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Abstract. The classical identities between the q-binomial coefficients and factorials can be gener-
alized to a context where numbers are replaced by braids. More precisely, for every pair i, n of

natural numbers, there is defined an element b
(n)
i

of the braid group algebra kBn, and these satisfy
analogs of the classical identities for the binomial coefficients. By choosing representations of the

braid groups, one obtains numerical or matrix realizations of these identities, in particular one recov-

ers the q-identities in this way. These binomial braids b
(n)
i

play a crucial role in a simple definition

of a family of quantum groups, including the quantum groups U+
q (C) of Drinfeld and Jimbo.

1. Introduction

The classical identities between the q-binomial coefficients and factorials can be generalized to a
context where numbers are replaced by braids, or more precisely, elements of the braid group algebras

kBn. Thus, for every pair i, n of natural numbers there is defined an element b
(n)
i ∈ kBn (section 3),

and these satisfy analogs of the classical identities for the binomial coefficients (sections 4 through 8).
Moreover, by choosing representations of the braid groups one obtains concrete realizations of these
identities; the simplest such choices yield the identities for the classical and q-binomial coefficients,
other choices yield new identities that involve matrices rather than numbers.

The following chart describes the action of the braids introduced in this paper when X is certain
one-dimensional representation defined by q ∈ k∗ (section 2.5). The definition of the q-analogs will be
reviewed before each corresponding braid analog is introduced.

Braid name defined in section action

s
(n)
i generator 2.1 q

s(n)(i, j) 2.1 qj−i

c(n) twistor 2.2 q(
n

2)

βm,n braiding 2.4 qmn

s
(n)
I 3 q‖I‖

b
(n)
i binomial 3

[ n
i

]

[n] natural 5 [n]

s
(n)
σ 5 qinv(σ)

f (n) factorial 5 [n]!

s
(n)
f 7.1 qinv(f)

m(η) multinomial 7.1
[

n
η

]

µ(n) Möbius 6.2 (−1)nq(
n
2)

C(n) Catalan 8 Cn

G(n) Galois 8 Gn

F (n) Fibonacci 8 Fn
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These binomial braids b
(n)
i play a crucial role in the generalization of the definition of the quantum

group U+
q (C) of Drinfeld [Dr] and Jimbo [J] presented in [A] and briefly discussed here in section 9.

At the level of braids, the proofs of the combinatorial identities follow a constant pattern: first there
is the set-theoretic part, which involves dealing with the same bijections that are used for the case
of the classical (q = 1) identities, then there is the geometric part that consists in proving that two
braids, labeled by corresponding elements under the bijection considered, are in fact equal.

The classical q-identities that we generalize are taken mostly from papers by Goldman and Rota
[GR]; in particular these include Pascal’s, Vandermonde’s and Cauchy’s identities, the factorial for-
mula, Rota’s binomial theorem, Möbius inversion, several identities involving multinomial braids and
definitions and formulas for the Galois, Fibonacci and Catalan braids.

It is also possible to define the braid analog of a partition of a set, and then Stirling and Bell braids.
These will be studied elsewhere.

2. Braid groups and the braid category

2.1. Basics. The group Bn of braids in n strands has generators s
(n)
1 , . . . , s

(n)
n−1 subject to the relations

s
(n)
i s

(n)
j = s

(n)
j s

(n)
i if |i − j| ≥ 2,(A1)

s
(n)
i s

(n)
i+1s

(n)
i = s

(n)
i+1s

(n)
i s

(n)
i+1 if 1 ≤ i ≤ n − 2.(A2)

The generator s
(n)
i is represented by the following picture, and the product st of two braids s and

t in Bn is obtained by putting the picture of s on top of that of t. The identity of Bn is represented
by the picture with n vertical strands; the inverse of s is obtained by reflecting its picture across a
horizontal line, without leaving the plane of the picture.

1 2 i

//
//

//
//

i + 1

��
��
��
��
�

n

s
(n)
i = · · · · · ·

1 2 i i + 1 n

The collection B =
∐

n≥0 Bn of all braid groups forms a category, where the objects are the natural
numbers, Bn is the set of endomorphisms of n, and there are no morphisms between distinct objects.
This category is monoidal; the tensor product s⊗t ∈ Bn+m of two braids s ∈ Bn and t ∈ Bm is obtained

by putting t to the right of s, i.e. s
(n)
i

⊗s
(m)
j = s

(n+m)
i s

(n+m)
n+j . Moreover, this monoidal category is

braided, in the sense that there is a natural map βn,m : n⊗m → m⊗n, i.e. a braid βn,m ∈ Bn+m,
satisfying some axioms (2.4 below). For more details on this, the reader is referred to [K], X.6 and
XIII.2.

We develop some basic notation. For each pair (i, j) with 1 ≤ i ≤ j ≤ n, define

s(n)(i, j) =

{
1 if i = j,

s
(n)
i s

(n)
i+1 · · · s

(n)
j−1 if i < j.

We provide a first set of lemmas.
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Lemma.

s(n)(i, k) = s(n)(i, j)s(n)(j, k) when 1 ≤ i ≤ j ≤ k ≤ n(1)

s
(m+n)
i = s

(m)
i

⊗1(n) when 1 ≤ i ≤ m − 1, n ≥ 0(2)

s(m+n)(i, j) = s(m)(i, j)⊗1(n) when 1 ≤ i ≤ j ≤ m, n ≥ 0

s
(m+n)
i+n = 1(n)⊗s

(m)
i when 1 ≤ i ≤ m − 1, n ≥ 0(3)

s(m+n)(i + n, j + n) = 1(n)⊗s(m)(i, j) when 1 ≤ i ≤ j ≤ m, n ≥ 0

s
(m+n)
i+l = 1(l)⊗s

(m)
i

⊗1(n−l) when 1 ≤ i ≤ m − 1, 0 ≤ l ≤ n(4)

s(m+n)(i + l, j + l) = 1(l)⊗s(m)(i, j)⊗1(n−l) when 1 ≤ i ≤ j ≤ m, 0 ≤ l ≤ n

s(n)(i, j)s
(n)
h = s

(n)
h+1s

(n)(i, j) when 1 ≤ i ≤ h ≤ j − 2(5)

s(n)(i, j)s(n)(h, k) = s(n)(h + 1, k + 1)s(n)(i, j) when 1 ≤ i ≤ h ≤ k ≤ j − 1 .

Proof. Equation (1) is a direct consequence of the notation, the first parts of (2) and (3) hold simply
by definition of the tensor product, and the second parts follow by repeated use of the first ones. Now,

s
(m+n)
i+l

(2)
= s

(m+l)
i+l

⊗1(n−l) (3)
= 1(l)⊗s

(m)
i

⊗1(n−l) ,

proving the first part of (4). Similarly the second part follows from the second parts of (2) and (3).
Finally, if 1 ≤ i ≤ h ≤ j − 2, we can write

s(n)(i, j)s
(n)
h

(1)
= s(n)(i, h)s

(n)
h s

(n)
h+1s

(n)(h + 2, j)s
(n)
h

(A1)
= s(n)(i, h)s

(n)
h s

(n)
h+1s

(n)
h s(n)(h + 2, j)

(A2)
=

s(n)(i, h)s
(n)
h+1s

(n)
h s

(n)
h+1s

(n)(h + 2, j)
(A1)
= s

(n)
h+1s

(n)(i, h)s
(n)
h s

(n)
h+1s

(n)(h + 2, j)
(1)
= s

(n)
h+1s

(n)(i, j) ,

which proves the first part of (5); now for the second notice that if k = h then there is nothing to
prove; otherwise j > k > h so it follows by repeated use of the first.

2.2. Vertical symmetry. There is an involution˜ : Bn → Bn defined by s̃
(n)
i = s

(n)
n−i. The picture for

s̃ is obtained by rotating in 3-space that of s 180 degrees around a vertical line. Consider the twistor

braid,

c(n) = s(n)(1, n)s(n)(1, n − 1) · · · s(n)(1, 2)s(n)(1, 1) .

For instance

1
OOOOO

OO
OO

OOOOOOOOOO

2

44
44

44
4

3
















4

ooooooooooooooooooooo

c(4) =

1 2 3 4

Repeated use of (A1) and (5) shows that c(n)s
(n)
i = s

(n)
n−ic

(n), hence ˜ is the inner automorphism

defined by conjugation by c(n). It follows that c(n)2 is in the center of the braid group, since ˜̃s = s for

any s. Moreover, it can be shown that c(n)2 generates Z(Bn); we won’t make use of this fact.
Let us prove that, for any s ∈ Bn and t ∈ Bm,

s̃⊗t = t̃⊗s̃ .(6)
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Proof. Notice that if the statement holds for s⊗t and s′⊗t′, then so it does for ss′⊗tt′. Hence it suffices

to prove it for s = s
(n)
i and t = s

(m)
j . Now,

s
(n)
i

⊗s
(m)
j

(2), (3)
= s

(n+m)
i s

(n+m)
n+j ⇒

˜
s
(n)
i

⊗s
(m)
j = s

(n+m)
n+m−is

(n+m)
n+m−(n+j) = s

(n+m)
n+m−is

(n+m)
m−j

(A1)
= (since n + m − i ≥ m + 1)

s
(n+m)
m−j s

(n+m)
n+m−i

(2), (3)
= s

(m)
m−j

⊗s
(n)
n−i = s̃

(m)
j

⊗s̃
(n)
i .

2.3. Horizontal symmetry. There is a map ∗ : Bn → Bn defined by the conditions that s
(n)
i

∗
= s

(n)
i

and (st)∗ = t∗s∗. The picture for s∗ is obtained by rotating that of s in 3-space 180 degrees around a
horizontal line.

It is clear that the three operators ∗, ,̃−1 : Bn → Bn commute pairwise, and also that

s∗∗ = s ∀ s ∈ Bn,

(s⊗t)∗ = s∗⊗t∗ ∀ s ∈ Bn, t ∈ Bm,

˜s(n)(i, j)∗ = s(n)(n + 1 − j, n + 1 − i) ∀ i, j, n,(7)

c(n)∗ = c(n) ∀ n.(8)

From (8) it follows easily that

c(n) = s(n)(n, n)s(n)(n − 1, n) . . . s(n)(2, n)s(n)(1, n)

and from here that

c(n)2 = s(n)(1, n)n.

2.4. Properties of the braiding. The braiding βm,n is most easily defined in terms of its picture:

1

RRRRRRRRRRRRRRRRRRRRR

RRRR
R

RRRRRRRRRRRRRRRR

RR

2

RRRRRRRRRRRRRRR

RRRR
R

RRRRRRRRRRRRRRRR

RRRRRRR

n
RRRR

RRRR
R

RRRRRRRRRRRRRRRR

RRRRRRRRRRRRRRRRRR

n + 1

ooooooooooooooooooooooooooooooooooooo
n + 2

ooooooooooooooooooooooooooooooooooooo
n + m

ooooooooooooooooooooooooooooooooooooo

βm,n =

1 2 m m + 1 m + 2 m + n

It is viewed as a natural map βm,n : m⊗n → n⊗m in the category B of braids, and as such it satisfies
some important properties. We will list some of them below without proof, since we won’t use them,
although they are very easily obtained through the use of pictures, see [K] XIII.2. However, it will be
convenient for us to have an explicit description of βm,n in terms of the canonical generators. For this,
we first define some special “powers” for braids as follows.

