
Unipotent Representations and the Dual Pairs
Correspondence

Dan Barbasch

Dubrovnik
June 2015

August 7, 2015 1 / 36



Introduction

Much of the material in this talk was presented at the conference in honor
of Roger Howe. The slides are available at

http://math.mit.edu/conferences/howe/program.php

The theme of the talk is to find realizations of unipotent representations in
terms of the Θ−correspondence as defined by Howe.
The groups are complex viewed as real groups because [AB1] provides a
complete explicit description of the Θ−correspondence.
A particular focus is the K−spectrum of these representations, and their
relation to the geometry of nilpotent orbits in the Lie algebra g (or rather
its linear dual g∗). This is a different aspect than the relation to nilpotent
orbits in the dual algebra g∨.

One of the reasons to study the K−structure of small unitary
representations as in the last examples is to compute Dirac cohomology as
introduced by Vogan and Huang-Pandzic. Subject for Another Time.
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Unipotent Representations, Complex Classical Groups

First recall the Langlands parametrization of irreducible modules. We use
the standard realizations of the classical groups, roots, positive roots and
simple roots. Let

θ Cartan involution, K the fixed points of θ, g = k + s,

b = h + n a Borel subalgebra,

h = t + a a CSA, t ⊂ k, θ |a= −Id ,

X (µ, ν) = IndG
B (Cµ ⊗ Cν) standard module,

L(µ, ν), the unique subquotient containing Vµ ∈ K̂ ,

λL = (µ+ ν)/2 and λR = (−µ+ ν)/2.

The parameters of unipotent representations have real ν.

Theorem
1 L(λL, λR) ∼= L(λ′L, λ

′
R) if and only if there is a w ∈W such that

w · (λL, λR) = (λ′L, λ
′
R).

2 L(λL, λR) is hermitian if and only if there is w ∈W such that
w · (µ, ν) = (µ,−ν).
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We rely on [BV2] and [B1]. For each O ⊂ g we will give an infinitesimal
character (λO, λO), and a set of parameters.

Main Properties of λO:

Ann Π ⊂ U(g) is the maximal primitive ideal IλO with infinitesimal
character λO,

Π unitary.

| {Π : Ann Π = IλO} |=| Â(O) |,
where A(O) is the component group of the centralizer of an e ∈ O.

This depends on the isogeny class of the group.
In the Θ−correspondence, the reductive dual pairs are
GL(n)× GL(m),

Sp(2n)× O(m),

O(m)× Sp(2n).
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The notation is as in [B1]. For special orbits whose dual is even, the
infinitesimal character is one half the semisimple element of the Lie triple
corresponding to the dual orbit. For the other orbits we need a
case-by-case analysis. The parameter will always have integer and
half-integer coordinates, the coresponding set of integral (co)roots is
maximal.
Special orbits in the sense of Lusztig and in particular stably trivial orbits
defined below will play a special role.

Definition

A special orbit O is called stably trivial if Lusztig’s quotient A(O) = A(O).

Example

1) O = (2222) ⊂ sp(8) is stably trivial, A(O) = A(O) ∼= Z2,
λO = (2, 1, 1, 0).
2) O = (222) ⊂ sp(6) is not, A(O) ∼= Z2, A(O) ∼= 1,
λO = (3/2, 1/2, 1/2). (222) is special, h∨/2 = (1, 1, 0).

The partitions denote rows.
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Type A, GL(n,C)

Nilpotent orbits are determined by their Jordan canonical form. An orbit is
given by a partition, i.e. a sequence of numbers in decreasing order
(n1, . . . , nk) that add up to n. Let (m1, . . . ,ml) be the dual partition.
Then the infinitesimal character is

(
m1 − 1

2
, . . . ,−m1 − 1

2
, . . . ,

ml − 1

2
, . . . ,−ml − 1

2
)

The orbit is induced from the trivial orbit on the Levi component
GL(m1)× · · · × GL(ml). The corresponding unipotent representation is
spherical and induced irreducible from the trivial representation on the
same Levi component. All orbits are special and stably trivial.
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Type B, SO(2m + 1)

