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The  pair (A, B); A, Bc_{O, 1 } ' ;  is called an (m, 8)-system, if for the  H a m m i n g  distance 

function d, 

d(a ,b)=SVa~A,  Vb~B. (1) 

Let  S~  denote  the set of those systems. W e  consider the  function 

M(m, 8)a----max{iA[ [BI: (A, B)e S'~} (2) 

and prove the following Theorem:  For m = 1, 2 . . . . .  maxo.~s.~ m M(m, 8) = 22n, if m = 2n  or 
m = 2n  + 1. The  m a x i m u m  is assumed for 8 = n. 

1. Introduction 

The study of (m, 8)-systems is motivated by the problem of lower bounding the 
two-way complexity (in the sense of Yao [1]) of the Hamming distance function. 
Results in this direction will be contained in [2]. 

Two-family extremal problems have frequently been considered in the litera- 
ture [3]. Replacement of (1) by 

d(a,b)>~8 Va~A,  Vb~B (1') 

yields an extremal problem, which has been solved in [4]. However, in spite of the 
similarity between conditions (1) and (1'), the present proof techniques are quite 
different from those in [4]. Actually, we give two proofs of the Theorem. The first 
is by a 1-step and the second by a 2-step induction in m. The examples 

A ~{01, 10}", B ~{11, 00}" (3) 

A =a {01, ~0}" x {0}, B ~ {11, 00}" × {0} (4) 

are crucial for understanding the Theorem. They immediately yield 
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Lelnm~l 1. 

M ( 2 n ,  n)>~2 2", M ( 2 n + l , n ) > ~ 2  2" ( n = l , 2 , . . . )  

Thus only the inequality 

max M ( m ,  8 ) ~ 2  2n (I) 

remains to be proved. 
First we show that this inequality follows from either one  of the following two 

propositions. Actually, these derivations establish also their equivalence. The 
proofs for the propositions will be given subsequently. 

Proposit ion 1. M ( 2 n  + 1, n) = M ( 2 n ,  n), (n = 1, 2 . . . .  ). 

P r o p o s i t i o n  2. M ( 2 n ,  n ) ~ 2  2", (n = 1, 2 . . . .  ). 

2. Prel iminaries  

The o p e r a t i o n -  applied to a sequence denotes complementation, that is, 
component-wise exchange of O's and l 's .  When applied to a set of sequences, it is 
understood in the M i n k o w s k i  sense. For ease of reference, a simple property of 
the Hamming distance function with respect to complementation is stated as 

L e ~ m a  2. (i) d(gt, b ) + d ( a ,  b) = m, d(a, ~) = d(a,  b), (a, b •{0, 1}"), 
(ii) (A, B) • S~ ~ (A, B) • S~-s,  

(iii) M ( m ,  ~) = M ( m ,  m - ~). 

We also adopt the following notation: For a set C c {0, 1}" and e • {0, 1} define 

t A C~={(cx . . . . .  c ~ ) •  C: c~ = e}c{0 ,  1} m (5) 

C , t  A r t  ----ll.cx, • • • ,  Ct-1, c~+1 . . . .  , c .~):  

(cl . . . . .  c,-1, e, c,+1 . . . . .  c~) • C}c{0 ,  1} "-1  (6) 

Analogously, for two components s, t we define C~,~st c {0, 1}" and C*S',~ c {0, 1}m-2. 

3 .  P r o p o s i t i o n  1 ::> P r o p o s i t i o n  2 

We proceed by induction in n. The  case n = 1 is settled by inspection. Now for 
(A, o)°~ =~ o,+X~2(n+l) , clearly 

A = A I U A ~ ,  B = B ~ t . J B ~  (7) 
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and for e ~ {0, 1} 

Im*ll = IN]l, I/3"11--IB-~I; 

Im,*~l IB ~*~1 ~< M(2n + 1, n + 1); 

Im*~l IB*~I <~M(2n + 1, n). 

(8) 
(9) 

(lO) 

Since by Lemma 2, M(2n + 1, n + 1) = M(2n + 1, n), the relations (7)-(10) and 
Proposition 1 imply 

[ALIBI= ~ [A~IIB~I~4M(2n, n). (11) 
eme{0,1} 

Since M(2n, n) ~<2 2" by hypothesis, thus M(2(n + 1), n + 1) ~<4(2 2") = 2 2("+1). [ ]  

4. Proposilion 2 :::> (I) 

Case m = 2n. For (A, B) ~ S 2", consider (A x fi~, B x/~). By Lemma 2, this is an 
element of S~,". Therefore, by Proposition 2, IA x ~-I IB x 131 = (IAI IB1)2~<24" and 
hence M(2n, 8) <~ M(2n, n). 

Case m = 2 n + l .  Since d(g~,b)+d(a,b)=m and m is odd, necessarily 
d(g, b) ~ d(a, b) and thus for (A, B)E Sg' also A N.A = 4~, B f'l/~ =0 .  By Lemma 
2, 

(C, D ) ~ ( A  x /~  U.ff, x A ,  B x B 10B x B ) ~  ,~2(2n+1) o2n+1  

and thus by Proposition 2 [C[ I D[ = 4(IAI I B I) 2 ~< 2 2(2" ÷1~, which gives I n l  IBI ~< 2 2" 
Hence, we have derived (13 and in conjunction with I_emma 1, Proposition 1 is 
also proved. 

S. Proof of Proposition 1 

The proof is based on two key observations. For any (A, B)~  S2."+~: 

VtE{1 . . . . .  2n+1}  if A* ' f3A*,sk0  t h e n a * ' = 0 .  (O13 

Clearly for a, ~ E A*'  and b a B*' we have d(a, b) = d(6, b) = n -  1 in contra- 
diction to d(5, b) = 2n - d(a, b) = n + 1. 

