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ABSTRACT 1. INTRODUCTION
This paper describes a sensor network approach to tracking a sin- There is a growing need to develop low cost wireless networks of
gle object in the presence of static and moving occluders using a cameras with automated detection capabilities [1]. The main chal-
network of cameras. To conserve communication bandwidth and lenge in building such networks is the high data rate of video cam-
energy, each camera first performs simple local processing to re- eras. On the one hand sending all the data, even after performing
duce each frame to a scan line. This information is then sent to standard compression, is very costly in transmission energy, and on
a cluster head to track a point object. We assume the locations of the other, performing sophisticated vision processing at each node
the static occluders to be known, but only prior statistics on the to substantially reduce transmission rate requires high processing
positions of the moving occluders are available. A noisy perspec- energy. To address these challenges, a task-driven approach, in
tive camera measurement model is presented, where occlusions are which simple local processing is performed at each node to extract
captured through an occlusion indicator function. An auxiliary par- the essential information needed for the network to collaboratively
ticle filter that incorporates the occluder information is used to track perform the task, has been proposed and demonstrated [2,3].
the object. Using simulations, we investigate (i) the dependency of In this paper, we adopt such a task-driven approach for tracking
the tracker performance on the accuracy of the moving occluder a single object (e.g., a suspect) in a structured environment (e.g.,
priors, (ii) the tradeoff between the number of cameras and the an airport or a mall) in the presence of static and moving occluders
occluder prior accuracy required to achieve a prescribed tracker using a wireless camera network. Most previous work on tracking
performance, and (iii) the importance of having occluder priors to with multiple cameras has focused on tracking all the objects and
the tracker performance as the number of occluders increases. We does not deal directly with static occluders, which are often present
generally find that computing moving occluder priors may not be in structured environments (see brief survey in Section 2). Track-
worthwhile, unless it can be obtained cheaply and to a reasonable ing all the objects clearly provides a solution to our problem, but
accuracy. Preliminary experimental results are provided. may be infeasible to implement in a wireless camera network due

to its high computational cost. Instead, our approach is to track

Categories and Subject Descriptors only the target object treating all other objects as occluders. We as-
sume complete knowledge of static occluder (e.g., partitions, large

G.3 [Probability and Statistics]: Probabilistic Algorithms; 1.4.9 pieces of furniture) locations and some prior statistics on the po-
[Image Processing and Computer Vision]: Applications. sitions of the moving occluders (e.g., people) which are updated

in time. Simple local processing whereby each image is reduced
General Terms to a horizontal scan line is performed at each camera node. If the

Algorithms, camera sees the object, it provides a measurement of its position in
the scan line to the cluster head, otherwise it reports that it cannot
see the object. A noisy perspective camera measurement model is

Keywords assumed, where occlusions are captured through an occlusion indi-
Tracking, occlusion, auxiliary particle filter, wireless sensor net- cator function. Given the camera measurements and the occluder
work, camera network, noisy perspective camera model. position priors, an auxiliary particle filter (PF) [4] is used at the

cluster head to track the object. The occluder information is in-
corporated into the measurement likelihood, which is used in the
weighting of the particles.
Even if one wishes to track only one object treating other mov-

ing objects as occluders, a certain amount of information about the
positions of the occluders may be needed to achieve high tracking
accuracy. Since obtaining more accurate occluder priors would re-
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permission and/or a fee.-
IPSN'07, April 25-27, 2007, Cambridge, Massachusetts, USA. We develop a measure of the moving occluder prior accuracy
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and use simulations to explore the dependency of the tracker per- extract feature points on the objects and use a KF to track the ob-
formance on this measure. We also explore the tradeoff between jects. They perform camera selection to avoid occlusions. By com-
the number of cameras used, the number of occluders present, and parison, in our work occlusions are treated as part of the tracker.
the amount of occluder prior information needed to achieve a pre- Otsuka et al. [18] describe a double loop filter to track multiple
scribed tracker performance. We generally find that: objects, where objects can occlude each other. One of the loops

is a PF that updates the states of the objects in time using the ob-
* Obtaining moving occluder prior information may not be ject dynamics, the likelihood of the measurements, and the occlu-

worthwhile in practice, unless it can be obtained cheaply and sion hypotheses. The other loop is responsible for generating these
to a reasonable accuracy. hypotheses and testing them using the object states generated by