Let m ≥ 1. For s ∈ Bm and n ≥ 0, define

s〈n〉 =





1 if n = 0,

s if n = 1,

1(n−1)⊗s · 1(n−2)⊗s⊗1 · . . . · 1⊗s⊗1(n−2) · s⊗1(n−1) if n ≥ 2.

(9)
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Thus s〈n〉 ∈ Bm+n−1 ∀ m ≥ 1, n ≥ 0 (and it is not defined if m = 0). Notice that s〈n+1〉 = 1⊗s〈n〉 ·s⊗1,
from here it follows easily by induction that

s〈p+q〉 = 1(q)⊗s〈p〉 · s〈q〉⊗1(p) ∀ p, q ≥ 0,

1(k)⊗s〈n〉⊗1(h) =
[
1(k)⊗s⊗1(h)

]〈n〉
∀ n, k, h ≥ 0 .(10)

We then define

βm,n = s(m+1)(1, m + 1)〈n〉 ∈ Bm+n .(11)

It is easy to see that this corresponds to the picture above. These are some of the properties that β
satisfies:

βm,n · s⊗t = t⊗s · βm,n ∀ s ∈ Bm, t ∈ Bn, (naturality of the braiding),

c(n+m) = c(n)⊗c(m) · βm,n ∀ m, n ≥ 0,

β̃m,n = βn,m = β∗
m,n ∀ m, n ≥ 0,

βp,q+r = 1(q)⊗βp,r · βp,q⊗1(r) ∀ p, q, r ≥ 0,

βp+q,r = βp+q,r⊗1(q) · 1(p)⊗βq,r ∀ p, q, r ≥ 0.

2.5. Representations. Throughout the paper k will denote a fixed field (although any commutative
ring would do just as well).

The identities we will obtain between elements of the braid group algebras kBn can be converted
into matrix or numerical identities by choosing k-linear representations of the braid groups Bn.

More precisely we will be interested in monoidal representations of the braid category B, that is a
vector space X , such that the braid group Bn acts on the tensor power X⊗n, with the property that

s⊗t · x⊗y = (s · x)⊗(t · y) ∀ s ∈ Bn, t ∈ Bm, x ∈ X
⊗n, y ∈ X

⊗m .

Since s
(n)
i = 1(i−1)⊗s

(2)
1

⊗1(n−i+1), this condition implies that the action of Bn on X⊗n is uniquely

determined by the action of s
(2)
1 on X⊗X . Moreover, a linear operator R : X⊗X → X⊗X defines a

monoidal representation of B if and only if it is invertible and satisfies the Yang-Baxter equation:

(R⊗idX) ◦ (idX⊗R) ◦ (R⊗idX) = (idX⊗R) ◦ (R⊗idX) ◦ (idX⊗R) .

This is a consequence of (A2).
If X is one-dimensional, then any invertible operator R : X → X satisfies this equation. R is

necessarily given by multiplication by some non-zero scalar q ∈ k. Hence, in this case, s
(n)
i acts by

multiplication by q for every n ≥ 2, 1 ≤ i ≤ n−1. It is this simplest choice that will produce the classical
q-identities from the identities for braids. In particular the trivial one-dimensional representation yields
the case q = 1. Higher dimensional representations will be discussed in sections 9 and 10.

The chart in section 1 describes the action of the braids introduced in this paper when X is the
one-dimensional representation defined by q ∈ k∗ as above.

Let us also remark that since the non-commutativity of the braid groups necessarily disappears when
acting on a one-dimensional representation, the actions of s, s̃ and s∗ coincide for any braid s in this
case.

3. Binomial braids

For each pair (n, i) with i ≤ n let Si(n) denote the set of subsets of {1, 2, . . . , n} with cardinality i.
Recall that the q-binomial coefficients can be defined as

[ n
i

]
=

∑

I∈Si(n)

q‖I‖ where ‖I‖ =
∑

j∈I

j −
i∑

j=1

j .
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The braid analog of this definition is as follows.

First, for each I ∈ Si(n), write I = {j1, j2, . . . , ji} with j1 < j2 < . . . < ji, then define s
(n)
I ∈ Bn as

s
(n)
I = s(n)(i, ji) · · · s

(n)(2, j2)s
(n)(1, j1) ;

if i = 0 we let s
(n)
∅ = 1.

For instance if I = {m + 1, m + 2, . . . , m + n} ∈ Sn(m + n) then s
(m+n)
I = βm,n.

Then the binomial braid b
(n)
i ∈ kBn is defined as

b
(n)
i =

∑

I∈Si(n)

s
(n)
I .

Thus b
(n)
0 = b

(n)
n = 1 ∀ n, while for instance

b
(2)
1 = 1 + s

(2)
1 , b

(3)
1 = 1 + s

(3)
1 + s

(3)
1 s

(3)
2 , b

(3)
2 = 1 + s

(3)
2 + s

(3)
2 s

(3)
1 .

We see that b
(n)
i 6= b

(n)
n−i in general. However:

Proposition. For all n ≥ i ≥ 0,

b̃
(n)
i = b

(n)
n−i.(12)

Proof. Consider the bijection Si(n) → Sn−i(n) that sends I to Ĩc, where Ĩ = {n + 1 − i / i ∈ I}. It is
enough to show that, for every I ∈ Si(n),

s̃
(n)
I = s

(n)

Ĩc
.(*)

First, we show that if (*) holds when n ∈ I, then it holds for every I. In fact, given I ∈ Si(n), let
m = max I, and let I ′ be the same set I but viewed as en element of Si(m). Then we have that

s
(n)
I

(2)
= s

(m)
I′

⊗1(n−m),

hence, by (6), and assuming (*) for I ′,

s̃
(n)
I = 1(n−m)⊗s̃

(m)
I′

(∗)
= 1(n−m)⊗s

(m)

Ĩ′
c = 1(n−m)⊗s

(m)
m+1−I′c

(3)
= s

(n)
n+1−Ic = s

(n)

Ĩc
,

so (*) holds for I as well.
To finish the proof we show (*) by induction on i. For i = 0 it is clear. Assume i ≥ 1. As

just explained, we can also assume that n ∈ I. Therefore, we can decompose I = I1 ∪ {n} with

I1 ∈ Si−1(n − 1); then we have Ĩ = Ĩ1 ∪ {1} and Ĩ1

c
= Ĩc ∪ {1}.

Write Ĩc = {h1 < h2 < . . . < hn−i}, so that Ĩ1
c

= {1 < h1 < h2 < . . . < hn−i}. We have

s
(n)
I = s(n)(i, n)s

(n)
I1

= s
(n)
i s

(n)
i+1 . . . s

(n)
n−1s

(n)
I1

,

hence, by induction hypothesis,

s̃
(n)
I = s

(n)
n−is

(n)
n−i−1 . . . s

(n)
1 s

(n)
eI1

c

= s
(n)
n−is

(n)
n−i−1 . . . s

(n)
1 s(n)(n − i + 1, hn−i) . . . s(n)(3, h2)s

(n)(2, h1)s
(n)(1, 1) .
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Now using (A1), s(n)(n−i+1, hn−i), can be moved to the left past all the factors s
(n)
1 , . . . ,s

(n)
n−i−1. Then,

it combines with s
(n)
n−i to form s(n)(n − i, hn−i). Similarly the other factors of the form s(n)(k + 1, hk)

can be moved to the left until they reach s
(n)
k to form s(n)(k, hk). At the end of the process we have

s̃
(n)
I = s(n)(n − i, hn−i) . . . s(n)(2, h2)s

(n)(1, h1) = s
(n)

Ĩc
.

This finishes the induction and the proof.

4. Identities of Pascal and Vandermonde

For the q-binomial coefficients Pascal’s identity says that

[ n
i

]
= qn−i

[ n − 1
i − 1

]
+

[ n − 1
i

]
=

[ n − 1
i − 1

]
+ qi

[ n − 1
i

]
.

Its generalization to braids is as follows.

Proposition. For any i = 1, . . . , n − 1,

b
(n)
i = s(n)(i, n) · b

(n−1)
i−1

⊗1 + b
(n−1)
i

⊗1 = 1⊗b
(n−1)
i−1 + ˜s(n)(n − i, n) · 1⊗b

(n−1)
i .(13)

Proof. Consider the bijection Si−1(n−1)∪Si(n−1) → Si(n) that sends I ∈ Si−1(n−1) to I∪{n} ∈ Si(n)
and J ∈ Si(n − 1) to J ∈ Si(n). From (2) and the definition of sI we see that

s
(n)
J = s

(n−1)
J

⊗1 and s
(n)
I∪{n} = s(n)(i, n) · s

(n−1)
I

⊗1 ;

summing over all such I and J we obtain the first equality. The other one follows by applying ,̃ using
(6) and replacing n − i by i.

Vandermonde’s identity says that

[
m + n

p

]
=

p∑

k=0

q(m−k)(p−k)
[

m
k

][
n

p − k

]
.

Its generalization to braids reads:

Proposition. For any m, n, p with 0 ≤ p ≤ m, n,

b(m+n)
p =

p∑

k=0

1(k)⊗βm−k,p−k⊗1(n−p+k) · b
(m)
k

⊗b
(n)
p−k .(14)

Proof. Consider the bijection

p⋃

k=0

Sk(m) × Sp−k(n) → Sp(m + n) , (I, J) 7→ I ∪ (m + J) .

