ∈ N. If we define Ỹ and Z̃ by

substituting T̃ (t) for t in (13), then Ỹ (t) is a martingale adapted to the filtration
F̃t := σ(t+, {Ã

T̃ (s)
|s ≤ t}), where t+ = inf{tn|tn ≥ t}. The quadratic variation of Ỹ

is given by S̃(t) := S(T̃ (t)), and hence

Ñ(t) := S̃(t)− Z̃(t) = N(T̃ (t)).
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Proof of Theorem 1.4. Fix m > 0 and a harmonic polynomial ψ ∈ R[x1, . . . , xd].
We consider first the case ψ(0) = 0. The process

Mm(t) := m−d/2
∑

x∈Ã
T̃ (mdt)

ψ(m)(x/m)

is a martingale in t. ThisMm is identical to Φm
A of (6) except that it uses the modified

process Ã
T̃

in place of AT . The difference Mm(t) − Φm
A (t) equals m−d/2ψ(m)(Xt)

for a single point Xt ∈ 1
mAT (mdt). With probability tending to 1 as m → ∞ we

have Xt ∈ B where B is the origin-centered ball of volume 2t. Since ψ(m) ≤ 2ψ is
bounded on B independently of m, it follows that Mm−Φm

A → 0 in law as m→∞.
Thus, it suffices to prove the theorem with Mm in place of Φm

A .
By the martingale representation theorem (see [RY05, Theorem V.1.6]), we can

write Mm(t) = β(Sm(t)), where β is a standard Brownian motion and Sm(t) is the
quadratic variation of Mm on the interval [0, t]. To show that Mm(t) converges in
law as m → ∞ to a Gaussian with variance V :=

∫
Br(t)(0)

ψ(x)2dx, it suffices to

show that for fixed t the random variable Sm(t) converges in law to V .
By standard Riemann integration and the At fluctuation bounds in [JLS12a,

JLS12b] (the weaker bounds of [LBG92] would also suffice here) along with the fact
that T (tmd)/md → t in law, we know that

Zm(t) := m−d
∑

x∈A
T (t)md

ψ(m)(x/m)2 → V

in law as m→∞. Thus it suffices to show that

Nm(t) := Sm(t)− Zm(t) (15)

converges in law to zero. We have Nm(t) = N(T (t)md), where N = S − Z is
the martingale (14) associated to the process Y (s) := m−d

∑
x∈Ãs ψ(m)(x/m). Let

s = tmd. The expected square of N(s) is the sum of the expectations of the squares
of its s increments, each of which is O(m−2d), so EN(s)2 = O(m−d). Thus the
process {N(s)}s≥0 tends to zero in law as m → ∞, and so does its time change
{Nm(t)}t≥0.

When ψ(0) 6= 0, the second term in (6) introduces an asymptotically independent
source or randomness which scales to a Gaussian of variance ψ(0)2t (simply by the
central limit theorem for the Poisson point process), and hence (5) remains correct
in this case.

Similarly, suppose we are given 0 = t0 < t1 < t2 < . . . < t` and functions
ψ1, ψ2, . . . ψ`. The same argument as above, using the martingale in t,

m−d/2
∑̀
j=1

∑
x∈Ã

T̃ (md(t∧tj))

ψj,(m)(x/m)
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implies that
∑`

j=1 Φm
A (ψj , tj) converges in law to a Gaussian with variance

∑̀
j=1

∫
Br(tj)\Br(tj−1)

∑̀
i=j

ψi(x)

2

dx.

The theorem now follows from a standard fact about Gaussian random variables on
a finite dimensional vector spaces (proved using characteristic functions): namely, a
sequence of random variables on a vector space converges in law to a multivariate
Gaussian if and only if all of the one-dimensional projections converge. The law of h
is determined by the fact that it is a centered Gaussian with covariance given by
(4).

3 Dimension two

3.1 Two dimensional central limit theorem

Recall that At for t ∈ Z+ denotes the discrete-time IDLA cluster with exactly t sites,
and AT = AT (t) for t ∈ R+ denotes the continuous-time cluster whose cardinality is
Poisson-distributed with mean t.