A nilpotent orbit is determined by its Jordan canonical form (in the
standard representation). It is parametrized by a partition (n1, . . . , nk) of
2m + 1 such that every even entry occurs an even number of times. Let
(m′0, . . . ,m

′
2p′) be the dual partition (add an m′2p′ = 0 if necessary, in

order to have an odd number of terms). If there are any m′2j = m′2j+1 then
pair them together and remove them from the partition. Then relabel and
pair up the remaining columns (m0)(m1,m2) . . . (m2p−1m2p). The
members of each pair have the same parity and m0 is odd. λO is given by
the coordinates

(m0)←→ (
m0 − 2

2
, . . . ,

1

2
),

(m′2j = m′2j+1)←→ (
m2j − 1

2
, . . . ,−

m2j − 1

2
)

(m2i−1m2i )←→ (
m2i−1

2
, . . . ,−m2i − 2

2
)

(1)

August 7, 2015 6 / 36



Type B, continued

In case m′2j = m′2j+1, O is induced from a Om ⊂ m = so(∗)× gl(m′2j)
where m is the Levi component of a parabolic subalgebra p = m + n. Om

is the trivial nilpotent on the gl−factor. The component groups satisfy
AG (O) ∼= AM(Om). Each unipotent representation is unitarily induced
from a unipotent representation attached to Om.
Similarly if some m2i−1 = m2i , then O is induced from a
Om ⊂ so(∗)× gl(

m2i−1+m2i

2 ) with (0) on the gl−factor.
AG (O) 6∼= AM(Om), but each unipotent representation is (not necessarily
unitarily) induced irreducible from a Om ⊂ m ∼= so( )× gl( ).
The stably trivial orbits are the ones such that every odd sized part
appears an even number of times, except for the largest size. An orbit is
called triangular if it has partition

O ←→ (2m + 1, 2m − 1, 2m − 1, . . . , 3, 3, 1, 1).
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Type B, continued

We give the explicit Langlands parameters of the unipotent representations
in terms of their . There are | AG (O)| distinct representations. Let

(1, . . . , 1︸ ︷︷ ︸
r1

, . . . , k, . . . k︸ ︷︷ ︸
rk

)

be the rows of the Jordan form of the nilpotent orbit. The numbers r2i are
even. The reductive part of the centralizer (when G = O(∗)) of the
nilpotent element is a product of O(r2i+1), and Sp(r2j).

August 7, 2015 8 / 36



Type B, continued

The columns are paired as in (1). The pairs (m′2j = m′2j+1) contribute to
the spherical part of the parameter,

(m′2j = m′2j+1)←→
(
λL
λR

)
=

(
m′2j−1

2 , . . . , −m′2j−1

2
m′2j−1

2 , . . . , −m′2j−1

2

)
. (2)

The singleton (m0) contributes to the spherical part,

(m0)←→
(

m0−2
2 , . . . , 1

2
m0−2

2 , . . . , 1
2

)
. (3)

Let (η1, . . . , ηp) with ηi = ±1, one for each (m2i−1,m2i ). An ηi = 1
contributes to the spherical part of the parameter, with coordinates as in
(1). An ηi = −1 contributes(m2i−1

2 , . . . , m2i+2
2

m2i
2 , . . . , −m2i−2

2
m2i−1

2 , . . . , m2i+2
2

m2i−2
2 , . . . , −m2i

2

)
. (4)

If m2p = 0, ηp = 1 only.
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Explanation

1 Odd sized rows contribute a Z2 to A(O), even sized rows a 1.

2 When there are no m′2j = m′2j+1, every row size occurs.
. . . (m2i−1 ≥ m2i ) > (m2i+1 ≥ m2i+2) . . . determines that there are
m2i −m2i+1 rows of size 2i + 1. The pair (m2i−1 ≥ m2i ) contributes
exactly 2 parameters corresponding to the Z2 in A(O).