It suffices to show that, for each I ∈ Sk(m) and J ∈ Sp−k(n),

s
(m+n)
I∪(m+J) = 1(k)⊗βm−k,p−k⊗1(n−p+k) · s

(m)
I

⊗s
(n)
J .(*)

Let h = p − k. If h = 0 then (*) reduces to s
(m+n)
I = s

(m)
I

⊗1(n), which holds by (2).
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Assume h ≥ 1. Write I = {i1 < . . . < ik} and J = {j1 < . . . < jh} so that I ∪ (m + J) = {i1 <
. . . < ik < m + j1 < . . . < m + jh}. Then

s
(m+n)
I∪(m+J) = s(m+n)(k + h, m + jh)s(m+n)(k + h − 1, m + jh−1) . . . s(m+n)(k + 1, m + j1) ·

· s(m+n)(k, ik)s(m+n)(k − 1, ik−1) . . . s(m+n)(1, i1)

(1), (2)
=

[
s(m+n)(k + h, m + h)s(m+n)(m + h, m + jh)

]
·

·
[
s(m+n)(k + h − 1, m + h − 1)s(m+n)(m + h − 1, m + jh−1)

]
· · ·

· · ·
[
s(m+n)(k + 1, m + 1)s(m+n)(m + 1, m + j1)

]
·

·
[
s(m)(k, ik)⊗1(n)

][
s(m)(k − 1, ik−1)⊗1(n)

]
· · ·

[
s(m)(1, i1)⊗1(n)

]

Now notice that each of the factors

s(m+n)(k + h − 1, m + h − 1), s(m+n)(k + h − 2, m + h − 2), . . . , s(m+n)(k + 1, m + 1)

can be moved to the left past all the factors

s(m+n)(m + h, m + jh), s(m+n)(m + h − 1, m + jh−1), . . . , s(m+n)(m + 2, m + j2),

simply because of (A1): s(m+n)(k + h− 1, m + h− 1) only involves strands m + h− 1 and lower, while
s(m+n)(m+h, m+jh) only involves strands m+h and higher; similarly for the others. After performing
this commutation we get that

s
(m+n)
I∪(m+J) = s(m+n)(k + h, m + h)s(m+n)(k + h − 1, m + h − 1) · . . . · s(m+n)(k + 1, m + 1) ·

· s(m+n)(m + h, m + jh)s(m+n)(m + h − 1, m + jh−1) · . . . · s
(m+n)(m + 1, m + j1) ·

· s
(m)
I

⊗1(n)

(2), (3)
=

[
1(h−1)⊗s(m+n−h+1)(k + 1, m + 1)

][
1(h−2)⊗s(m+n−h+1)(k + 1, m + 1)⊗1

]
· · ·

· · ·
[
s(m+n−h+1)(k + 1, m + 1)⊗1(h−1)

]
·
[
1(m)⊗s(n)(h, jh)

][
1(m)⊗s(n)(h − 1, jh−1)

]
· · ·

[
1(m)⊗s(n)(1, j1)

]
·

· s
(m)
I

⊗1(n)

(9)
= s(m+n−h+1)(k + 1, m + 1)〈h〉 · 1(m)⊗s

(n)
J · s

(m)
I

⊗1(n)

(2), (3)
=

[
1(k)⊗s(m−k+1)(1, m − k + 1)⊗1(n−h)

]〈h〉
· s

(m)
I

⊗s
(n)
J

(10)
= 1(k)⊗s(m−k+1)(1, m − k + 1)〈h〉⊗1(n−h) · s

(m)
I

⊗s
(n)
J

(11)
= 1(k)⊗βm−k,h⊗1(n−h) · s

(m)
I

⊗s
(n)
J .

Thus (*) holds and the proof is complete.

5. Natural and factorial braids

5.1. Definition. The q-analog of a natural number n is

[n] = 1 + q + q2 + . . . + qn−1 .
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For n ≥ 1, the natural braid [n] ∈ kBn is defined as

[n] =

n∑

i=1

s(n)(1, i) = 1 + s
(n)
1 + s

(n)
1 s

(n)
2 + . . . + s

(n)
1 s

(n)
2 . . . s

(n)
n−1 ;

we also set [0] = 0 ∈ kB0.

Notice that [n] = b
(n)
1 . Hence, as a particular case of Vandermonde’s formula (14) we have:

[m + n] = [m]⊗1(n) + s(m+n)(1, m + 1) · 1(m)⊗[n] ;

since βm,1 = s(m+1)(1, m + 1).

While [1] = [̃1] = [1]∗ and [2] = [̃2] = [2]∗, we have

[3] = 1 + s
(3)
1 + s

(3)
1 s

(3)
2 , [̃3] = 1 + s

(3)
2 + s

(3)
2 s

(3)
1 and [3]∗ = 1 + s

(3)
1 + s

(3)
2 s

(3)
1 ;

thus b
(n)
i

∗
is not another binomial braid in general. However, it will turn out (17) that the factorial

braids are symmetric with respect to both ˜ and ∗.
The q-analog of the factorial number n! is

[n]! =
∑

σ∈Sn

qinv(σ) ;

where the inversion index of a permutation σ ∈ Sn is defined as

inv(σ) = #{(i, j) / i < j but σ(i) > σ(j)}.

The braid analog of this definition is as follows. First, for any σ ∈ Sn and i = 1, . . . , n let

ri(σ) = #{j > i / σ(j) < σ(i)}.

Thus,

inv(σ) =

n∑

i=1

ri(σ) .

Notice that σ(i) − i ≤ ri(σ) ≤ σ(i) − 1 ∀ i, hence it makes sense to define a braid s
(n)
σ ∈ Bn as

s(n)
σ = s(n)(σ(n) − rn(σ), n) · . . . · s(n)(σ(2) − r2(σ), 2) · s(n)(σ(1) − r1(σ), 1) .

For instance if σ =
(

1 2 3 4
4 2 1 3

)
then

1

<<
<<

<<
<<

<

<<
<<

<<

2 3
--

-

--
--

--
--

--
-

4

wwwwwwwwwwwwwwwwwwwwwwww

s
(4)
σ =

1 2 3 4

-----------

---

The picture of s
(n)
σ is obtained by drawing a straight line from 1 in the bottom to σ(1) in the top, then

under that a straight line from 2 to σ(2), etc.

In section 5.3, other expressions for s
(n)
σ will be given.

Now, for every n ≥ 1 we define the factorial braid f (n) ∈ kBn as

f (n) =
∑

σ∈Sn

s(n)
σ ;

we also set f (0) = 1 ∈ kB0.
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We next show that the factorial and natural braids are related by means of a product formula,
generalizing [n]! = [n][n − 1] · · · [2][1] for q-numbers. Variations of this will follow after we study the

effect of ˜ and ∗ on the s
(n)
σ ’s.

Proposition. For every n ≥ 1,

f (n) = 1(n−1)⊗[1] · 1(n−2)⊗[2] · . . . · 1⊗[n − 1] · [n] .(15)

Proof. We need to show that f (n) = 1⊗f (n−1) · [n] ∀ n ≥ 1.
Consider the bijection Sn−1×{1, 2, . . . , n} → Sn, (σ, i) 7→ (1⊗σ)(1, 2, . . . , i). (From τ := (1⊗σ)(1, 2, . . . , i)

we recover i as τ−1(1) and then 1⊗σ as τ · (1, 2, . . . , i)−1; here 1⊗σ is such that (1⊗σ)(j) = σ(j−1)+1.)
It suffices to show that

s(n)
τ = 1⊗s(n−1)

σ · s(n)(1, i) .

Since τ =
( 1 ... i−1 i i+1 ... n

σ(1)+1 ... σ(i−1)+1 1 σ(i)+1 ... σ(n−1)+1

)
, we have that rj(τ) =





rj−1(σ) if j = i + 1, . . . , n,

0 if j = i,

rj(σ) + 1 if j = 1, . . . , i − 1.
Hence

s(n)
τ = s(n)(τ(n) − rn(τ), n) · . . . · s(n)(τ(i + 1) − ri+1(τ), i + 1) · s(n)(τ(i) − ri(τ), i) ·

· s(n)(τ(i − 1) − ri−1(τ), i − 1) · . . . · s(n)(τ(1) − r1(τ), 1)

= s(n)(σ(n − 1) + 1 − rn−1(σ), n) · . . . · s(n)(σ(i) + 1 − ri(σ), i + 1) · s(n)(1, i) ·

· s(n)(σ(i − 1) + 1 − ri−1(σ) − 1, i − 1) · . . . · s(n)(σ(1) + 1 − r1(σ) − 1, 1)

(5)
= s(n)(σ(n − 1) − rn−1(σ) + 1, n − 1 + 1) · . . . · s(n)(σ(i) − ri(σ) + 1, i + 1) ·

· s(n)(σ(i − 1) − ri−1(σ) + 1, i − 1 + 1) · . . . · s(n)(σ(1) − r1(σ) + 1, 1 + 1) · s(n)(1, i)

(3)
= 1⊗s(n−1)

σ · s(n)(1, i)

and the proof is complete.

5.2. Symmetries of the factorial braids. To obtain the announced symmetry of the f (n)’s, we first

describe a multiplicativity property of the map ξ : Sn → Bn, σ 7→ s
(n)
σ . From its definition it is clear

that ξ is a section of the canonical projection Bn → Sn, and that ξ((i, i + 1)) = s
(n)
i .1

Lemma. Let σ = σi1 · . . . · σil
∈ Sn be a reduced expression for σ as a product of elementary transpo-

sitions σij
= (ij , ij + 1). Then s

(n)
σ = s

(n)
i1

· . . . · s
(n)
il

.

Proof. We are given that length(σ) = l, where the length of a permutation is the minimum number of
elementary transpositions required to write it as a product of such. We will make use of the well-known
fact that inv = length.

Clearly, it suffices to show that if σ = τ · (i, i+1) and length(σ) = length(τ)+1 then s
(n)
σ = s

(n)
τ ·s

(n)
i .

In this case, σ =
( 1 ... i−1 i i+1 i+2 ... n

τ(1) ... τ(i−1) τ(i+1) τ(i) τ(i+2) ... τ(n)

)
. Hence rj(σ) = rj(τ) ∀ j 6= i, i+1. We claim

that τ(i) < τ(i + 1). For if not, we would have ri(σ) = ri+1(τ) and ri+1(σ) = ri(τ) − 1, from where
length(σ) = inv(σ) =

∑n
j=1 rj(σ) = length(τ) − 1, against our hypothesis. Thus τ(i) < τ(i + 1), and

1Lusztig [L,2.1.2] has considered sections of this sort for arbitrary Weyl groups W . From lemma (5.2) it follows that
ξ coincides with Lusztig’s section for W = Sn.
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then ri(σ) = ri+1(τ) + 1 and ri+1(σ) = ri(τ). Hence,

s(n)
σ = s(n)(σ(n) − rn(σ), n) · . . . · s(n)(σ(1) − r1(σ), 1)

= s(n)(τ(n) − rn(τ), n) · . . . · s(n)(τ(i + 2) − ri+2(τ), i + 2) · s(n)(τ(i) − ri(τ), i + 1) ·

· s(n)(τ(i + 1) − ri+1(τ) − 1, i) · s(n)(τ(i − 1) − ri−1(τ), i − 1) · . . . · s(n)(τ(1) − r1(τ), 1)

(5)
= s(n)(τ(n) − rn(τ), n) · . . . · s(n)(τ(i + 2) − ri+2(τ), i + 2) · s(n)(τ(i + 1) − ri+1(τ), i + 1) ·

· s(n)(τ(i) − ri(τ), i) · s
(n)
i · s(n)(τ(i − 1) − ri−1(τ), i − 1) · . . . · s(n)(τ(1) − r1(τ), 1)

(A1)
= s(n)(τ(n) − rn(τ), n) · . . . · s(n)(τ(1) − r1(τ), 1) · s

(n)
i = s(n)

τ · s
(n)
i

and the proof is complete.