For z ∈ Z2, let
F0(z) := inf{t : z ∈ At}

be the first time that z joins the cluster. Consider the lateness function

L0(z) :=
√
F0(z)/π − |z|.

The random variable L0(z) is negative if z joins the cluster early and positive if z
joins the cluster late. The goal of this section is to prove a central limit theorem for
functionals of L0, Theorem 3.1 below.

Fix N <∞, and consider a test function of the form

φ(reiθ) =
∑
|k|≤N

ak(r)e
ikθ (16)

where the ak are smooth functions supported in an interval 0 < r0 ≤ r ≤ r1 < ∞.
We will assume, furthermore, that φ is real-valued. That is, the complex numbers
ak satisfy

a−k(r) = ak(r).

Theorem 3.1. Let

XR :=
1

R2

∑
z∈(Z+iZ)/R

L0(Rz)
φ(z)

|z|2
. (17)
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Then XR → N(0, V0) in law as R→∞, where

V0 =
∑

0<|k|≤N

2π

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)
(ρ
r

)|k|+1 dr

r

∣∣∣∣2 dρρ . (18)

Before proving Theorem 3.1, we explain how it can be interpreted as saying that
L0(Rz) tends weakly to the Gaussian random distribution hnr associated to the
Hilbert space H1

nr with norm

‖η‖2nr =
∑

0<|k|<∞

2π

∫ ∞
0

[|r∂rηk|2 + (|k|+ 1)2|ηk|2]
dr

r

where

ηk(r) =
1

2π

∫ 2π

0
η(reiθ)e−ikθdθ.

(The subscript nr means nonradial: H1
nr is the orthogonal complement of radial

functions in the Sobolev space H1.) We will see below that the factor of 1/|z|2
in (17) is natural from the point of view of a change of variables y = log r where
z = reiθ.

We first consider a simpler space. For fixed q ≥ 0, let Hq be the Hilbert space
of compactly supported functions f : R→ R with inner product

(f, g)q :=

∫ ∞
−∞

(f ′(y)g′(y) + q2f(y)g(y))dy.

Lemma 3.2. For ψ ∈ L2(R), denote

‖ψ‖q,∗ = sup

∫ ∞
−∞

ψ(y)f(y)dy

where the supremum is over all f ∈ Hq subject to the constraint

(f, f)q ≤ 1.

Then

‖ψ‖2q,∗ =

∫ ∞
−∞

∣∣∣∣∫ ∞
s

ψ(y)eq(s−y)dy

∣∣∣∣2 ds. (19)

Proof. In the case q = 0, replace f in

∫
ψf dy with

f(y) =

∫ y

−∞
f ′(s)ds

change order of integration and apply the Cauchy-Schwarz inequality. For the case
q > 0, multiply by the appropriate factors eqy and e2qy to deduce this from the case
q = 0.
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Lemma 3.3. Let φ be a test function of the form (16), and define

‖φ‖∗ = sup
η

∫
R2

η(z)
φ(z)

|z|2
dz

where the supremum is taken over all η ∈ H1
nr with ‖η‖nr ≤ 1. Then

‖φ‖2∗ = V0

where V0 is given by (18).

Proof. Recall that a−k = āk and η−k = η̄k. Writing the integral in polar coordinates
z = reiθ and substituting y = log r, we obtain∫ 2π

0

∫ ∞
0

η(z)
φ(z)

r2
rdrdθ = 2π

∑
0<|k|≤N

∫ ∞
0

ak(r)η̄k(r)
dr

r

= 2π
∑

0<|k|≤N

∫ ∞
−∞

ψk(y)f̄k(y) dy

where ψk(y) := ak(e
y) and fk(y) := ηk(e

y). The constraint ‖η‖nr ≤ 1 is equivalent
to ∑

0<|k|<∞

∫ ∞
−∞

(|f ′k|2 + (|k|+ 1)2|fk|2)dy ≤
1

2π

hence

‖φ‖∗ =
2π√
2π

 ∑
0<|k|≤N

‖ψk‖2|k|+1,∗

1/2

Changing variables back to r = ey in Lemma 3.2, the square of the right side equals
V0.

Remark. We can now give the promised interpretation of Theorem 3.1. For each
continuous linear functional Ψ on H1

nr, the random variable Ψ(hnr) is a centered
Gaussian of variance ‖Ψ‖2, where

‖Ψ‖ = sup{Ψ(η) : ‖η‖nr ≤ 1}.