3 The pairs (m′2j = m′2j+1) lengthen the sizes of the rows without
changing their parity. The component group does not change, they
do not affect the number of parameters.
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Type C, Sp(2n,C)

A nilpotent orbit is determined by its Jordan canonical form (in the
standard representation). It is parametrized by a partition (n1, . . . , nk) of
2n such that every odd part occurs an even number of times. Let
(c ′0, . . . , c

′
2p′) be the dual partition (add a c ′2p′ = 0 if necessary in order to

have an odd number of terms). If there are any c ′2j−1 = c ′2j pair them up
and remove them from the partition. Then relabel and pair up the
remaining columns (c0c1) . . . (c2p−2c2p−1)(c2p). The members of each pair
have the same parity. The last one, c2p, is always even. Then form a
parameter

(c ′2j−1 = c ′2j)↔ (
c2j − 1

2
, . . . ,−

c2j − 1

2
), (5)

(c2ic2i+1)↔ (
c2i

2
, . . . ,−c2i+1 − 2

2
), (6)

c2p ↔ (
c2p

2
, . . . , 1). (7)
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Type C, continued

The nilpotent orbits and the unipotent representations have the same
properties with respect to these pairs as the corresponding ones in type B.
The stably trivial orbits are the ones such that every even sized part
appears an even number of times.
An orbit is called triangular if it corresponds to the partition
(2m, 2m, . . . , 4, 4, 2, 2).

We give a parametrization of the unipotent representations in terms of
their Langlands parameters. There are | AG (O) | representations.
Let

(1, . . . , 1︸ ︷︷ ︸
r1

, . . . , k, . . . k︸ ︷︷ ︸
rk

)

be the rows of the Jordan form of the nilpotent orbit. The numbers r2i+1

are even.

August 7, 2015 12 / 36



Type C, continued

The reductive part of the centralizer of the nilpotent element is a product
of Sp(r2i+1), and O(r2j).
The elements (c ′2j−1 = c ′2j) and c2p contribute to the spherical part of the
parameter as in (2) and (3). Let (ε1, . . . , εp) be such that εi = ±1, one for
each (c2i , c2i+1). An εi = 1 contributes to the spherical paramater
according to the infinitesimal character. An εi = −1 contributes(

c2i
2 , . . . , c2i+1+2

2
c2i+1

2 . . . , − c2i+1−2
2

c2i
2 , . . . , c2i+1+2

2
c2i+1−2

2 . . . , − c2i+1

2

)
. (8)

The explanation is similar to type B.
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Type D, SO(2m,C)

A nilpotent orbit is determined by its Jordan canonical form (in the
standard representation). It is parametrized by a partition (n1, . . . , nk) of
2m such that every even part occurs an even number of times. Let
(m′0, . . . ,m

′
2p′−1) be the dual partition (add a m′2p′−1 = 0 if necessary). If

there are any m′2j = m′2j+1 pair them up and remove from the partition.
Then pair up the remaining columns
(m0,m2p−1)(m1,m2) . . . (m2p−3,m2p−2). The members of each pair have
the same parity and m0,m2p−1 are both even. The infinitesimal character
is

(m′2j = m′2j+1)←→ (
m′2j − 1

2
. . . ,−

m′2j − 1

2
)

(m0m2p−1)←→ (
m0 − 2

2
, . . . ,−m2p−1

2
),

(m2i−1m2i )←→ (
m2i−1

2
. . . ,−m2i − 2

2
)

(9)
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Type D, continued

The nilpotent orbits and the unipotent representations have the same
properties with respect to these pairs as the corresponding ones in type B.
An exception occurs for G = SO(2m) when the partition is formed of pairs
(m′2j = m′2j+1) only. In this case there are two nilpotent orbits
corresponding to the partition. There are also two nonconjugate Levi
components of the form gl(m′0)× gl(m′2)× . . . gl(m′2p′−2) of parabolic
subalgebras. There are two unipotent representations each induced
irreducible from the trivial representation on the corresponding Levi
component.
The stably trivial orbits are the ones such that every even sized part
appears an even number of times.
A nilpotent orbit is triangular if it corresponds to the partition
(2m − 1, 2m − 1, . . . , 3, 3, 1, 1).
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Type D, continued

The parametrization of the unipotent representations follows types B,C,
with the pairs (m′2j = m′2j+1) and (m0,m2p−1) contributing to the
spherical part of the parameter only. Similarly for (m2i−1,m2i ) with εi = 1
spherical only, while εi = −1 contributes analogous to (4) and (8).