Corollary.

s̃
(n)
σ = s

(n)
eσ

, s(n)
σ

∗
= s

(n)
σ−1 , where σ̃(j) = n + 1 − σ(n + 1 − j)(16)

f (n) = f̃ (n) = f (n)∗(17)

f (n) = 1(n−1)⊗[1] · 1(n−2)⊗[2] · . . . · 1⊗[n − 1] · [n](18)

= [̃1]⊗1(n−1) · [̃2]⊗1(n−2) · . . . · ˜[n − 1]⊗1 · [̃n]

= [n]∗ · 1⊗[n − 1]∗ · . . . · 1(n−2)⊗[2]∗ · 1(n−1)⊗[1]∗

= [̃n]
∗
· ˜[n − 1]

∗
⊗1 · . . . · [̃2]

∗
⊗1(n−2) · [̃1]

∗
⊗1(n−1) .

Proof. To prove (16), it suffices by the lemma to check these equalities on the elementary transpositions,
since both ˜ and −1 preserve the length of a permutation. But in this case they hold by definition of ˜
and ∗ for braids. Then (17) follows by summing over all σ ∈ Sn, and the product formulas (18) follow
from (15) and (17).

5.3. Other expressions for s
(n)
σ . For any σ ∈ Sn and i = 1, . . . , n let

ei(σ) = #{j ≤ i / σ(j) ≤ σ(i)}.

There is a simpler expression for s
(n)
σ in terms of the ei’s.

Proposition. For any σ ∈ Sn and i = 1, . . . , n, σ(i) = ri(σ) + ei(σ). Hence

s(n)
σ = s(n)(en(σ), n) · . . . · s(n)(e2(σ), 2) · s(n)(e1(σ), 1) .(19)

Proof.

ri(σ) + ei(σ) = #{j > i / σ(j) < σ(i)} + #{j ≤ i / σ(j) ≤ σ(i)}

= #{j > i / σ(j) ≤ σ(i)} + #{j ≤ i / σ(j) ≤ σ(i)}

= #{j/ σ(j) ≤ σ(i)} = #{j / σ(j) ∈ {1, 2, . . . , σ(i)} }

= σ(i) .

For completeness, we provide another expression for s
(n)
σ , this time in terms of some partial inversion

indices that are obtained by reading σ from right to left. For any i = 1, . . . , n let

li(σ) = #{j < i / σ(j) > σ(i)}.
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Proposition. For any σ ∈ Sn,

s(n)
σ = s(n)(n, σ−1(n) + ln(σ−1)) · . . . · s(n)(2, σ−1(2) + l2(σ

−1)) · s(n)(1, σ−1(1) + l1(σ
−1)).

Proof. Notice that ri(σ) = ln+1−i(σ̃) ∀ i = 1, . . . , n. Hence

s(n)
σ = s(n)(σ(n) − rn(σ), n) · . . . · s(n)(σ(1) − r1(σ), 1) = s(n)(σ(n) − l1(σ̃), n) · . . . · s(n)(σ(1) − ln(σ̃), 1)

⇒ s̃
(n)
σ

∗

= ˜s(n)(σ(1) − ln(σ̃), 1)∗ · . . . · ˜s(n)(σ(n) − l1(σ̃), n)∗

(7)
= s(n)(n, n + 1 − σ(1) + ln(σ̃)) · . . . · s(n)(1, n + 1 − σ(n) + l1(σ̃))

= s(n)(n, σ̃(n) + ln(σ̃)) · . . . · s(n)(1, σ̃(1) + l1(σ̃))

(16)
⇒ s

(n)
eσ−1 = s(n)(n, σ̃(n) + ln(σ̃)) · . . . · s(n)(1, σ̃(1) + l1(σ̃)) .

Replacing σ by σ̃−1 yields the result.

5.4. Factorial formulas for the binomial coefficients. Next, we present the analog of the well-

known formula
[

n − i
j − i

][
n
i

]
=

[
j
i

][
n
j

]
for q-binomials, from which the factorial formula will be

deduced. We choose to provide a bijective proof, even though a proof based on Pascal’s identity is
possible and shorter, in particular because it yields the stronger result (*) below.

Proposition. Whenever 0 ≤ i ≤ j ≤ n,

1(i)⊗b
(n−i)
j−i · b

(n)
i = b

(j)
i

⊗1(n−j) · b
(n)
j(20)

Proof. Consider the map Sj(n) × Si(j) → Sj−i(n − i) × Si(n), (A, B) 7→ (X, Y ), defined as follows.
First consider the unique order-preserving bijection k : {1, . . . , j} → A and let Y = k(B) ∈ Si(n),
then consider the unique order-preserving bijection f : {1, . . . , n} \ Y → {1, . . . , n − i} and let X :=
f(A \ Y ) ∈ Sj−i(n − i).

Given (X, Y ) ∈ Sj−i(n − i) × Si(n) one recovers A = Y ∪ f−1(X) and B = k−1(Y ); thus, (A, B) →
(X, Y ) is a bijection, so to obtain the result it suffices to prove that

1(i)⊗s
(n−i)
X · s

(n)
Y = s

(j)
B

⊗1(n−j) · s
(n)
A .(*)

We start by examining the right hand side. Write A = {k1 < . . . < kj} ⊆ {1, . . . , n} and B = {h1 <
. . . < hj} ⊆ {1, . . . , j}. Notice that then Y := {kh1

, . . . , khi
} ⊆ {1, . . . , n}.

For each r = 0, . . . , i let s
(n)
Ar

:=
∏

hr<z<hr+1
s(n)(z, kz). (This and all products below are taken in

the decreasing order: the index z decreases from left to right. If the interval (hr, hr+1) is empty then

we take s
(n)
Ar

= 1; also, we set h0 = 0 and hi+1 = j + 1.) Then, by definition,

s
(n)
A =

∏

0<z<j+1

s(n)(z, kz) =

= s
(n)
Ai

· s(n)(hi, khi
) · . . . · s

(n)
A2

· s(n)(h2, kh2
) · s

(n)
A1

· s(n)(h1, kh1
) · s

(n)
A0

.

Hence

s
(j)
B

⊗1(n−j) · s
(n)
A = s

(n)
B s

(n)
A = s(n)(i, hi) · . . . · s

(n)(2, h2) · s
(n)(1, h1) ·

· s
(n)
Ai

· s(n)(hi, khi
) · . . . · s

(n)
A2

· s(n)(h2, kh2
) · s

(n)
A1

· s(n)(h1, kh1
) · s

(n)
A0

.

In this expression, s(n)(1, h1) commutes with all the factors to its right until s
(n)
A1

, including it, since these

only involve strands h1 + 1 and higher. When placed there, it joins s(n)(h1, kh1
) to form s(n)(1, kh1

),
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by (1). Similarly s(n)(2, h2) commutes past s
(n)
A2

where it joins s(n)(h2, kh2
) to become s(n)(2, kh2

), and

finally s(n)(i, hi) and s(n)(hi, khi
) become s(n)(i, khi

). After this transformation we get

s
(j)
B

⊗1(n−j) · s
(n)
A = s

(n)
Ai

· s(n)(i, khi
) · . . . · s

(n)
A2

· s(n)(2, kh2
) · s

(n)
A1

· s(n)(1, kh1
) · s

(n)
A0

.

Now notice that each factor in s
(n)
A0

is of the form s(n)(z, kz) with 1 ≤ z < h1, hence by (5) and (3)

s(n)(1, kh1
) · s

(n)
A0

= 1⊗s
(n−1)
A0

· s(n)(1, kh1
) .

Similarly we can now commute s
(n)
A1

· 1⊗s
(n−1)
A0

past s(n)(2, kh2
), using (5) and (3); this factor becomes

1⊗s
(n)
A1

· 1(2)⊗s
(n−1)
A0

when placed to the left of s(n)(2, kh2
). After doing this for each r = 0, . . . , i− 1 we

get

s
(j)
B

⊗1(n−j) · s
(n)
A = s

(n)
Ai

· 1⊗s
(n−1)
Ai−1

· . . . · 1(i−2)⊗s
(n)
A2

· 1(i−1)⊗s
(n)
A1

· 1(i)⊗s
(n)
A0

·

· s(n)(i, khi
) · . . . · s(n)(2, kh2

) · s(n)(1, kh1
)

=

i∏

r=0

1(i−r)⊗s
(n−i+r)
Ar

· s
(n)
Y .

Thus, to obtain (*), we need to show that

1(i)⊗s
(n−i)
X =

i∏

r=0

1(i−r)⊗s
(n−i+r)
Ar

(**)

To this end, we describe f and X explicitly. By definition, f : {1, . . . , n}\{kh1
, . . . khi

} → {1, . . . , n−i}
is translation by −r on each open interval (khr

, khr+1
), for r = 0, . . . , i (where we set k0 = 0 and

kj+1 = n + 1). Then, since

A \ Y = k({1, . . . , j} \ {h1, . . . , hi}) =
i⋃

r=0

k((hr, hr+1)) ,

we have that

X = f(A \ Y ) =
i⋃

r=0

k((hr, hr+1)) − r .

Thus, letting s
(n−i)
Xr

:=
∏

hr<z<hr+1
s(n−i)(z− r, kz − r), we have that s

(n−i)
X =

∏i
r=0 s

(n−i)
Xr

. But notice

that

1(i)⊗s
(n−i)
Xr

=
∏

hr<z<hr+1

1(i)⊗s(n−i)(z − r, kz − r)
(3)
=

∏

hr<z<hr+1

s(n)(z + i − r, kz + i − r)

(3)
= 1(i−r)⊗

∏

hr<z<hr+1

s(n−i+r)(z, kz) = 1(i−r)⊗s
(n−i+r)
Ar

,

hence

1(i)⊗s
(n−i)
X =

i∏

r=0

1(i)⊗s
(n−i)
Xr

=

i∏

r=0

1(i−r)⊗s
(n−i+r)
Ar

so (**) holds and the proof is complete.

We can now derive the braid analog of the usual expression for the binomial coefficients in terms of
factorials.
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Corollary. Whenever 0 ≤ j ≤ n,

f (j)⊗f (n−j) · b
(n)
j = f (n) .(21)

Proof. Formula (20) with i = 1 says

1⊗b
(n−1)
j−1 · [n] = [j]⊗1(n−j) · b

(n)
j .

Repeated use of this yields

1(j−1)⊗[n − j + 1] · 1(j−2)⊗[n − j + 2] · . . . · 1⊗[n − 1] · [n]

= 1(j−1)⊗[1]⊗1(n−j) · 1(j−2)⊗[2]⊗1(n−j) · . . . · 1⊗[j − 1]⊗1(n−j) · [j]⊗1(n−j) · b
(n)
j

(15)
= f (j)⊗1(n−j) · b

(n)
j

Multiplying both sides by 1(j)⊗f (n−j) and using (15) we get the result.

It seems that in the course of the proof of (21) we obtained a stronger “simplified” formula; in fact
this is equivalent to (21) since the braid group algebras do not possess zero divisors2.

Recall that the natural braids [j] are not -̃symmetric. However, an amusing consequence of (20) is
this (choosing n = j + 1, i = 1):

1⊗[̃j] · [j + 1] = [j]⊗1 · [̃j + 1] .