* There is a tradeoff between the number of cameras used and the first loop, the measurements, and a number of geometric con-

the amount of occluder prior information needed. As more straints. Although this method also performs a single object track-

cameras are used, the accuracy of the prior information needed ing in the presence of moving occluders, the hypothesis generation
decreases. Having more cameras, however, means incurring and testing is computationally prohibitive for a sensor network im-

higher communications and processing cost. So, in the de- plementation. The work also does not consider static occlusions
signof a tracking system, one needs to compare the cost of that could be present in structured environments. Dockstader et

seployigngoeaerstotatootinnmra. al. [19] describe a method for tracking multiple people using mul-
deployingprmorescameras.to that of obtaining moreaccurate tiple cameras. Feature points are extracted from images locally

and corrected using the 3-D estimates of the feature point positions
* The amount of prior occluder position information needed that are fed back from the central processor to the local processor.

depends on the number of occluders present. When there are These corrected features are sent to the central processor where a
very few moving occluders, prior information does not help Bayesian network (BN) is employed to deduce a first estimate of
(because the object is not occluded most of the time). When the 3-D positions of these features. A KF follows the BN to main-
there is a moderate number of occluders, prior information tain temporal continuity. This approach requires that each object is
becomes more useful. However, when there are too many oc- seen by some cameras at all times. This is not required in our ap-
cluders, prior information becomes less useful (because the proach. Also, performing motion vector computation at each node
object becomes occluded most of the time). is computationally costly in a wireless sensor network.

We would like to emphasize that our work is focused on tracking
It is important to note that these conclusions are based only on our a single object in the presence of static and moving occluders in
simulation setting, and that additional explorations by simulation a wireless sensor network setting. When there are no occluders,
and experiments are needed to validate them. one could adopt a less computationally intensive approach similar
The rest of the paper is organized as follows. A brief survey of to [11]. When all the objects need to be tracked simultaneously, the

previous work on tracking using multiple cameras is presented in above mentioned methods ( [18, 19]) or a filter with joint-state for
the next section. In Section 3, we describe the setup of our track- all the objects [20] can be used.
ing problem and introduce the camera measurement model used.
The tracker is described in Section 4. Simulation and experimental 3. SETUP, MODELS, AND ASSUMPTIONS
results are presented in Sections 5 and 6, respectively. We consider the setup illustrated in Fig. 1 in which N cameras

are aimed roughly horizontally around a room. Although an over-
2. PREVIOUS WORK head camera would have a less occluded view than a horizontally

Tracking has been a popular topic in sensor network research placed one, it generally has a more limited view of the scene and
(e.g., [5-11]). Most of this work assumes low data rate range may be impractical to deploy. Additionally, targets may be easier to
sensors. By comparison, our work assumes cameras, which are identify in a horizontal view. The cameras are assumed to be fixed
bearing sensors and have high data rate. The most related work and their locations and orientations are known to some accuracy to
to ours is [10] and [11]. Pahawalatta et al. [10] use a camera net- the cluster head. The camera network's task is to track an object
work to track and classify multiple objects on the ground plane. in the presence of static occlusions and other moving objects. We
This is done by detecting feature points on the objects and using assume that the object to track to be a point object. This is rea-
a Kalman Filter (KF) for tracking. By comparison, we use a PF, sonable because the object may be distinguished from occluders by
which is more suitable for non-linear camera measurements and some specific point feature. We assume there are M other moving
track only a single object treating others as occluders. Funiak et objects, each modeled as a cylinder of diameter D. The position of
al. [11] use a Gaussian model obtained by reparametrizing the cam- each object is assumed to be the center of its cylinder. From now
era coordinates together with KF. This method is fully distributed on, we shall refer to the object to track as the "object" and the other
and requires less computational power than PF. However, because moving objects as "moving occluders."
the main goal of the system is camera calibration and not tracking, We assume the positions and the shapes of the static occluders in
occlusions are not considered. Also, this work requires minimal the room to be completely known in advance. This is not unreason-
overlap of the camera FOVs, which is not a requirement for our able since this information can be easily provided to the network.
work. On the other hand, only some prior statistics of the moving oc-

