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ON INFORMATION FLOW IN RELAY NETWORKS
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Preliminary investigations in [1] has shown
that a max-flow min-cut interpretation for the cap-
acity expressions of the classes of degraded and
semideterministic relay channels can be found. 1In
this paper, we show that such an interpretation can
also be found for fairly general classes of dis-
crete memoryless relay networks.

The general discrete memoryless relay network
(Figure 1) consists of a source X. that sends
information to a sink Y. with the help of N inter-

. 0 v
mediate relay sender-receiver pairs (Xi’ Yi)
The dependence of the received symbols
(g» Yyreees¥y) € Yy X Y X..x Y on the trans-

mitted symbols (xo, xl,...,xN) EIOx ;1 XeooX 1N is
specified by the probability transition matrix

P(Yo» yl)"°:y}Jx0, xl,...,xN).
An (M,n) code for network consists of a set of
intergersm = {1,2,...,M} an encoding function
n
Xo* m X, » a set of relay functions {fij]
such that

X )llijf_nl

19 = £330y Yy40
liii“'ﬁg(ﬁy“”ﬁJ’

i.e., x ¢ jth component of_gi, and a decoding

1]
function g: yg <+ M. For generality, all functions
are allowed to be stochastic functions. The input
xij is allowed to depend only on the past received
signals at the ith node, i.e., é’il""’yij—l)'
The network is memoryless in the sense that

coey th t
(YOi’yli’ yNi) depends on the pas
(xé,xi,...,x;) only through the present transmitted

rubols (XOi’xli""’xNi). Therefore, the joint

probability mass function on M x 13 x :? X ou.
n n n n

x%N xﬂo x 31 X .o. XYy is given by

p(w,gso.gl. SERRe 815 795 TR .1N) =

s i-1 i-1
p T plxy ) woee Jyi ™. e yi T -
i-1 P o1 14 71 wi N (cont.)

'KYOi'""yNilXOi""’xNi) (1)
where p(w) 1s the probability distribution on the
message w € M. If the message w eMis sent, let

aon 4 opr {8y # W[W = v} ()

denote the conditional probability of error. De-
fine the average probability of error of the code,
assuming a uniform distribution over the set of all
messages w €M, as
Py =L1lIAG)- (3
Mw

A
Let Xn = max A(w) be the maximal probability of
weEM

error for the (M,n) code.
code is defined to be

The rate R of an (M,n)

R = % log M bits/transmission. (4)

The rate R is said to be achievable by the net-
work 1f, for any € > 0, and for all n sufficiently

large, there exists an (M,n) cede with M > 2°X
such that f;n < € . The capacity C of the net~

work is the supremum of the set of achievable rates.

In [2-4], the relay network with N = 1 (called
the relay channel) was investigated. The capacity
was established in [3,4] for several special cases
including the degraded, reversely degraded, and
semi-deterministic classes. General lower and
upper bounds to capacity were givem in [3]. The
capacity of the general relay channel is not known.

In this paper we extend these results to es-
tablish the capacity of deterministic relay net-
works with no interference and degraded relay
networks. We first give a general upper bound to
the capacity of any relay network. This upper
annd is a natural generalization of Theorem 4 in

3].

Theorem 1: For the general discrete memoryless

relay network )

(10 XXy X ... xzn.p(yo,yl,---.ynl xo.xl.-u,xN).

Yo X yl X .o X yN) having intermediate nodes (Fig-
ure 1), the capacity C 1is bounded above by

C < max min [I(E(S);X(_S—) !E(Sc)), for all S
P(xosxl----’xn) (cont. next page)
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such that S ¢ {0,1,...,N}, SyS = sus® =
{0,1,...,8}, sns = {0}, sns® = ¢,

E-s°u{o}] (5)
where X (S), Zﬂg) are the vectors defined by:

X(s) = (X 05X, ), for 5 = {0,4,,...,1,}

.
K 1

2 X, 5o
0] i1
and

Y(S) = (&(0,‘1j seeesY r)’ for S = {O,jl,...,jz}
1 J

see [5].

]
proof:

Remarks:
1. For the relay channel (N=1)

< . .

€ < max min [I(xo,xl,Yo), I(XO,YO,Y]_[Xl)] 6)

p(x.sX%.)
0’71

which is Theorem 4 in [3]. All knowm capacity re-

" sults for the relay channel achieve equality in (6).

2, The upper bound in Theorem 1 has the following

max-flow min-cut interpretation. There are 2? dif-
ferent terms in (5). For any joint probabIIity mass

function p(xo,x ,...,xN), the term

I(E(S);ngflx(s )) upper bounds the rate of in~
formation flow from the senders X (S) to the
receivers Y (S). This corresponds to the "capacity"”
of the cut in which the nodes belonging to § are
on one side and nodes belonging to S are on the
other. The maximum over all p(x ,xl,...,xN) of the
minimum of the cut capacities giges the upper
bound.