Thus this element is fixed by .̃

6. Rota’s binomial theorem, Cauchy’s identities and Möbius inversion

6.1. The binomial theorem. The following remarkable q-binomial theorem is proven in [GR1]: if
Pk(x,y) = (x − y)(x − qy) . . . (x − qk−1y) then

Pn(x, z) =

n∑

k=0

[ n
k

]
Pk(x,y)Pn−k(y, z) ,

this is an identity in the ordinary polynomial ring k[x,y, z]. When q = 1 this reduces to the familiar

(x − z)n =

n∑

k=0

[ n
k

]
(x − y)k(y − z)n−k .

We will generalize this result to the context of braids, and derive from it the other results of the
section.

We consider ordinary polynomial rings kBn[x1, . . . ,xr ] over the non-commutative ring kBn; thus,
the variables commute among themselves and with the coefficients. The embeddings

Bk → Bn, s 7→ s⊗1(n−k) and Bn−k → Bn, t 7→ 1(k)⊗t

extend to embeddings

kBk[x1, . . . ,xr] → kBn[x1, . . . ,xr], p 7→ p⊗1(n−k) and kBn−k[x1, . . . ,xr] → kBn[x1, . . . ,xr], q 7→ 1(k)⊗q

where xi is sent to xi in both cases. The images of kBk[x1, . . . ,xr] and kBn−k[x1, . . . ,xr] commute
elementwise inside kBn[x1, . . . ,xr], so there is an induced map

kBk[x1, . . . ,xr]⊗kBn−k[x1, . . . ,xr] → kBn[x1, . . . ,xr], p⊗q 7→ p⊗1(n−k) · 1(k)⊗q .

We will write p⊗q for p⊗1(n−k) · 1(k)⊗q.

2In fact, Bn is right-ordered by a recent result of Dehornoy [Deh], hence kBn does not possess zero divisors nor
non-trivial units by the results in chapter 13.1 of Passman’s book [Pas]. We thank Dale Rolfsen for making us aware of
this.
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For any k ≥ 1 let

Pk(x,y) = [x − s(k)(1, k)y] · [x − s(k)(1, k − 1)y] · . . . · [x − s(k)(1, 1)y] ∈ kBk[x,y] ;

and set P0(x,y) = 1 ∈ kB0.
Then, with the above convention, the binomial theorem is the following identity in kBn[x,y, z]:

Proposition. For any n ≥ 0,

Pn(x, z) =

n∑

k=0

Pk(y, z)⊗Pn−k(x,y) · b
(n)
k .(22)

Proof. We do induction on n. For n = 0, 1 the statement is trivial. Assuming it true for n − 1 with
n ≥ 2, we have

Pn(x, z) = [x − s(n)(1, n)z] · [Pn−1(x, z)⊗1] = [x − s(n)(1, n)z] ·
n−1∑

k=0

[Pk(y, z)⊗Pn−1−k(x,y)⊗1] · [b
(n−1)
k

⊗1]

=

n−1∑

k=0

[x − s(n)(k + 1, n)y + s(n)(k + 1, n)y − s(n)(1, n)z] · [Pk(y, z)⊗Pn−1−k(x,y)⊗1] · [b
(n−1)
k

⊗1]

(A1), (1)
=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] · [x − s(n)(k + 1, n)y] · [1(k)⊗Pn−1−k(x,y)⊗1] · [b
(n−1)
k

⊗1] +

+

n−1∑

k=0

[y − s(n)(1, k + 1)z] · [Pk(y, z)⊗1(n−k)] · s(n)(k + 1, n) · [1(k)⊗Pn−1−k(x,y)⊗1] · [b
(n−1)
k

⊗1]

(3)
=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] ·
[
1(k)⊗[x − s(n)(1, n − k)y][Pn−1−k(x,y)⊗1]

]
· [b

(n−1)
k

⊗1] +

+

n−1∑

k=0

[
[y − s(k+1)(1, k + 1)z]⊗1(n−k−1)

]
· [Pk(y, z)⊗1(n−k)] · s(n)(k + 1, n) · [1(k)⊗Pn−1−k(x,y)⊗1] · [b

(n−1)
k

⊗1]

=

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] · [1(k)⊗Pn−k(x,y)] · [b
(n−1)
k

⊗1] +

+
n−1∑

k=0

[Pk+1(y, z)⊗1(n−k−1)] · s(n)(k + 1, n) · [1(k)⊗Pn−1−k(x,y)⊗1] · [b
(n−1)
k

⊗1] .

Now we use (5) to commute s(n)(k + 1, n) past Pn−1−k(x,y) as follows:

s(n)(k + 1, n) · [1(k)⊗Pn−1−k(x,y)⊗1] = s(n)(k + 1, n) ·
[
1(k)⊗[x− s(n−1−k)(1, n − 1 − k)y] · . . . · [x − s(n−1−k)(1, 1)y]⊗1

]

(2), (3)
= s(n)(k + 1, n) · [x − s(n)(k + 1, n − 1)y] · . . . · [x − s(n)(k + 1, k + 1)y]

(5)
= [x − s(n)(k + 2, n)y] · . . . · [x − s(n)(k + 2, k + 2)y] · s(n)(k + 1, n)

(3)
=

[
1(k+1)⊗[x − s(n−1−k)(1, n − k − 1)y] · . . . · [x − s(n−k−1)(1, 1)y]

]
· s(n)(k + 1, n)

= [1(k+1)⊗Pn−k−1(x,y)] · s(n)(k + 1, n) .
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Substituting this in the above expression for Pn we get

Pn(x, z) =

n−1∑

k=0

[Pk(y, z)⊗1(n−k)] · [1(k)⊗Pn−k(x,y)] · [b
(n−1)
k

⊗1] +

+
n−1∑

k=0

[Pk+1(y, z)⊗1(n−k−1)] · [1(k+1)⊗Pn−1−k(x,y)] · s(n)(k + 1, n) · [b
(n−1)
k

⊗1]

=
n−1∑

k=0

[Pk(y, z)⊗Pn−k(x,y)] · [b
(n−1)
k

⊗1] +
n∑

k=1

[Pk(y, z)⊗Pn−k(x,y)] · s(n)(k + 1, n) · [b
(n−1)
k

⊗1]

=

n∑

k=0

[Pk(y, z)⊗Pn−k(x,y)] · [b
(n−1)
k

⊗1 + s(n)(k + 1, n) · b
(n−1)
k

⊗1]
(13)
=

n∑

k=0

[Pk(y, z)⊗Pn−k(x,y)] · b
(n)
k .

6.2. Cauchy’s identities. These identities are attributed to Cauchy in [GR1]:

(x − 1)(x − q) . . . (x − qn−1) =
n∑

k=0

[
n
k

]
(−1)kq(

k
2)xn−k ,

xn =

n∑

k=0

[
n
k

]
(x − 1)(x − q) . . . (x − qk−1) .

Just as in the q-case, its generalizations to braids are easily obtained from the binomial theorem. In
this context, it is natural to introduce the Möbius braid µ(k) ∈ kBk as

µ(k) = (−1)kc(k)

where c(k) = s(k)(1, k)s(k)(1, k − 1) . . . s(k)(1, 1) ∈ kBk is the twistor braid of section 2.2.

Corollary. For any n ≥ 0,

[x − s(n)(1, n)] · [x − s(n)(1, n − 1)] · . . . · [x − s(n)(1, 1)] =

n∑

k=0

µ(k)⊗1(n−k) · b
(n)
k · xn−k(23)

xn =
n∑

k=0

[x − s(n)(k + 1, n)] · [x − s(n)(k + 1, n− 1)] · . . . · [x − s(n)(k + 1, k + 1)] · b
(n)
k .(24)

Proof. Setting y = 0 and z = 1 in (22) we obtain (23); setting y = 1 and z = 0 we obtain (24). These
evaluations are well-defined morphisms of algebras because the evaluating points commute with the
coefficients.

Möbius inversion formula will we deduced from the following two consequences of Cauchy’s identities.
Setting x = 1 in (23) we obtain

n∑

k=0

µ(k)⊗1(n−k) · b
(n)
k = 0 ∀ n > 0,(25)

and setting x = 0 in (24) (or applying ˜ to (25))

n∑

k=0

1(k)⊗µ(n−k) · b
(n)
k = 0 ∀ n > 0.(26)
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Both of these reduce in the q-case to the well-known

n∑

k=0

(−1)kq(
k
2)

[ n
k

]
= 0 ∀ n > 0.

Some other interesting consequences of Cauchy’s identities are obtained through other evaluations;
these all reduce to the same identity in the q-case, but are distinct at the level of braids. To briefly
discuss this situation, consider the polynomial ring B[x] over a non-commutative ring B. For each
b ∈ B there are two natural evaluation maps B[x] → B, according to whether we write the variable to
the right or left of the coefficients. More precisely, these are defined as

εr
b : B[x] → B εl

b : B[x] → B

anxn + . . . + a1x + a0 7→ anbn + . . . + a1b + a0 anxn + . . . + a1x + a0 7→ bnan + . . . + ba1 + a0 .

These maps are not multiplicative in general; however, if h, f and g are polynomials such that h = fg
and b commutes with the coefficients of g, then εr

b(h) = εr
b(f)εr

b(g). Similarly, if b commutes with the
coefficients of f then εl

b(h) = εl
b(f)εl

b(g).

Consider B = kBn, f(x) = [x − s(n)(1, n)] · [x − s(n)(1, n − 1)] · . . . · [x − s(n)(1, 3)] and g(x) =
[x − s(n)(1, 2)][x − s(n)(1, 1)]. Writing x to the right of the coefficients and evaluating (23) at b =

s(n)(1, 2) = s
(n)
1 we obtain

n∑

k=0

µ(k)⊗1(n−k) · b
(n)
k · (s

(n)
1 )n−k = 0 .

Similarly, letting f(x) = x− s(n)(1, n), g(x) = [x− s(n)(1, n− 1)] · . . . · [x− s(n)(1, 1)], writing x to the
left and evaluating (23) at b = s(n)(1, n) we obtain

n∑

k=0

[
s(n)(1, n)

]n−k

· µ(k)⊗1(n−k) · b
(n)
k = 0 .

6.3. Möbius inversion. A particular case of the general theory of Möbius inversion [R] is the following
q-numerical inversion formula: for any scalars a0, . . . , am, b0, . . . , bm,

bi =
i∑

j=0

[
i
j

]
ai−j ∀ i = 0, . . . , m ⇐⇒ ai =

i∑

j=0

(−1)jq(
j
2)

[
i
j

]
bi−j ∀ i = 0, . . . , m .