By the definition of ‖φ‖∗, the functional Ψφ(η) :=
∫
R2 η(z)φ(z)|z|2 dz has norm ‖Ψφ‖ =

‖φ‖∗, so Ψφ(hnr) has variance ‖φ‖2∗ = V0.

To begin the proof of Theorem 3.1, let p0(z) = 1, and for k ≥ 1 let pk(z) =
qk(z)− qk(0), where

qk(z) = Ξ[zk]
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is the discrete harmonic polynomial associated to zk = (x + iy)k as described in
§2.2. The sequence pk begins

1, z, z2, z3 − 1

4
z̄, z4 − zz̄, . . . .

For instance, to compute p3, we expand

z3 = x3 − 3xy2 + i
[
3x2y − y3

]
and apply Ξ to each monomial, obtaining

p3(z) = (x−1)x(x+ 1)−3x(y− 1

2
)(y+

1

2
) + i

[
3(x− 1

2
)(x+

1

2
)y − (y − 1)y(y + 1)

]
which simplifies to z3− 1

4 z̄. One readily checks that this defines a discrete harmonic
function on Z + iZ. (In fact, z3 is itself discrete harmonic, but zk is not for k ≥ 4.)
To define pk for negative k, we set p−k(z) = pk(z).

Define

ψ(z, t, R) =

N∑
k=−N

ak(
√
t/πR2)pk(z)(

√
t/π)−|k|

and
ψ0(z, t, R) = ψ(z, t, R)− a0(

√
t/πR2)

Lemma 3.4. If c1R
2 ≤ t ≤ c2R2 and ||z| −

√
t/π| ≤ C logR, then

|ψ(z, t, R)− φ(z/R)| ≤ C(logR)/R

This lemma follows easily from the fact that the coefficients ak are smooth and
the bound |pk(z)− zk| ≤ C|z|k−1 for k ≥ 1.

Lemma 3.5. (Van der Corput)

(a) |#{z ∈ Z + iZ : π|z|2 ≤ t} − t| ≤ Ct1/3.

(b) For k ≥ 1,

t−k/2

∣∣∣∣∣ ∑
z∈Z+iZ

zk 1π|z|2≤t

∣∣∣∣∣ ≤ Ct1/3.
(c) For k ≥ 1,

t−k/2

∣∣∣∣∣ ∑
z∈Z+iZ

pk(z) 1π|z|2≤t

∣∣∣∣∣ ≤ Ct1/3.

22



Part (a) of this lemma was proved by van der Corput in the 1920s (See [GS10],
Theorem 87 p. 484). Part (b) follows from the same method, and we defer the proof
to §3.3. Part (c) follows from part (b) and the stronger estimate of Lemma 2.1,
|pk(z)− zk| ≤ C|z|k−2 for k ≥ 2 (and p1(z)− z = 0).

Now we have assembled the necessary ingredients to prove Theorem 3.1. Write
the lateness function in the form

L0(z) =
1

2
√
π

∫ ∞
0

(1− 1At)t
1/2dt

t
− 1

2
√
π

∫ ∞
0

(1− 1π|z|2≤t)t
1/2dt

t

=
1

2
√
π

∫ ∞
0

(1π|z|2≤t − 1At)t
1/2dt

t
.

The random variable XR appearing in Theorem 3.1 then takes the form

XR =
∑

z∈Z+iZ
L0(z)

φ(z/R)

|z|2

=
1

2
√
π

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1At)
φ(z/R)

|z|2
t1/2

dt

t

=
1

2
√
π

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1At)
ψ(z, t, R)

t/π
t1/2

dt

t
+ ER.

To estimate the error term ER, note first that the coefficients ak are supported
in a fixed annulus, the integrand above is supported in the range c1R

2 ≤ t ≤
c2R

2. Furthermore, by [JLS12a], there is an absolute constant C such that for all
sufficiently large R and all t in this range, the difference 1π|z|2≤t − 1At is supported

on the set of z ∈ Z2 such that ||z| −
√
t/π| ≤ C logR. Thus∑

z∈Z+iZ
|1π|z|2≤t − 1At | ≤ KR logR.