3 t~{1  . . . . .  2 n +  1}: levi IB~I+IA;I IBgl>~le~l IBgl+legl IB~I. (OI13 

For this just notice that ~,=1v2"+1 (IA~I Ia~l + IAgl IB5I) counts the number of identical 
components for all pairs of sequences (a, b )~A x B and therefore equals 
(n + 1) IAI 1/31. On the other hand z.,=xx'2"+l tt~l,tl '̂ I lIB'0,l+ IAbl IB~I) counts the number 
of distinct components for all pairs of sequences (a, b)E A x B and therefore 
equals n IAI [BI, a smaller quantity. The Pigeon Hole Principle gives (OI13. 
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We can assume without loss of generality that t = 2n + 1 and omit the index t. 
Notice that (Ax, B~) and (Ao, Bo) are (2n, n)-systems. 

Case 1. 3 e ~ { 0 ,  1} with A * N A * # O  and B * N B * # O .  By (OI), * -  A~ - B * = O  
and thus Iml IBI = Im*l IB*I<~M(2n, n). 

Case 2. 3 e ~ { 0 , 1 }  with * * * * A ~ f3 A ~ # O and B~ fq B~  = 0 (resp. vice versa). By 

(OI) B * = 0  and thus Iml IBI~<IA~*I In*~l+lm~l In*~l~<2 Im~*l IB~*I (by OII)). Re- 
place now B* by D a  . . = B ~ t A B , .  Since ( A * , D ) ~ S  2", we get again IAIIBI~ < 
Im*l [Dl <~ M(2n,  n ). 

Case 3. Ve~{0,1}:  * * A ~ N A ~ = ¢ ,  B * N B * = O .  Choose now e such that 
Im *l lB~ l~ lm ~l lB*l and define f = m~ t.J m . ,  D = B ~ O B*. Now (C, D) e S 2" and 

Iml Inl---Im*l In*l + Im*l IBo*l + Im*l In*l + Im*l IB*I 
~<2(IATI IBTI+IA~I IB~I) (by OII) 
<~4 Im*~l In*~l (by choice of e) 

= ICI ID[ <~M(2n, n). 

6. Proof of Proposition 2 

Again the proof is based on two observations. 
If (A, B) u. • S . ,  then (ft., B), (A,/~), (A, B) e S 2" and also (A W fi-, B t3/~) e S..2" 

We can therefore assume A = fi., B =/~ and thus 

IA '~I=IA' I=IIAI  and [B'~I=IB~I=½1B[ (1~< t ~<2n, e e{0, 1}). 
(Olii) 

Further 

3 t~{2 ,  3 . . . . .  2n} and 3~/~{0, 1}: [AI~] IAII-I>~½ 

and IBI~-I InI[-l~>½. (OIV) 

For  this, notice that 2, E,=2 IAl~,l IB~I+IA~I IBl~,l counts the number of disa,.,ct 
components for all pairs of sequences (a, b ) ~ A l x B ~  and therefore equals 
n I A ~IIB ~1. Again by the Pigeon Hole Principle there exists a t e {2, 3 . . . . .  2n} with 

IAIhl [BI~I + [ml~l IBIhI t> (n/(2n - 1))IAII IBII >~ IAII IBll. This implies (OI'V). 
Now again we distinguish among three cases. 
Case 1. a * n r ~ A * ~ , 4 a  a n d  lt~*lt , i t  ~ 1 ~ ,  ,,~1~ 7-v, . . , ~  N B  ~ 5 / ~ .  Notice that by the distance prop- 

erties necessarily, ^*~ '  u*~, -~1~-=0 and =0 .  By (OIII) therefore IAIIBI= JtJ  1 , t  I 

4 --~ x,~a*~' IB*~I ~<4M(2(n - 1), n - 1). 
Case 2. a*~'c~A*~"4 ~ a n d  ~*~' u*~, ~ , ,--- 1~ 7- ,.. ~ N,_. 1~=0.  By the previous argument neces- 

sarily, ~ . l t  • -,1,~ =0 .  Define now C -aa*x '  - .-. a,-,.~, .1, • - - , ~ ,  ano u =t~ 1~ tAB ~ .  Since d(a, b) = d ( <  b) 
and obviously d(&/~) = d(a, b), also d(a, b) = d ( ~  b). Thus (C, 2,-2 D ) ~ S , _ I  and, 
by (OIII) and (OIV), Iml IBI <~4 ICI IDI ~<4M(2 n -  2, n -  1). 

Case 3. A *~, c~ a *~,-- u * n  c~ r~*~,--a S i n c e / ( = A  a n d / ~ = B  we have 
A * l t  __  A * l t  l [ ~ * l t  __  l ~ * l t  now -'-,o~ - ,7 ,1~,  ~o~ -,--~W- Furthermore,  since d(l~q, lr~)= d(Or~ Orl)= 1, for 
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~--a a * l , ~  t a * l ,  n a--n*~,t . ~ . a ,  we  have  (C, 2.--2 D )  ~ S._~ and  thus  again,  by  (OI I I )  "-" ~ I ~  ~'~r~l~ ~ ~'--~I~ ~-alal~ 

and  (OIV) ,  IA[ IBI<~4 ICl I D [ < ~ 4 M ( 2 n - 2 ,  n - i ) .  
By the  induc t ive  hypo thes i s  for  n - l ,  M ( 2 n - 2 ,  n - 1 ) ~ < 2 2 t " - 1 )  and  h e n c e  

M(2n,  n) ~<4(22¢"-x)) = 22". 
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