Its generalization is:

Proposition. Let x(i) and y(i) ∈ kBi be given braids for i = 0, . . . , m. Then

x(i) =

i∑

j=0

1(j)⊗y(i−j) · b
(i)
j ∀ i = 0, . . . , m ⇐⇒ y(i) =

i∑

j=0

µ(j)⊗x(i−j) · b
(i)
j ∀ i = 0, . . . , m .(27)
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Proof. (⇒)

i∑

j=0

µ(j)⊗x(i−j) · b
(i)
j

(hyp.)
=

i∑

j=0

µ(j)⊗

[ i−j∑

h=0

1(h)⊗y(i−j−h) · b
(i−j)
h

]
· b

(i)
j

=

i∑

j=0

i−j∑

h=0

[
µ(j)⊗1(h)⊗y(i−j−h)

]
·
[
1(j)⊗b

(i−j)
h

]
· b

(i)
j

(20)
=

i∑

j=0

i−j∑

h=0

[
µ(j)⊗1(h)⊗y(i−j−h)

]
·
[
b
(h+j)
j

⊗1(i−j−h)
]
· b

(i)
h+j

=

i∑

j=0

i−j∑

h=0

[
µ(j)⊗1(i−j)

]
·
[
b
(h+j)
j

⊗y(i−j−h)
]
· b

(i)
h+j

(k := h + j)
=

i∑

k=0

k∑

j=0

[
µ(j)⊗1(i−j)

]
·
[
b
(k)
j

⊗y(i−k)
]
· b

(i)
k = y(i),

since by (23) all terms corresponding to k 6= 0 in the above sum vanish.
(⇐)

i∑

j=0

1(j)⊗y(i−j) · b
(i)
j

(hyp.)
=

i∑

j=0

1(j)⊗

[ i−j∑

h=0

µ(h)⊗x(i−j−h) · b
(i−j)
h

]
· b

(i)
j

=

i∑

j=0

i−j∑

h=0

[
1(j)⊗µ(h)⊗x(i−j−h)

]
·
[
1(j)⊗b

(i−j)
h

]
· b

(i)
j

(20)
=

i∑

j=0

i−j∑

h=0

[
1(j)⊗µ(h)⊗x(i−j−h)

]
·
[
b
(h+j)
j

⊗1(i−j−h)
]
· b

(i)
h+j

=

i∑

j=0

i−j∑

h=0

[[
1(j)⊗µ(h)

]
· b

(h+j)
j

⊗x(i−j−h)

]
· b

(i)
h+j

(k := h + j)
=

i∑

k=0

[ k∑

j=0

[
1(j)⊗µ(k−j) · b

(k)
j

]
⊗x(i−k)

]
· b

(i)
k = x(i),

since by (24) all terms corresponding to k 6= 0 in the above sum vanish.

7. Multinomial braids

7.1. Definition. For each n and r ∈ N let F(n, r) denote the set of all functions {1, . . . , n} →
{1, . . . , r}, and C(n, r) = {(η1, . . . , ηr) ∈ Nr / η1 + . . . + ηr = n}. A sequence η ∈ C(n, r) is sometimes
called a weak composition of n into r parts. For any η ∈ C(n, r) let

S(η) = {f ∈ F(n, r) / #f−1(1) = η1, #f−1(2) = η2, . . . , #f−1(r) = ηr}.

We usually write f =
(

1 2 3 4 5
2 1 1 3 2

)
to abbreviate that f : {1, 2, 3, 4, 5} → {1, 2, 3} is f(1) = f(5) = 2,

f(2) = f(3) = 1, f(4) = 3. One may think of the elements of S(η) as permutations of the elements
of {1, 2, . . . , r} with repetitions as specified by η. For this reason the elements of S(η) are called
permutations of the multiset {1η1 , 2η2 , . . . , rηr}.

There are canonical identifications S(1, 1, . . . , 1) = Sr (r ones) and (when r = 2) S(i, n− i) = Si(n),
f 7→ {j ∈ {1, 2, . . . , n} / f(j) = 1}.
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Given η ∈ C(n, r), the corresponding q-multinomial coefficient is defined as
[ n

η

]
=

∑

f∈S(η)

qinv(f) ,

where the inversion index inv(f) is

inv(f) = #{(i, j) / 1 ≤ i < j ≤ n, f(i) > f(j)} .

To define its braid analog we proceed as follows. First, for any f ∈ F(n, r) and i ∈ {1, 2, . . . , n}, set

ei(f) = #{j ≤ i / f(j) ≤ f(i)} .

Next, define s
(n)
f ∈ Bn as

s
(n)
f = s(n)(en(f), n) · . . . · s(n)(e2(f), 2) · s(n)(e1(f), 1) .

Then, for any η ∈ C(n, r), define the multinomial braid m(η) ∈ kBn as

m(η) =
∑

f∈S(η)

s
(n)
f ;

and m(0,... ,0) = 1 ∈ kB0.
A few remarks are in order. First, notice that for σ ∈ Sr = S(1, 1, . . . , 1) (r ones), the definition of

s
(n)
σ given here coincides with that of section 5, because of equation (19). Hence m(1,1,... ,1) = f (r), the

factorial braid.
Second, suppose r = 2, and let I ∈ Si(n) correspond to f ∈ S(i, n− i) under the bijection described

above: if I = {j1 < j2 < . . . < ji} then f =
(

1 ... j1 ... j2 ... ji ... n
2 ... 2 1 2 ... 2 1 2 ... 2 1 2 ... 2

)
.

Thus, ej(f) =

{
j if j /∈ I,

h if j = jh ∈ I
, from where s

(n)
f = s(n)(i, ji) · . . . · s(n)(2, j2) · s(n)(1, j1) = s

(n)
I , and

hence m(i,n−i) = b
(n)
i . Thus multinomial braids reduce to binomial braids when r = 2.

Finally, let us check that in the one-dimensional representation defined by q (section 2.5), s
(n)
f acts

as multiplication by qinv(f), and hence m(η) as
[

n
η

]
.

To this end, we introduce the η-shuffle σf ∈ Sn corresponding to f ∈ S(η) as follows: on f−1(1), σf

is the unique increasing bijection onto {1, . . . , η1}, similarly on f−1(2) onto {η1 + 1, . . . , η1 + η2}, . . . ,
and on f−1(r) onto {η1 + . . . + ηr−1 + 1, . . . , η1 + . . . + ηr}.

We also introduce the partial inversion index ri(f) = #{j > i / f(j) < f(i)}, extending the one
already defined for permutations in section 5. Notice that inv(f) =

∑n
i=1 ri(f).

Lemma. For any f ∈ S(η) and i ∈ {1, 2, . . . , n}, ei(f) = ei(σf ) and ri(f) = ri(σf ).

Proof. From the definition of σf we see that:
For j ≤ i, σf (j) ≤ σf (i) ⇔ f(j) ≤ f(i). From here, ei(f) = ei(σf ).
For j > i, σf (j) < σf (i) ⇔ f(j) < f(i). From here, ri(f) = ri(σf ).

Now we can show that s
(n)
f acts as qinv(f), i.e. that the number of elementary generators in

s(n)(en(f), n) · . . . · s(n)(e2(f), 2) · s(n)(e1(f), 1) is inv(f). Recall (section 5.3) that for any σ ∈ Sn

we have σ(i) = ri(σ) + ei(σ). Hence, σf (i) = ri(σf ) + ei(σf ) = ri(f) + ei(f), from where

#generators in s
(n)
f =

n∑

i=1

i − ei(f) =

n∑

i=1

σf (i) − ei(f) =

n∑

i=1

ri(f) = inv(f),

as needed.
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From the lemma we also deduce that s
(n)
f = s

(n)
σf

, just comparing their definitions. This shows that

our multinomial braids coincide with those braids already considered by Schauenburg in [S, definition
2.6]. Some of the identities we prove here ((13), (21), and a particular case of (29)) are stated in that
paper, altough the connection to combinatorics is not pointed out.

7.2. Symmetry of the multinomial braids. Here we generalize the facts (12) and (17) that b̃
(n)
i =

b
(n)
n−i and f̃ (n) = f (n). For any η = (η1, η2, . . . , ηr), let η̃ = (ηr , . . . , η2, η1).

Proposition. For any η ∈ C(n, r), m̃(η) = m(η̃).

Proof. Consider the bijection F(n, r) → F(n, r), f → f̃ , where f̃(i) = r +1− f(n + 1− i). This clearly
restricts to a bijection S(η) → S(η̃), so it is enough to show that

s̃
(n)
f = s

(n)

f̃
∀ f ∈ S(η)

to obtain the result.

We have that

f̃−1(h) = n + 1 − f−1(r + 1 − h), ∀ h = 1, . . . , r,

from where

σf̃ (i) = n + 1 − σf (n + 1 − i) = σ̃f (i) ∀ i = 1, . . . , n,

and thus

s̃
(n)
f = s̃

(n)
σf

(16)
= s

(n)
fσf

= s(n)
σ

f̃
= s

(n)

f̃

as needed.

7.3. Pascal’s identity for multinomial braids. Let C
+(n, r) denote the set of strict compositions

of n into r parts, i.e. those sequences (η1, . . . , ηr) such that η1+ . . .+ηr = n and ηi ∈ Z+ ∀ i = 1, . . . , r.
Pascal’s identity (13) is actually a particular case of the following identity for multinomial braids.

Proposition. For any η ∈ C+(n, r),

(28) m(η1,η2,... ,ηr) = s(n)(η1, n) · m(η1−1,η2,... ,ηr)⊗1 + s(n)(η1 + η2, n) · m(η1,η2−1,... ,ηr)⊗1 + . . .

. . . + s(n)(η1 + η2 + . . . + ηr, n) · m(η1,η2,... ,ηr−1)⊗1.

Proof. Consider the bijection

r∐

i=1

S(η1, . . . , ηi − 1, . . . , ηr) → S(η1, η2, . . . , ηr)

that sends f ∈ S(η1, . . . , ηi − 1, . . . , ηr) to g ∈ S(η1, η2, . . . , ηr) defined by

g(j) =

{
f(j) if j ∈ {1, 2, . . . , n − 1},

i if j = n.
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Clearly,

ej(g) =

{
ej(f) if j ∈ {1, 2, . . . , n − 1},

η1 + . . . + ηi if j = n.

Hence s
(n)
g = s(n)(η1 + η2 + . . . + ηi, n) · s

(f)
n−1

⊗1. The result follows by summing over all such f ′s.

7.4. Multinomials in terms of binomials and factorials. In this section we relate the multinomial
braids to the binomials and factorials, obtaining identities that generalize (20) and (21).

Proposition. Let (η1, . . . , ηr) ∈ C(n, r), s ≤ r, and n1 = η1 + . . . + ηs, n2 = ηs+1 + . . . + ηr. Then

m(η1,... ,ηr) = m(η1,... ,ηs)⊗m(ηs+1,... ,ηr) · m(n1,n2) .(29)

Proof. Consider the bijection

S(η1, . . . , ηr) → S(η1, . . . , ηs) × S(ηs+1, . . . , ηr) × S(n1, n2)

f 7→ (f1, f2, I)

defined as follows:

I = {j ∈ {1, . . . , n} / f(j) ≤ s} = {j1 < j2 < . . . < jn1
} ∈ Sn1

(n),

Ic = {k ∈ {1, . . . , n} / f(k) > s} = {k1 < k2 < . . . < kn2
} ∈ Sn2

(n),

f1 =
( 1 2 ... n1

f(j1) f(j2) ... f(jn1
)

)
∈ S(η1, . . . , ηs),

f2 =
( 1 2 ... n2

f(k1)−s f(k2)−s ... f(kn2
)−s

)
∈ S(ηs+1, . . . , ηr).