The right member of (5) is achieved for the
following two classes of relay network:

1. Deterministic relay network with no interference:

This is depicted in Figure 2 for N=2. 1In
general, each relay 1 < } < N receives N symbols

yj = (yoj’°"’ykj""’yn.j’ where
= hkj (xk)’ a deterministic function of

y
k]
X k # j. The sink yoreceives (N+1) symbols.

The capacity of the relay network depicted
in Figure 2 is given by.

Theorem 2:

C = ?:p) x IpCx )min H(YOO,YOI,XOZ),H(YOO,YOI) +
PiXy/Pixy IPIX,
BV, %)) H(Y g Y, ) + HOY Y00 R(Y ) +

H(Ylo) + H(Yzo)

Proof:

The proof uses the standard techniques of
random coding, superposition and time sharing (see
[1]) in addition to proving that only one of the
two links joining the two relays may be needed to
achieve the capacity. The details of the proof can
be found in [5].

Theorem 2 can be generalized to any N > 2 as
follows.

Theorem 3: The capacity C of the deterministic
N-node relay network with no interference is given
by

C= H(Xa’"g), for all

b
min ce S

sup
P(xo)p(xl)p(xz) 1

sg {0,1,...,N} such that S 'S = {0} , and

sus = {0,1,...,N} |, )

veesY y, for S =

A
where H(gl’s) H(Y a,jl

Y s
a,0 a,jl

A
{0,11,---,j£} , & €S, and Yi,j = the received

at the jth node corresponding to the ith node
sender.

2. Degraded Relay Networks:
The discrete memoryless relay network

(X XAy Xevex gy P(Yo,yl.---,ny

xo,x_,...,xN), Yg X Yy X ...xyN) is said to be
degraded if p(yo,yl,...,yN]xo,xl,...,xN) can be
written in the form p(yo’yl”°"lexO’xl""’xN) =

Py, Ixgex P, vy ax ;) coply, Ly, omy ux )

LI PR e B 1eN ) SUS ) (8

Thus YO

signal YN

is a random degradation of the relay
and each Yi is a random
Note that for

degradation of Y for 2 < i < N.

i-1

each fixed assignment of (xo,xl,...,xN), the relay

outputs (Yl""’YN’YO) are conditionally distrib-

uted as a Markox chain Y1 »> Y2 LT YN > YO'
We first give the capacity for N=2.

Theorem 4:

The capacity C of the degraded relay net-

network having two intermediate nodes (N=2) is
given by ‘
C= sup min I(XO;Yli xl,xz),
P(xolxl :xz)
L(X0, X 37, X,) s (XX, 2X,3Y0) 9

where the supremum is over all joint probability

massg functions p(xo,xl,xz) op I’O X .‘11 X 12.

Proof:
The proof involves three partitions (see Fig-
ure 3). = an
1) A random partition gf [1,27"] into 2
bins S e [1,2 1],
®1,1 nR"’
2) A random partition of [1,2nR] into 2 2
, , nR'2
bins S ¢ s e [1,2 1.
S 9,9 2,3
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XIR an'
3) A random partitiom of [1,2 1] into 2 2
"

bins S" ,, ,5'2 j € [1,2 2] . These partitions
SZ,i »
allow us to send information to the sink using the
technique of random binning [1].
The information in the network during block
i is summarized in Table 1.
The details of the proof are ginen in [5].

Theorem 5: The capacity C of the N-node degraded
relay netwrok defined by

C = max min
p(xos...,xN) 0<i<N

LG SPP ’Xi;Yi+le1+1’ T )

A
ar " Y00
The m®maximum jig over all joint probability mass
functions p(xo,xl,...,xn)

1Dx:1] X ... xth.

Note: It is shown in [5] that the result
in Theorem 5 can be used to establish the capacity
of arbitrary relay networks with feedback.

where

(10)
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Figure 1

General Discrete Memoryless Relay Network
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Figure 2

Deterministic Relay Network with No Interference
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Figure 3
Partitions of Codewords
Source First Relay | Second Relay Sink
Information at | w, 1.5, .. W yeSy g0 | 5208y goue | ¥g_ge5 goae
the end of 1-1°%1,8 ’l 1%, st 2'31,4-1 ss 3°%1,4-2
block (1-1) 2,14 2,441 2,1 2,41
Transmission 50“'1"].1"2.1) 5|(sl.1|’2.i) 52(:2.‘) PO
Received - . -
signay | Tt 3 20) %1
Information at | w.,s LS Sy oMy g0 Sy 5287 5 1
the end of i si' Taiel? sx.c -1 24t I
block 1 2,142 2,442 2,141 i-2
Table )

Information in the Network during Block i