The explanation parallels that for types B,C.
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Metaplectic Correspondence

The next results are motivated by [KP1].
Restrict attention to the cases

(B) (m0)(m1,m2) . . . (m2p−1,m2p) with m2k > m2k+1,

(C) (c0, c1) . . . (c2p−2, c2p−1)(c2p) with c2j−1 > c2j ,

(D) (m0,m2p+1)(m1,m2) . . . (m2p−1,m2p) with m2j > m2j+1.

Let (Vk , εk) be a symplectic space if εk = −1, orthogonal if εk = 1,
k = 0, . . . , 2p. ε0 is the same as the type of the Lie algebra, dim V0 is the
sum of the columns. Let (Vk , εk) be the space with dimension the sum of
the lengths of the columns labelled ≥ k, εk+1 = −εk . Then

(Vk ,Vk+1)

gives rise to a dual pair. The main result will be that unipotent
representations corresponding to Ok are obtained from the unipotent
representations corresponding to Ok+1.
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Metaplectic Correspondence, continued

More precisely,

The matching of infinitesimal characters from the Θ−correspondence
applies.

ε0 = 1. There is a 1− 1 correspondence between unipotent
representations of Sp(V1) attached to O1 and unipotent
representations of SO(V1) attached to O = O0.

ε0 = −1. There is a 1− 1 correspondence between unipotent
representations of O(V1) attached to O1 and unipotent
representations of Sp(V0) attached to O = O0.

In the case ε0 = −1, the passage between unipotent representations of
SO(V ) and O(V ) is done by pulling back and tensoring with the sign
character of O(V ).

I use Weyl’s conventions for parametrizing representations of O(n). The
proof is a straightforward application of [AB1].
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Sketch of Proof

1 Adding a column longer than any existing columns changes the parity
of the rows, and adds a number of rows of size 1. If we pass from
sp() to so(), another Z2 is added to A(O). If we pass from so() to
sp() the component group does not change.

2 ε0 = −1. If the pair is from type C to type D, c0, . . . , c2p are changed
to m1, . . . ,m2p+1 and an m0 is added. They are paired up
(m0, c2p)(c1, c2) . . . (c2p−2, c2p−1). A parameter corresponding to a
(η1, . . . , ηp) goes to the corresponding one for type D.
If the pair is from type C to type B, and c2p = 0, then c0, . . . , c2p−1

go to m1, . . . ,m2p and an m0 is added. If c2p 6= 0, then c0, . . . , c2p go
to m1, . . . ,m2p+1, a m0 and a m2p+2 = 0 is added. The pairs are
(m0)(c0, c1) . . . (c2p−2, c2p−1)(c2p, 0) and (η1, . . . , ηp) goes to the
corresponding one for type B.

3 ε0 = 1. We have to use the more difficult matching in [AB1].
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Motivating Example

The pair is O(m)× Sp(2n). The trivial representation of O(m)
corresponds to the partition (m), and it matches (m,m) in Sp(2n). The
trivial representation of O(m) has parameter(

m
2 − 1 . . . τ

2
m
2 − 1 . . . τ

2

)
with τ = 0, 1 depending on the parity of m. The infinitesimal character of
Θ(Triv) is obtained by adding (m2 − n, . . . , 1− τ