(Informally, f1 = f |I , f2 = f |Ic .)
It is enough to show that

s
(n)
f = s(f1)

n1
⊗s(f2)

n2
· s

(n)
I .

We start by noting that for any j ∈ {1, . . . , n},

ej(f) = #{h ∈ {1, . . . , n} / h ≤ j and f(h) ≤ f(j)}

= #{h ∈ I / h ≤ j and f(h) ≤ f(j)} + #{h ∈ Ic / h ≤ j and f(h) ≤ f(j)}.

Thus, if j = ji ∈ I,

ej(f) = #{h ∈ I / h ≤ j and f(h) ≤ f(j)} = ei(f1),(*)

while if j = ki ∈ Ic,

ej(f) = #{h ∈ I / h ≤ j} + #{h ∈ Ic / h ≤ j and f(h) ≤ f(j)}

= #{1, 2, . . . , ki} − #{h ∈ Ic / h ≤ ki} + ei(f2)

= ki − i + ei(f2).(**)

Now,

s(f1)
n1

⊗s(f2)
n2

· s
(n)
I = 1(n1)⊗s(f2)

n2
· s(f1)

n1
⊗1(n2) · s

(n)
I

(2)
= 1(n1)⊗s(f2)

n2
· s(n)(en1

(f1), n1) · . . . · s
(n)(e2(f1), 2) · s(n)(e1(f1), 1)s(n)(n1, jn1

) · . . . · s(n)(2, j2) · s
(n)(1, j1)

(A1), (1)
= 1(n1)⊗s(f2)

n2
· s(n)(en1

(f1), jn1
) · . . . · s(n)(e2(f1), j2) · s

(n)(e1(f1), j1)

(3)
= s(n)(n1 + en2

(f2), n1 + n2) · s
(n)(n1 + e2(f2), n1 + 2) · s(n)(n1 + e1(f2), n1 + 1) ·

· s(n)(en1
(f1), jn1

) · . . . · s(n)(e2(f1), j2) · s
(n)(e1(f1), j1).
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At this point there are two cases to distinguish, according to whether k1 = n1 + 1 or k1 ≤ n1 (notice
that necessarily k1 ≤ n1 + 1, since k1 is the first element of Ic).

If k1 = n1 + 1 then necessarily ji = i and ki = n1 + i ∀ i, so

s(n)(n1 + ei(f2), n1 + i) = s(n)(ki − i + ei(f2), n1 + i)
(∗∗)
= s(n)(eki

(f), n1 + i) = s(n)(en1+i(f), n1 + i)

and

s(n)(ei(f1), ji)
(∗)
= s(n)(eji

(f1), ji) = s(n)(ei(f), i) .

Thus, in this case, all the factors in the above expression for s
(f1)
n1

⊗s
(f2)
n2

· s
(n)
I are already in the “right

order”:

s(f1)
n1

⊗s(f2)
n2

· s
(n)
I = s(n)(en1+n2

(f), n1 + n2) · . . . · s
(n)(en1+1(f), n1 + 1) · s(n)(en1

(f), n1) · . . . · s
(n)(e1(f), 1)

= s
(n)
f ,

as needed.
The other case occurs when k1 ≤ n1. In this case jk1

is well-defined. We will move s(n)(n1 +
e1(f2), n1 + 1) to its right past the factors xi := s(n)(ei(f1), ji) from i = n1 down to i = k1, using (5).
We illustrate this process as follows:

s(n)(n1 + e1(f2), n1 + 1)
past xn1−−−−−→ s(n)(n1 − 1 + e1(f2), n1)

past xn1−1

−−−−−−−→ . . .
past xi+1

−−−−−−→ s(n)(i + e1(f2), i + 1)

past xi
−−−−→ s(n)(i − 1 + e1(f2), i)

past xi−1

−−−−−−→ . . .

. . .
past xk1−−−−−→ s(n)(k1 − 1 + e1(f2), k1)

(∗∗)
= s(n)(ek1

(f), k1).

Before proceeding, we must check that the hypothesis of (5) hold, in order to validate this commutation.
In this situation those hypothesis are

ei(f1) ≤ i − 1 + e1(f2) and i ≤ ji − 1, ∀ i ∈ {k1, . . . , n1}.

The first inequality holds because, for any f and g, ei(f) ≤ i and e1(g) ≥ 1. And the second one does
too, for if not, we would have that ji ≤ i and hence {j1, j2, . . . , ji} = {1, 2, . . . , i}. But since k1 ≤ i,
this would imply that k1 ∈ I, a contradiction. Thus the commutation process described above is valid.

Returning to the main argument, we next proceed similarly with the remaining factors s(n)(n1 +
e2(f2), n1+2), . . . , s(n)(n1+en2

(f2), n1+n2), moving them to the right until they become s(n)(ek2
(f), k2),

. . . ,s(n)(ekn2
(f), kn2

). After this has been done we are left with all the factors in the “right order”:

s(f1)
n1

⊗s(f2)
n2

· s
(n)
I = s(n)(en1+n2

(f), n1 + n2) · . . . · s
(n)(en1+1(f), n1 + 1) · s(n)(en1

(f), n1) · . . . · s
(n)(e1(f), 1)

= s
(n)
f .

This completes the proof.

From (29) we can easily deduce expressions for the multinomial braids in terms of binomials or
factorials, that generalize well-known q-formulas.
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Corollary.

m(η1,... ,ηr) = 1(η1+...+ηr−1)⊗b(ηr)
ηr

· 1(η1+...+ηr−2)⊗b(ηr−1+ηr)
ηr−1

· . . . · 1(η1+η2)⊗b(η3+...+ηr)
η3

· 1(η1)⊗b(η2+...+ηr)
η2

· b(η1+...+ηr)
η1

(30)

m(η1,... ,ηr) = b
(η1)
0

⊗1(η2+...+ηr) · b(η1+η2)
η1

⊗1(η3+...+ηr) · b
(η1+η2+η3)
η1+η2

⊗1(η4+...+ηr) · . . . · b
(η1+...+ηr−1)
η1+...+ηr−2

⊗1(ηr) · b
(η1+...+ηr)
η1+...+ηr−1

(31)

f (η1)⊗ . . .⊗f (ηr) · m(η1,... ,ηr) = f (η1+...+ηr)

(32)

Proof. Choosing s = 1 in equation (29) we get

m(η1,... ,ηr) = 1(η1)⊗m(η2,... ,ηr) · b(η1+...+ηr)
η1

.

From here (30) follows immediately by induction on r.
Similarly, (31) follows by induction on r from

m(η1,... ,ηr) = m(η1,... ,ηr−1)⊗1(ηr) · b
(η1+...+ηr)
η1+...+ηr−1

,

which is the case s = r − 1 of (29).
The remaining identity can also be obtained by induction on r, as follows:

f (η1)⊗ . . .⊗f (ηr) · m(η1,... ,ηr)(29)
=

[
f (η1)⊗ . . .⊗f (ηs) · m(η1,... ,ηs)

]
⊗

[
f (ηs+1)⊗ . . .⊗f (ηr) · m(ηs+1,... ,ηr)

]
· m(n1,n2)

(ind.hyp.)
= f (n1)⊗f (n2) · m(n1,n2)

(21)
= f (n).

7.5. Witt’s identity. The following identity for q-multinomials is a particular case of an identity that
holds for all finite reflection groups, sometimes known as Witt’s identity:

n∑

r=0

(−1)r
∑

η∈C+(n,r)

[
n
η

]
= (−1)nq(

n
2)

(this is [H, proposition 1.11] for the case of the reflection group Sn).
Recall that C+(n, r) denotes the set of strict compositions of n into r parts. We should agree that

C+(n, 0) =

{
∅ if n > 0,

{0} if n = 0
, and that m(0) = 1 ∈ B0.

Witt’s identity can be generalized to braids as follows.

Proposition. For every n ≥ 0,

n∑

r=0

(−1)r
∑

η∈C+(n,r)

m(η) = µ(n) .(33)

Proof. We do induction on n. For n = 0 the statement is obvious. Assume n ≥ 1. Consider the
decomposition

n−1∐

k=0

C
+(k, r − 1)

∼=
−→ C

+(n, r), (η1, . . . , ηr−1) 7→ (η1, . . . , ηr−1, n − k).

Recall that, by (31), for any η ∈ C+(k, r − 1) we have

m(η,n−k) = m(η)⊗1(n−k) · b
(n)
k .
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Hence

∑

η∈C+(n,r)

m(η) =

n−1∑

k=0

∑

η∈C+(k,r−1)

m(η,n−k) =

n−1∑

k=0

∑

η∈C+(k,r−1)

m(η)⊗1(n−k) · b
(n)
k .(*)

Thus,

n∑

r=0

(−1)r
∑

η∈C+(n,r)

m(η) (n > 0)
=

n∑

r=1

(−1)r
∑

η∈C+(n,r)

m(η) (∗)=

n−1∑

k=0

[
n∑

r=1

(−1)r
∑

η∈C+(k,r−1)

m(η)

]
⊗1(n−k) · b

(n)
k

= −
n−1∑

k=0

[
n−1∑

s=0

(−1)s
∑

η∈C+(k,r−1)

m(η)

]
⊗1(n−k) · b

(n)
k

(ind.hyp.)
= −

n−1∑

k=0

µ(k)⊗1(n−k) · b
(n)
k

(25)
= µ(n) .

8. Galois, Fibonacci and Catalan braids

The q-numbers

Gn =

n∑

k=0

[
n
k

]

are studied in [GR2], where they are called the Galois numbers. They satisfy the following recurrence,
that when q = 1 simply says that Gn = 2n:

Gn+1 = 2Gn + (qn − 1)Gn−1 .

One may define Galois braids G(n) ∈ kBn as

G(n) =

n∑

k=0

b
(n)
k ;

then one easily obtains the following generalization of the recurrence above:

G(n+1) = G(n)⊗1 + 1⊗G(n) +

n∑

k=0

s(n+1)(1, k + 1)∗s(n+1)(k + 1, n + 1) · 1⊗b
(k−1)
n−1

⊗1 − 1⊗G(n−1)⊗1 .