Tracking has also been a very popular topic in computer vision cluder positions are known at each time step. In Subsection 4.4, we
(e.g., [12-16]). Most of the work, however, has focused on tracking discuss how these priors may be obtained.
objects in a single camera video sequence [12, 13]. Tracking using As in [2], we assume that simple background subtraction is per-
multiple camera video streams has also been considered [14-16]. formed locally at each camera node. We assume that the camera
Individual tracking is performed for each video stream and the ob- nodes can distinguish between the object and the occluders. This
jects appearing in the different streams are associated. More re- can be done, for example, through feature detection, e.g., [21].
cently, there has been work on tracking multiple objects in world Since the horizontal position of the object in each camera's image
coordinates using multiple cameras [17-19]. Utsumi et al. [17] plane is the most relevant information to 2-D tracking, the back-
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Figure 1: Illustration of the setup. X Focal plane

hi(x)
ground subtracted images are vertically summed and thresholded fi
to obtain a "scan line" (see Fig. 2). Only the center of the object in dZ (x) }
the scan line is sent to the cluster head. ----------

3.1 Camera Measurement Model
If a camera "sees" the object, its measurement is described by a

noisy projective camera model. If the camera cannot see the object
because of occlusions or limited FOV, it reports a "NaN" (using
MATLAB syntax) to the cluster head. Mathematically, for camera
i = 1, ... I N, we define the occlusion indicatorfunction degrades quickly when the static occluders and limited FOV con-

A 1, if camera i sees the object straints are considered. Because of the discreteness of the occlu-
7i , otherwise. sions and FOV and the fact that UKF uses only a few points from

the prior of the object state, most of these points may get discarded.
Note that the Tli random variables are not in general independent We also experimented with a Maximum A-Posteriori (MAP) esti-
from each other. The camera measurement model including occlu- mator combined with a KF, which is similar to the approach in [8].
sions is then defined as This approach, however, failed at the optimization stage of the

r fhd(a)+V ifV1 MAP estimator, as the feasible set is highly disconnected due to
Zif= dit ( I)f' (1) the static occluders and limited camera FOV. Given these consider-NaN, otherwise, ations, we decided to use a particle filter (PF) tracker [4].

where x is the position of the object, fi is the focal length of camera We denote by u(t) the state of the object at time t, which in-
i, and di (x) and hi (x) are defined through Figure 3. The random cludes its position x(t) and other relevant information. The posi-
variable vi models the read noise and the errors in the camera posi- tions of the moving occluders m C { 1, ... M}, Xm (t) are assumed
tion and angle Oi. (see Figure 1). Assuming that these noise sources to be Gaussian with mean Iim (t) and covariance matrix YEZm (t).
are zero mean and uncorrelated, the variance of vi is given by These priors are available to the tracker. The state of the object

2 ~ 2/\(X /\ and positions of moving occluders are assumed to be mutually in-
2 f2 (1 + hi ) 2 ±f2 h.x + d2 (x) 2 2 dependent. Note that if the objects move in groups, one can still ap-07vi J d I} + 4() 0pos + (7read, oeta fteojcs i rus p(x)() ply the following tracker formulation by defining a "super-object"