2 ) to both λL and λR , and
the prameter is the spherical representation(

m
2 − 1 . . . τ

2 ,
τ
2 − 1, . . . , n − m

2
m
2 − 1 . . . τ

2 ,
τ
2 − 1, . . . , n − m

2

)
in the case of Sgn the parameter of Θ(Sgn) is(

m
2 − 1 . . . m

2 − n + 2 m
2 − n + 1 . . . n − m

2
m
2 − 1 . . . m

2 − n + 2 m
2 − n . . . n − m

2 − 1

)
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Example 4

Let O ←→ (4, 2, 2) in sp(8). It corresponds to O ←→ (2, 2) in so(4).
There are two such nilpotent orbits if we use SO(4), one if we use O(4).
We will use orbits of the orthogonal group. The infinitesimal character
corresponding to (2, 2) is (1/2, 1/2). The representations corresponding to
(4, 2, 2) have infinitesimal character (1, 0, 1/2, 1/2). The Langlands
parameters are spherical(

1/2 1/2
1/2 1/2

)
←→

(
1 0 1/2 1/2
1 0 1/2 1/2

)

We can go further and match (2, 2) in so(8) with (2) in sp(2). If we
combine these steps we get infinitesimal characters
(1) 7→ (0, 1) 7→ (2, 1, 0, 1). There is nothing wrong with the
correspondence of irreducible modules. But note that the infinitesimal
character (2, 1, 1, 0) has maximal primitive ideal corresponding to the orbit
O ←→ (4, 4), rows (2, 2, 2, 2).
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Example 4, continued

This is one of the reasons for imposing the conditions on the absence of
certain equalities of the columns. We want to iterate, and stay within the
class of unipotent representations.
In the absence of these restrictions one obtains induced modules with
interesting composition series. In this example,

Ind
Sp(8)
GL(2)xSp(4)[χ⊗ Triv ] =(

1 0 2 1
1 0 2 1

)
+

(
2 1 0 −1
1 0 −1 −2

)
+

(
1 0 2 1
0 −1 2 1

)
.

The first two parameters are unipotent, corresponding to O ←→ (4, 4),
the last one is bigger, the annihilator gives (4, 2, 2). All these composition
factors have nice character formulas analogous to those for the special
unipotent representations; their annihilators are no longer maximal. Daniel
Wong has made an extensive study of these representations in his thesis.
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Example 4, continued

This example is tied up with the fact that nilpotent orbits are not always
normal.

A nilpotent orbit is normal if and only if R(O) = R(O). The orbit (4, 2, 2)
is not normal.

For O ←→ (4, 2, 2), R(O) equals the full induced representation from the
previous slide, R(O) is missing the middle representation.
These equalities are in the sense that the K−types of the representations
match the G−types of the regular functions, I am using the identification
Kc
∼= G .
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K-P Model

We follow [Bry]. Let (G,K ) := (g0,K0)× · · · × (g`,K`) be the algebras
corresponding to removing a column at a time. Each pair
(gi ,Ki )× (gi+1,Ki+1) is equipped with a metaplectic representation Ωi .
Form Ω := ⊗Ωi . The representation we are interested in, is

Π = Ω/(g1 × . . . g`)(Ω).

Let (g1,K 1) := (g1 × · · · × g`,K1 × · · · × K`), and let g1 = k1 + p1 be the
Cartan decomposition.
Π is an admissible (g0,K0)− module. It has an infinitesimal character
compatible with the Θ−correspondence. Furthermore the Ki which are
orthogonal groups are disconnected, so the component group
K1 := K 1/(K 1)0 still acts, and commutes with the action of (g0,K0).
Thus Π decomposes

Π =
⊕

ΠΨ

where ΠΨ := HomK1 [Π,Ψ]. The main result in [Bry] is that

ΠTriv |K0= R(O).
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K-P Model, continued

We would like to conclude that the representations corresponding to the
other Ψ are the unipotent ones, and they satisfy an analogous relation to
the above. The problem is that the component group of the centralizer of
an element in the orbit does not act on O, so R(O, ψ) does not make
sense.
Let V :=

∏
Hom[Vi ,Vi+1]. This can be identified with a Lagrangian.

Consider the variety Z = {(A0, . . . ,A`)} ⊂ V given by the equations
A?i ◦ Ai − Ai+1 ◦ A?i = 0, . . . ,A`−1 ◦ A∗` = 0. The detailed statement in
[Bry] is that

Gr [Ω/p1Ω] = R(Z).