Moreover, Lemma 3.4 applies and

|ER| ≤ C
∫ c2R2

c1R2

(R logR)
logR

R
t−1/2

dt

t
= O((logR)2/R).

Next, Lemma 3.5(a) says (since #At = t)∣∣∣∣∣ ∑
z∈Z+iZ

1π|z|2≤t − 1At

∣∣∣∣∣ ≤ Ct1/3.
Thus replacing ψ by ψ0 gives an additional error of size at most

C

∫ c2R2

c1R2

t1/3t−1/2
dt

t
= O(R−1/3).
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In all,

XR =

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1At)ψ0(z, t, R)t−1/2
dt

t
+O(R−1/3) (20)

For s = 0, 1, . . . , consider the process

M(s) =

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1As∧t)ψ0(z, t, R)t−1/2
dt

t

Note that M(s)→ XR as s→∞. Note also that Lemma 3.5(c) implies

M(0) = O(R−1/3).

Because pk are discrete harmonic and pk(0) = 0 for all k 6= 0, M(s) − M(0) is
a martingale. It remains to show that M(s) − M(0) −→ N(0, V0) in law. As
outlined below, this will follow from the martingale central limit theorem (see, e.g.,
[Bro71, HH80] or [Dur95, p. 414]).

For sufficiently large R, the difference M(s+ 1)−M(s) is nonzero only for s in
the range c1R

2 ≤ s ≤ c2R2; and |F0(z)− π|z|2| ≤ CR logR. We now show that this
implies

|M(s+ 1)−M(s)|2 = O(1/R2) (21)

and
∞∑
s=0

|M(s+ 1)−M(s)|2 = V0 +O((logR)/R) (22)

so that the martingale central limit theorem applies.
To prove (21), observe that

M(s+ 1)−M(s) = −
√
π

2

∫ ∞
F0(z)

ψ0(z, t, R)t−1/2
dt

t

where z is the (s+1)th point ofAt. Then |z| ≤
√
t/π+K logR implies |pk(z)|(t/π)−|k|/2 ≤

C, and hence
|ψ0(z, t, R)| ≤ C

Recalling that ψ0 = 0 unless c1R
2 ≤ t ≤ c2R2, we have

|M(s+ 1)−M(s)| ≤ C
∫ c2R2

c1R2

t−1/2
dt

t
= O(1/R)

which confirms (21).
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Because At fills the lattice Z + iZ as t→∞, we have

∞∑
s=0

|M(s+ 1)−M(s)|2

=
∑

z∈Z+iZ

∣∣∣∣∣∣
√
π

2

∫ ∞
F0(z)

∑
0<|k|≤N

ak(
√
t/πR2)pk(z)(t/π)−|k|/2t−1/2

dt

t

∣∣∣∣∣∣
2

.

We prove (22) in three steps: replace pk(z) by zk (or z̄|k| if k < 0); replace the lower
limit F0(z) by π|z|2; replace the sum of z over lattice sites with the integral with
respect to Lebesgue measure in the complex z-plane.

We begin the proof of (22) by noting that the error term introduced by replacing
pk with zk is

|pk(z)− zk|(t/π)−|k|/2 ≤ Ckt−1 = O(1/R2)

In the integral this is majorized by∫ c2R2

c1R2

t−1/2
dt

t

∫ c2R2

c1R2

1

R2
t−1/2

dt

t
= O(1/R4)

Since there are O(R2) such terms, this change contributes order R2/R4 = 1/R2 to
the sum.

Next, we change the lower limit from F0(z) to π|z|2. Since |F0(z) − π|z|2| ≤
CR logR, the integral inside | · · · |2 is changed by∫ π|z|2

F0(z)
1c1R2≤c2R2t−1/2

dt

t
= O((logR)/R2)

Thus the change in the whole expression is majorized by the order of the cross term

(1/R)(logR)/R2 = (logR)/R3

Again there are R2 terms in the sum over z, so the sum of the errors is O((logR)/R).
Lastly, we replace the value at each site z0 by the integral