(2) for each group and assuming that the super-objects move indepen-
where ipos rthe variance of the camera position and (ead is the dently. The tracker maintains the probability density function (pdf)
variance of the read noise (See Appendix A for derivation of this of the object state u(t), and updates it at each time step using the
formula). We further assume that given x, the noise from the differ- new measurements. Given the measurements up to time t - 1,
ent cameras Vi, V2, . . ., VN are independent, identically distributed {Y(T) }t- , the particle filter approximates the pdf of u(t - 1) by
Gaussian random variables. Note that the camera nodes report only a set of L weighted particles as
the observations {zi} to the cluster head, and the cluster head de- l

rives the values of the Tlis from the zis. L
f (u(t- 1) Y (T) }t-l1

wf (t- l)6 (u(t -1) u(t -1)),
4. TRACKING £=1
As the measurement model in (1) is nonlinear in the object po- where 6( ) is the Dirac delta function. uw is the state of particle f,

sition, usig alinear filter, e.g., Kalman Filter (KF), for track (i.e., a sample of u(t)). At each time step, given these L weightedsition, using a particles, theter,camera measuremens Z {Zi (t)c ZN (t) }
ing would yield poor results. As discussed in [22], using an Ex- atce,tecmr esrmnsZt z t,... N()
tended Kalman Filter (EKF) with measurements from bearing sen- and i1 (t) ={r71 (t),... ., TiN (t) }, the moving occluder priors
sors, which are similar to cameras with the aforementioned local {ilm (t), E-m (t) }, m C {1, . , M}, information about the static
prcsig is no veysccsfl Altog th us of an nT occluder positions and the camera FOV, the tracker incorporates

scented Kalman Filter (UKF) is more promising, its performance
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We implemented a modified version of this model in which the
Algorithm: ASIR state of the particle consists of its current position xf (t), target
Inputs: {u (t - 1), wi (t -1)}J=t; {lm(t), Zm(t)}IMl; Tf(t), speed s (t) and regime rf(t). Note that the time step here is
Z(t) ={Z(t),.., ZN(t)}; rl(t) ={7/(t), ... TN (t)}; 1 and thus sf represents the distance travelled in a unit time. The
Shapes and positions of static occluders; model is given by
Camera positions and orientations (0i, i C {1,TI..T [XT(t) T (t) (t
FOV of the cameras. U£e (T
Output: {ut (t), W£ (t) }, f C {1 ... L}. The regime can be one of the following:
01. for £ 1,...,L
02. : E[u(t) u(t - 1)] 1. Move toward target (MTT): A particle in this regime tries to
0 3 . wi (t) oc f (Z(t),1- (t) )w(t - 1) move toward its target with constant speed plus noise:
04. end for ( ) x( 1
05 {we(t)}IL Normalize ( {t-e(t)}IL) x£(t) = xe(t-1)+s£(t-1) Tb(t -t1) -x(t -1) )
06. {.,.,i£}. = Resample ({/f,w£(t)}tIL) T£(t -1) X£(t -1) 2

07. for f = 1, ... I,L where v(t) is zero mean Gaussian white noise with V.=
08 . Draw u (t) ff (u(t) Iyui (t - 1)) -2I, I denotes the identity matrix and o7 is assumed to be
09 we(t) f(Z(t)rn(t)Iue(t)) known. The speed of the particle is also updated according
10. end for t
11 . W (t) = Normalize ({ib (t)}t1) s£(t) IL(1- -1) + |z(t)-x(t-1) 2.

Updating the speed this way smooths out the variations due
Figure 4: The auxiliary sampling importance resampling algo- to added noise. We chose X = 0.7 for our implementation.
rithm. The target is left unchanged.

2. Change Target (CT): A particle in this regime first chooses
the new information obtained from the measurements at time t to a new target randomly (uniformly) in the room and performs
update the particles (and their associated weights). an MTT step.
We use the auxiliary sampling importance resampling (ASIR) 3. Wait (W): A particle in this regime does nothing.

filter described in [4]. The outline of one step of our implementa-
tion of this filter is given in Fig. 4. In this figure, E[.] represents Drawing a new particle from the importance density function in-
the expectation operator, and the procedure "{wf}IL= Normal- volves the following. First, each particle chooses a regime accord-
ize ({ti£}.=L 1)" normalizes the weights so that they sum to one. ing to their current position and their target. If a particle reached its
The procedure "{uf, w£, i }K=1 = Resample ({u£, w =} l)" takes target, it chooses the regime according to
L particle-weight pairs and produces L equally weighted particles ( MTT,
(w= 1/L), preserving the original distribution. This amounts to {