This is compatible with taking (co)invariants for k1. To each character ψ
of the component group of the centralizer of an element e ∈ O, there is

attached a character Ψ ∈ K̂1. Then

ΠΨ |K0= R(Z,Ψ).
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Main Result

Theorem (Types B,C,D)

Let O be a stably trivial orbit. There is an explicit matchup

Unip(O)←→ Â(O), ψ ←→ Xψ,

such that
Xψ |K∼= R(O, ψ).

The matchup satisfies a compatibility with induction.

For the rest of the orbits, the best I can do is to show that there is a
matchup such that

Xψ ∼= R(O, ψ)− Yψ

where Yψ is a genuine K−character supported on strictly smaller orbits (cf
[V]).
As in [V], the conjecture is that Yν = 0.
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Covers Spin(m)

Let O ←→ (2n, 2n − 1, 1) in so(4n). Then
λO = (n − 1/2, . . . , 1/2, n − 1, . . . , 1, 0). There are two complex
representations: (

n − 1/2 . . . 1/2 n − 1 . . . 0
n − 1/2 . . . 1/2 n − 1 . . . 0

)
(

n − 1/2 . . . 1/2 n − 1 . . . 0
n − 1/2 . . . −1/2 n − 1 . . . 0

)
Their K−structure is

(ε+ a1, a2, . . . , an), (10)

with ε = 0, 1 and (a1, . . . , an) in the root lattice. The relations to sections
on equivariant line bundles on the orbit hold. The representations are
obtained by the Θ−correspondence as before.
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Covers, continued

However if we consider Spin(4n) there are two more ([Br]),(
n − 1/2 . . . 1/2 0 . . . −n + 1

n − 1 . . . 0 −1/2 . . . −n + 1/2

)
(

n − 1/2 . . . −1/2 0 . . . −n + 1
n − 1 . . . 0 −1/2 . . . −n + 1/2

)
They cannot come from the Θ−correspondence. The K−structure is

(1/2 + a1, . . . , 1/2 + an−1,±1/2 + an) (11)

with (a1, . . . , an) in the root lattice. They have analogous relations to the
corresponding R(O, ψ).

For the real case, Wan-Yu Tsai has made an extensive study of the
analogues of these representations. They cannot come from the
Θ−correspondence either. In work in progress we have shown that they
satisfy the desired relations to sections of equivariant bundles on orbits.
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Type A, SL(n,C)

The center of the group is the cyclic group of order n. For the principal
nilpotent (cf [G]), the infinitesimal character is

χ =

(
n − 1

2n
,

n − 3

2n
, . . . ,−n − 3

2n
,−n − 1

2n

)

and the parameters are

(
χ
σχ

)
with σ a cyclic permutation.

For a general nilpotent orbit with (k , . . . , k︸ ︷︷ ︸
nk

, . . . , 1, . . . , 1︸ ︷︷ ︸
n1

) corresponding to

the columns of the tableau, the infinitesimal character is

χ =

k−1
2 + nk−1

2nk
. . . k−1

2 −
nk−1
2nk

. . .
k−3

2 + nk−1
2nk

. . . k−3
2 −

nk−1
2nk

. . .

. . . . . . . . . . . .

and the parameters involve cyclic permutations that have to do with
gcd(nk , . . . , n1).
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SL(n,C), Examples

Example

The nilpotent orbit O ←→ (2, 1) has component group A(O) = 1. There
is only one parameter the spherical representation with infinitesimal
character (1/2,−1/2, 0)× (1/2,−1/2, 0).