∫
Qz0

∣∣∣∣∣∣
√
π

2

∫ ∞
πr2

∑
0<|k|≤N

ak(
√
t/πR2)rkeikθ(t/π)−|k|/2t−1/2

dt

t

∣∣∣∣∣∣
2

rdrdθ

where Qz0 is the unit square centered at z0 and z = reiθ. Because the square has
area 1, the term in the lattice sum is the same as this integral with z = reiθ replaced
by z0 at each occurrence. Since |z − z0| ≤

√
2,

|zk − zk0 | ≤ 4k(|z|+ |z0|)k−1 = O(Rk−1)
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After we divide by (
√
t/π)k, the order of error is 1/R. Adding all the errors con-

tributes at most order 1/R to the sum. We must also take into account the change in
the lower limit of the integral, π|z0|2 is replaced by π|z|2 = πr2. Since |z−z0| ≤

√
2,

||z|2 − |z0|2| ≤
√

2(|z|+ |z0|) ≤ CR

Recall that in the previous step we previously changed the lower limit by O(R logR).
Thus by the same argument, this smaller change gives rise to an error of order 1/R
in the sum over z0.

The proof of (22) is now reduced to evaluating

∫ 2π

0

∫ ∞
0

∣∣∣∣∣∣
√
π

2

∫ ∞
πr2

∑
0<|k|≤N

ak(
√
t/πR2)r|k|eikθ(t/π)−|k|/2t−1/2

dt

t

∣∣∣∣∣∣
2

rdrdθ

Integrating in θ and changing variables from r to ρ = r/R,

=
π2

2

∑
0<|k|≤N

∫ ∞
0

∣∣∣∣∫ ∞
πρ2R2

ak(
√
t/πR2)(Rρ)|k|+1(t/π)−|k|/2t−1/2

dt

t

∣∣∣∣2 dρρ
Then change variables from t to to r =

√
t/πR2 to obtain

= 2π
∑

0<|k|≤N

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)(ρ/r)
|k|+1dr

r

∣∣∣∣2 dρρ = V0.

This completes the proof of Theorem 3.1.

3.2 Proof of Theorem 1.2

Next we adapt Theorem 3.1 to the continuous time cluster AT . The corresponding
lateness function L(z) was defined in §1.3. Letting φ be a test function of the form
(16), the a0 coefficient now figures in the limit formula as follows.

Theorem 3.6. As R→∞,

1

R2

∑
z∈(Z+iZ)/R

L(Rz)
φ(z)

|z|2
−→ N(0, V )

in law, where

V =
∑
|k|≤N

2π

∫ ∞
0

∣∣∣∣∫ ∞
ρ

ak(r)
(ρ
r

)|k|+1 dr

r

∣∣∣∣2 dρρ . (23)
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Analogously to the remark following Theorem 3.1, we can interpret Theorem 3.6
as saying that that L(Rz) tends weakly to the Gaussian random distribution h
associated to the Hilbert space H1 with norm

‖η‖2 =

∞∑
k=−∞

2π

∫ ∞
0

[|r∂rηk|2 + (|k|+ 1)2|ηk|2]
dr

r

where the term k = 0 corresponding to the radial function η0 is now included in
the sum. This random distribution is precisely the 2-dimensional augmented GFF.
To see why, consider the harmonic polynomial ψ(z) = 1√

2π
zk and the corresponding

random variable Φh(ψ, t) obtained by integrating hψ over the surface of the origin-
centered circle ∂BR(0) enclosing area t. If φ(z)/|z|2 = δ(|z|−R)ψ(z) (note that this
φ is not in the class of test functions for which we prove convergence; we are using it
only for the purpose of checking that h is the augmented GFF) then (23) becomes

V = 2π

∫ ∞
0

∣∣∣∣∫ ∞
ρ

δ(r −R)
1√
2π
rk+2

(ρ
r

)k+1 dr

r

∣∣∣∣2 dρρ .
The inner integral vanishes unless ρ ≤ R, leaving

V =

∫ R

0
ρ2(k+1)dρ

ρ
=
R2k+2

2k + 2

in agreement with the variance calculation (11) in the case d = 2.
As in the proof of Theorem 1.4, the convergence in law of all one-dimensional

projections to the appropriate normal random variables implies the corresponding
result for the joint distribution of any finite collection of such projections. Hence,
Theorem 3.6 is a restatement of Theorem 1.2.