Alternatively, one can define Galois braids g(n) ∈ kBn as follows:

g(n) =

n∑

k=0

c(k)⊗1(n−k) · b
(n)
k ;

these braids satisfy the simpler formula:

g(n) = [1 + s(n)(1, n)] · [1 + s(n)(1, n − 1)] · . . . · [1 + s(n)(1, 2)] · [1 + s(n)(1, 1)] ,

in fact, this is just the binomial theorem (22) at x = 1, y = 0, z = −1.
These Galois braids g(n) specialize to Galois numbers

gn =

n∑

k=0

q(
k

2)
[ n

k

]

and the formula above becomes

gn = (1 + qn−1) · (1 + qn−2) · . . . · (1 + q) · (1 + 1) .
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The Fibonacci numbers Fn count the number of subsets of {1, 2, . . . , n} without consecutive ele-
ments; one has Fn = Fn−1 + Fn−2. It is easy to obtain q-versions of these numbers. More general
braid analogs can be defined as follows. Let F(n, k) denote the set of subsets of {1, 2, . . . , n} with k
elements no two of which are consecutive, and set

F
(n)
k =

∑

I∈F(n,k)

s
(n)
I ∈ kBn.

As for the Galois braids, we have two options for defining the Fibonacci braids in terms of the F
(n)
k ,

according to whether we weight by the twistors c(k) or not. As before, weighting leads to simpler
identities. So we define the Fibonacci braids F (n) ∈ kBn as

F (n) =

n∑

k=0

c(k)⊗1(n−k) · F
(n)
k .

The same bijection considered in the proof of Pascal’s identity (13) shows that

F
(n)
k = F

(n−1)
k

⊗1 + s(n)(k, n) · F
(n−2)
k−1

⊗1(2);

from here it follows easily that

F (n) = F (n−1)⊗1 + s(n)(1, n) · F (n−2)⊗1(2) .

Thus these braids specialize to q-numbers Fn that satisfy

Fn = Fn−1 + qn−1Fn−2 .

The Catalan numbers Cn count the number of subsets I of {1, 2, . . . , 2n} satisfying the following
two conditions:

#I = n and for every j = 1, 2, . . . , 2n, #I ∩ {1, 2, . . . , j} ≥ #Ic ∩ {1, 2, . . . , j} .

Let C(n) denote the family of those subsets, and set

C(n) =
∑

I∈C(n)

s
(2n)
I ∈ kB2n.

It is easy to see from (*) in the proof of (12) that

C(n) = C̃(n) .

Similarly, from (*) in the proof of (14) one deduces that

C(n+1) =

n∑

k=0

1(k+1)⊗βk+1,n−k⊗1(n−k) · 1⊗C(k)⊗1⊗C(n−k) .

Thus these braids specialize to q-numbers Cn that satisfy

Cn+1 =

n∑

k=0

q(k+1)(n−k)CkCn−k .

These are the q-Catalan numbers of Carlitz and Riordan [CR].
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9. Binomial braids and quantum groups

In section 2.5 we explained how Yang-Baxter operators yield monoidal representations of the braid
category B. In this regard we should add that Majid began the study of combinatorial identities
between operators on tensor powers of a vector space X corresponding to a Yang-Baxter operator on
X⊗X : in thm. 10.4.12 of [Ma] the case i = 1 of (20) is obtained.

So far in this paper we have considered only one-dimensional representations, corresponding to the
Yang-Baxter operator that simply multiplies by q. Other Yang-Baxter operators are obtained through
the theory of quantum groups. Every module X over a quasitriangular Hopf algebra comes equipped
with a canonical Yang-Baxter operator on X⊗X . The converse essentially holds: every Yang-Baxter
operator on a vector space X gives rise to a coquasitriangular bialgebra that coacts on X (if the
bialgebra is finite-dimensional then X can be seen as a module over the dual bialgebra, which is
quasitriangular).

An equivalent way to describe monoidal representations of the braid category is by means of the
following fact: B is the free braided monoidal strict category on one object (the object 1 ∈ N). This
says that given any object X of a braided monoidal category C, there is a unique functor F : B → C that
preserves the monoidal structures and the braidings and such that F (1) = X . If C carries in addition
a k-linear structure (compatible with the rest of the structure), then F extends to F : kB → C.
Usually C consists of vector k-spaces with some additional structure, and thus F : kB → C yields
linear representations of the various braid groups. This is the case for instance when C is the category
of modules over a quasitriangular Hopf algebra as above. Another family of examples arises from the
category DG of crossed G-modules, for any group G. An object of DG is a k-space X equipped with a
linear action of G and a linear G-grading, i.e. a decomposition X = ⊕g∈GXg into subspaces, such that
the action of h ∈ G carries Xg to Xhgh−1 . In this context, one usually writes |x| = g when x ∈ Xg, so
that the condition just mentioned becomes |h · x| = h|x|h−1. This category is braided monoidal under
the usual tensor product of k-spaces, where X⊗Y is equipped with the G-action g · (x, y) = (g · x, g · y)
and the G-grading |(x, y)| = |x||y|, and the braiding is

βX,Y : X⊗Y → Y ⊗X, βX,Y (x, y) = (|x| · y)⊗x.

This construction can in fact be carried out for any Hopf algebra H in place of G. If H is finite-
dimensional, then DH is the category of modules over the Drinfeld double D(H) of H , which is a
quasitriangular Hopf algebra.

We have described in [A] a general procedure for constructing a quantum group out of this data
(that is, a group G, or more generally a Hopf algebra, and a crossed module X). In this procedure the

action of the binomial braids b
(n)
i on the various tensor powers X⊗n plays a crucial role. Drinfeld and

Jimbo’s quantized enveloping algebra U+
q (C) associated to a symmetrizable generalized Cartan matrix

C arises from this construction with G = Zr, the free abelian group of rank r, where r is the size of C,
and the following crossed Zr-module X : let A = [ahk] be the symmetrized matrix corresponding to C,
an integer square matrix of size r, let X be the vector space with basis {x1, . . . , xr} and define

|xk| = (a1k, . . . , ark) ∈ Zr, (n1, . . . , nr) · xh = qnhxh ∀ (n1, . . . , nr) ∈ Zr,

where q ∈ k∗ is any fixed scalar, not a root of unity.
We will now briefly describe this procedure, without proofs. For the general case of a crossed module

over a Hopf algebra, the construction involves the notions of internal categories and admissible sections

developed in [A]. A small linear category [Mi] is an example of an internal category. Let us concentrate
on this special case that requires less strange terminology, and that covers the main example U+

q (C).

The idea is to attach a small linear category U
+
G(X) to the given group G and crossed module X ,

and then obtain the quantum group as the matrix ring of the category, as defined by Mitchell in [Mi].
The coalgebra structure on the quantum group is seen to come from a deltacategory structure on the
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category. This is the crucial point where the binomial braids enter, so we had better explain it in some
detail.

For small linear categories (and more generally for internal categories) there is an alternative notion
of morphisms, besides that of ordinary functors. We have called them cofunctors, because a different
special case (Lie groupoids) has received that name in the literature [HM]. A cofunctor induces a
morphism of algebras between the corresponding matrix rings (on the other hand, a functor does not,
unless it is bijective on objects -this was the case considered in [Mi]). A small deltacategory U is a
small linear category equipped with a coassociative cofunctor ∆ : U → U⊗U. (More precisely, it is a
comonoid in the monoidal category of small linear categories and cofunctors). The matrix ring of such
a category is then a bialgebra. The main point of these considerations is that most quantum groups
arise as matrix rings of naturally defined deltacategories.

Let us describe the deltacategory U
+
G(X). First we consider the graph whose vertex set is G and

whose set of arrows is
∐

g∈G Xg ×G, where each (x, h) is an arrow from h to h|x|. Then we pass to the

free linear category TG(X) on this graph. It turns out that TG(X) possesses a deltacategory structure,
defined on the generating arrows as follows:

∆(x, gh) = eg⊗(x, h) + (h · x, g)⊗eh .

Here eg denotes the identity arrow of the object g ∈ G.
It follows from coassociativity that the general expression for ∆ is

∆(x, gh) =

n∑

i=0

(
h · (b

(n)
i x)(i), g

)
⊗

(
(b

(n)
i x)(i)′ , h

)
for x ∈ X

⊗n.

Here b
(n)
i is of course the binomial braid, acting on X⊗n as explained above; we have also used the

notation y = y(i)⊗y(i)′ for the canonical identification X⊗n ∼= X⊗i⊗X⊗(n−i). This is in fact how we ran
into these braids in the first place. One immediately sees from this expression for ∆ that there is a
natural set of relations on TG(X) that are preserved by ∆. Namely, if for each n ≥ 2 we let

I(n) :=

n−1⋂

i=1

Ker
(
b
(n)
i : X

⊗n → X
⊗n

)
and I :=

∞⊕

n=2

I(n),

then the ideal of TG(X) spanned by I ×G is preserved by ∆. Hence, the quotient category U
+
G(X) :=

TG(X)/I × G inherits a deltacategory structure.
One can show that when G = Zr and X is defined from a symmetrizable generalized Cartan matrix

C as above, then the matrix ring of U
+
G(X) is the quantum group U+

q (C).
Some other simple choices of G and X yield well-known quantum groups, for instance G = Z2 and

X=the non-trivial one dimensional representation of G yield Sweedler’s Hopf algebra H4; G = Zn and
X a one dimensional representation of G yield Taft’s Hopf algebras.

But notice that this construction is more general: one can use any integral matrix for C, and of
course other groups or even Hopf algebras, and obtain other (new) quantum groups.

These assertions will be complemented with more details and proofs in [A].

10. Additional remarks

Further interesting combinatorial phenomena arises from the study of the behavior of the vari-
ous braid analogs on higher dimensional representations X of the braid groups. In particular, the

determinants of b
(n)
i and f (n) on X⊗n seem to factor in some rather remarkable ways, intimately

related to the combinatorics of the braid arrangement Ar−1 = {Hhk / 1 ≤ h < k ≤ r}, where
Hhk = {(x1, . . . , xr) ∈ Rr / xh = xk}.

For instance, consider the representation constructed from a symmetric matrix A = [ahk] of size r

as in section 9. Thus, Bn acts on X⊗n ∀ n ≥ 0, where X is a vector space with basis {x1, . . . , xr}.
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The subspace Xr of X⊗r spanned by those tensors of the form xσ(1)⊗xσ(2)⊗ . . .⊗xσ(r), where σ runs

over Sr, is invariant under the action of Br. The matrix of f (r) : Xr → Xr with respect to this basis
turns out to be the same matrix that Varchenko associates to the weighted hyperplane arrangement
Ar−1 (weighted by the ahk’s) [V]. A factorization formula for the determinant of the matrix of an
arbitrary weighted real hyperplane arrangement is obtained in that work. For the special case of the
braid arrangement, further factorization formulas seem to hold, not only for the determinant of the
factorial braid, but also for the binomials, and on other invariant subspaces of X⊗n as well.

In particular, on the subspace Xh,k of X⊗(n+1) spanned by xh⊗x⊗n
k and its permutations, one can

show that

det
(
b
(n+1)
1 |Xh,k

)
= (1 − qa[n])(1 − qa[n−1]) . . . (1 − qa[1])[n]!qakk ,

where

a[i] = (i − 1)akk + ahk + akh .

These questions will be the subject of further work.
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