Example

O ←→ (2, 2) has component group A(O) = Z2. The parameters are(
1/2 + 1/4 1/2− 1/4 −1/2 + 1/4 −1/2− 1/4
1/2 + 1/4 1/2− 1/4 −1/2 + 1/4 −1/2− 1/4

)
(

1/2 + 1/4 1/2− 1/4 −1/2 + 1/4 −1/2− 1/4
1/2− 1/4 1/2 + 1/4 −1/2− 1/4 −1/2 + 1/4

) (12)

The second parameter has lowest K−type the fundamental weight
(1/2, 1/2,−1/2,−1/2).
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SL(n,C), Examples

Example

The nilpotent orbit O ←→ (2, 1) has component group A(O) = 1. There
is only one parameter the spherical representation with infinitesimal
character (1/2,−1/2, 0)× (1/2,−1/2, 0).

Example

O ←→ (2, 2) has component group A(O) = Z2. The parameters are(
1/2 + 1/4 1/2− 1/4 −1/2 + 1/4 −1/2− 1/4
1/2 + 1/4 1/2− 1/4 −1/2 + 1/4 −1/2− 1/4

)
(

1/2 + 1/4 1/2− 1/4 −1/2 + 1/4 −1/2− 1/4
1/2− 1/4 1/2 + 1/4 −1/2− 1/4 −1/2 + 1/4

) (13)

The second parameter has lowest K−type the fundamental weight
(1/2, 1/2,−1/2,−1/2).
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Real Groups

Let S0 be a (real) symplectic space, S0 = L0 + L⊥0 , a decomposition into
transverse Lagrangians. Let R0 be an orthogonal space. The real form of
the orthogonal group gives a decomposition R0 = V0 + W0 where the form
is positive definite on V0, negative definite on W0. The complexifications
of the Cartan decompositions of sp(S0) and so(R0) are given by

sp(S) = k + (p+ + s−) = Hom[L,L] + (Hom[L⊥,L] + Hom[L,L⊥]),

so(R) = k + s = (Hom[V,V] + Hom[W,W]) + Hom[V,W].
(14)

Note that due to the presence of the nondegenerate forms,
Hom[L,L] ∼= Hom[L⊥,L⊥] and Hom[V,W] ∼= Hom[W,V]. The canonical
isomorphisms are denoted by ∗.
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Real Groups, continued

Consider the pair sp(S)× o(R) ⊂ sp(Hom[S,R]). The space
X := Hom[S,R] has symplectic nondegenerate form

〈A,B〉 := Tr(A ◦ B∗) = Tr(B∗ ◦ A).

A Lagrangian subspace is provided by

LL := Hom[L,V] + Hom[L⊥,W]. (15)

The moment map

m = (msp,mso) : LL −→ sp(S)× o(R)

m(A,B) = (A∗A− B∗B,BA∗ ∼= AB∗)
(16)

maps LL to s(sp)× s(so). It is standard that msp ◦m−1
so (and symmetrically

mso ◦m−1
sp ) take nilpotent orbits to nilpotent orbits. In this special case,

the moment maps take nilpotent Kc−orbits on s to nilpotent Kc−orbits
on s of the other group.
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Real Groups, continued

The K-P model has a straightforward generalization, one considers the
columns of Kc−orbits on sc .

Theorem (Type B,C,D)

Let O ⊂ sc be a Kc−orbit such that Oc is stably trivial. There is a 1-1

correspondence between Unip(O) and Â(O).

X ∈ Unip(O)←→ ψ ∈ Â(O).

This uses the seesaw pairs determined by the columns. There is an explicit
matchup ψ ←→ Ψ ∈ K 1/K 1

0 such that onjecturally

Xψ |K1
∼= (RZ, ψ).

Some unipotent representations won’t have support just a single orbit. For
them one has to consider seesaw pairs in the Θ−correspondence other
than those coming from the columns.
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Example

Let O ←→ (4, 4, 2, 2) ⊂ sp(12,C). There are 9 Kc nilpotent orbits in sc
for sp(12,R). For example one of them can be encoded as

+ − + −
+ − + −
+ −
− +

(17)

The seesaw pairs are Sp(12,R)× O(3, 5)× Sp(4,R)× O(0, 2). There are
8 = 4× 2 parameters, 4 coming from O(3, 5) and 2 from O(0, 2).

I don’t know the Langlands parameters as explictly as in the complex case.
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