By way of comparison, the usual Gaussian free field is the one associated to the
Dirichlet norm ∫

R2

|∇η|2dxdy =

∞∑
k=−∞

2π

∫ ∞
0

[|r∂rηk|2 + k2|ηk|2]
dr

r
.

Comparing these two norms, we see that the second term in ‖η‖2 has an additional
+1, hence our choice of the term “augmented Gaussian free field.” As derived in
§1.5, this +1 results in a smaller variance 1

2k+dR
2k+d in each spherical mode of

degree k of the augmented GFF, as compared to 1
2k+d−2R

2k+d for the usual GFF.
The surface area of the sphere is implicit in the normalization (9), and is accounted
for here in the factors 2π above.

The proof of Theorem 3.6 follows the same idea as the proof of Theorem 3.1.
We replace At by the continuous time cluster AT (for T = T (t)), and we need to
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find the limit as R→∞ of
√
π

2

∫ ∞
0

(t− T (t))a0(
√
t/πR2)t−1/2

dt

t

+

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1AT )ψ0(z, t, R)t−1/2
dt

t

The error terms in the estimation showing this quantity is within O(R−1/3) of

1

R2

∑
z∈(Z+iZ)/R

L(Rz)
φ(z)

|z|2

are nearly the same as in the previous proof. We describe briefly the differences.
The difference between Poisson time and ordinary counting is

|#AT −#At| = |T (t)− t| ≤ Ct1/2 log t = O(R logR) almost surely

if t ≈ R2. It follows that for |z| ≈ R,

|F (z)− π|z|2| = O(R logR) almost surely

as in the previous proof for F0(z). Further errors are also controlled since we then
have the estimate analogous to the one above for At, namely∑

z∈Z+iZ
|1π|z|2≤t − 1AT | ≤ CR logR

We consider the continuous time martingale

M(s) =

√
π

2

∫ ∞
0

(s ∧ t− T (s ∧ t))a0(
√
t/πR2)t−1/2

dt

t

+

√
π

2

∫ ∞
0

∑
z∈Z+iZ

(1π|z|2≤t − 1AT (s∧t))ψ0(z, t, R)t−1/2
dt

t

Instead of using the martingale central limit theorem, we use the martingale repre-
sentation theorem. This says that the martingale M(s) when reparameterized by
its quadratic variation has the same law as Brownian motion. We must show that
almost surely the quadratic variation of M on 0 ≤ s <∞ is V +O(R−1/3).

lim
ε→0

E ((M(s+ ε)−M(s))2|AT (s))/ε

=
1

2π

∫ 2π

0

∣∣∣∣∣∣
√
π

2

∫ ∞
s

∑
|k|≤N

ak(
√
t/πR2)eikθ)(s/t)|k|/2t−1/2

dt

t

∣∣∣∣∣∣
2

dθ

+O(R−1/3)

Integrating with respect to s gives the quadratic variation V + O(R−1/3) after a
suitable change of variable as in the proof of Theorem 3.1.
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3.3 Van der Corput bounds

This section is devoted to the proof of part (b) of Lemma 3.5.
We prove an generalization of part (b) to all dimensions. To formulate it, let

Pk be a harmonic polynomial on Rd that is homogeneous of degree k. Normalize so
that

max
x∈B
|Pk(x)| = 1

where B is the unit ball in Rd. In this discussion k will be fixed and the constants
are allowed to depend on k and d. We are going to show that for k ≥ 1,∣∣∣∣∣∣ 1

Rd

∑
|x|<R, x∈Zd

Pk(x)/Rk

∣∣∣∣∣∣ ≤ CR−1−α
where

α = 1− 2/(d+ 1).

In dimension d = 2 we take Pk(x) = (x1 + ix2)
k; in this case α = 1/3, and

RdR−1−α = R2/3 ≈ t1/3, so we recover the claim of part (b).
The van der Corput theorem is the case k = 0. It says

(1/Rd)
∣∣∣#{x ∈ Zd : |x| < R

}
− vol (|x| < R)

∣∣∣ ≤ CR−1−α
Let ε = 1/Rα.

Consider ρ a smooth, radial function on Rd with integral 1 supported in the unit
ball. Then define χ = 1B characteristic function of the unit ball. Denote

ρε(x) = ε−dρ(x/ε), χR(x) = R−dχ(x/R)

Then ∣∣∣∣∣∣
∑
x∈Zd

(χR ∗ ρε(x)− χR(x))Pk(x)/Rk

∣∣∣∣∣∣ ≤ CR−1−α
This is because χR ∗ρε(x)−χR(x) is nonzero only in the annulus of width 2ε around
|x| = R in which (by the van der Corput bound) there are O(Rd−1ε) lattice points.

The Poisson summation formula implies∑
x∈Zd

χR ∗ ρε(x)Pk(x)/Rk =
∑

ξ∈2πZd
[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)/Rk

in the sense of distributions. The Fourier transform of a polynomial is a derivative
of the delta function, P̂k(ξ) = Pk(i∂ξ)δ(ξ). Because k ≥ 1 and Pk(x) is harmonic,
its average with repect to any radial function is zero. This is expressed in the dual
variable as the fact that when ξ = 0,

Pk(i∂ξ)[χ̂R(ξ)ρ̂ε(ξ)] = 0
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So we our sum equals ∑
ξ 6=0, ξ∈2πZd

[χ̂R(ξ)ρ̂ε(ξ)] ∗ P̂k(ξ)/Rk

Next look at
χ̂R(ξ) = χ̂(Rξ)

Pk(i∂ξ)χ̂(Rξ) = Rk
∫
|x|<1

Pk(x)e−iRx·ξdx

All the terms in which fewer derivatives fall on χ̂R and more fall on ρε give much
smaller expressions: the factor R corresponding to each such differentiation is re-
placed by an ε.

The asymptotics of this oscillatory integral above are well known. For any fixed
polynomial P they are of the same order of magnitude as for P ≡ 1, namely

|Pk(i∂ξ)χ̂(Rξ)|/Rk ≤ Ck|Rξ|−(d+1)/2

This is proved by the method of stationary phase and can also be derived from well
known asymptotics of Bessel functions.

It follows that our sum is majorized by (replacing the letter d by n so that it
does not get mixed up with the differential dr)∫ ∞

1
(Rr)−(n+1) rn−1dr

(1 + εr)N
≈
∫ 1/ε

1
(Rr)−(n+1)rn

dr

r

≈ R−(n+1)/2ε−(n−1)/2

= R−1−α.

3.4 Fixed time fluctuations: Proof of Theorem 1.3

Theorem 1.3 follows almost immediately from the d = 2 case of Theorem 1.4 and
the estimates above. Consider (φ, Ẽt) where Ẽt is as in (7). What happens if we
replace φ with a function φ̃ that is discrete harmonic on the rescaled mesh m−1Zd
within a logm/m neighborhood of B1(0)? Clearly, if φ is smooth, we will have
φ − φ̃ = O(m−1 logm). Since there are at most O(md−1 logm) non-zero terms in
(7), the discrepancy in

(φ, Ẽt)− (φ̃, Ẽt) = O
(
m−d/2md−1(m−1 logm) logm

)
= O

(
md/2−2(logm)2

)
, (24)

which tends to zero as long as d ∈ {2, 3}.
The fact that replacing Et with Ẽt has a negligible effect follows from the above

estimates when d = 2. This may also hold when d = 3, but we will not prove it
here. Instead we remark that Theorem 1.3 holds in three dimensions provided that
we replace (2) with (7), and that the theorem as stated probably fails in higher
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dimensions even if we make a such a replacement. The reason is that (7) is positive
at points slightly outside of Br (or outside of the support of wt) and negative at
points slightly inside. If we replace a discrete harmonic polynomial ψ with a function
that agrees with ψ on B1(0) but has a different derivative along portions of ∂B1(0),
this may produce a non-trivial effect (by the discussion above) when d ≥ 4.

Finally, we note that replacing ψm by ψ introduces an error of order m−2, and
the same argument as above gives

(ψ, Ẽt)− (ψ̃m, Ẽt) = O
(
m−d/2md−1m−2 logm

)
= O

(
md/2−3(logm)

)
, (25)

which tends to zero when d ∈ {2, 3, 4, 5}.
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