, w.p.CT,
particles with small initial weights being killed and the ones with re((t) IC w.p. AA,
high weights reproducing. The third output of the procedure (if) W, w.p.(1- Ji-Ai)
refers to the index of particle L's parent. The ASIR algorithm ap- The target is assumed "reached" when the distance to it is less than
proximates the optimal importance density function the particle's speed. If a particle does not reach its target, the prob-
f(u(t)I u(t - 1), Z(t),Tj(t)), which is not feasible to compute in abilities /1 and A1 are replaced by 02 and A2, respectively. We
general [4]. chose J3 = 0.05, A1 = 0.9, 02 = 0.9, A2 = 0.05.

In the following, we explain the implementation of the impor-
tance density function f(u(t) u£(t - 1)) and the likelihood 4.2 Likelihood
f (Z(t),IT (t) Iu£(t) ) Updating the weights in the ASIR algorithm requires the compu-

tation of the likelihood of the measurements, f(Z(t),ii(t)I u(t)).
4.1 Importance Density Function For brevity, we shall drop the time index from now on. We can
The particles are advanced in time by drawing a new sample use the chain rule for probabilities to decompose the likelihood and

u£ (t) from the "importance density function" f (u (t) u(t - 1)): obtain

u£ (t) f(u(t) u (t - 1)),tc {1, ... L}. f(Z,rI u£) = p(i u)f(Zlri, u£) - (3)
Now, given X£, which is part of ut, and ri, Zi, ... ., ZN become in-

This is similar to the "time update" step in a KF. After all L new depNdent Gaussian random variables and we have
particles are drawn, the distribution of the state is forwarded one
time step. Therefore, the dynamics of the system should be re- f(Z ri, u£) = 1 JV Tzi; f hi(Xf) 52
flected as accurately as possible in the importance density function. f

i, -l di(x) IV J
In KF, a constant velocity assumption with a large variance on the i;rh l

velocity is assumed to account for direction changes. Although where V{r; (, p2} denotes a univariate Gaussian function of r with
assuming that objects move at constant velocity is not a realistic mean ( and variance p2, 72i iS given in (2) and di (x) and hi (x) are
assumption, the linearity constraint of the KF forces this choice. In defined in Fig. 3.
the PF implementation, we do not have to choose linear dynamics. The first term in (3), however, cannot be expressed as a product,
We use the more realistic "random waypoints model," where the as the occlusions are not independent given u~. This can be ex-
objects choose a target and try to move toward the target with con- plained via the following simple example: Suppose 2 cameras are
stant speed plus noise, until they reach the target. When they reach close to each other. Once we know that one of these cameras can-
it, they choose a new target. not see the object, it is more likely that the other one also cannot
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cameras in subset S, given ui, to be equal to 1,

Ms~~~~~~~~~~~C

A, (x) Pfior of object m
Camera s n

i vn',, =II

Figure 5: Computing qm (x). M 7

see it. Hence, the 2TI~s are dependent given uf. Luckily, we can ap- If - 1 {T)8m 0lu
proximate the first term in 3 in a computationally feasible manner m=1 \ sS /
using recursion. M (

First, we ignore the static occluders and the limited FOV, and 11 i- qm(x)j
only consider the effect of the moving occluders. The effects of m=1 x SCS /
static occluders and limited FOV will be added in Subsection 4.3. = Ps (x),1 (5)
Define the indicator functions TTs,m for s =1, . .. N and m =

whr cfolsbyteaumintathecldrpstosae1, .., M such that Ths,m 1 if object m does not occlude camera whderendn(c nd()followsbythrasmpto theatsumtheocuepofsitions are
s, and 0, otherwise.Thusineedn,ad()flosfo thasuponfsmlDad

the reasonable assumption that the cameras in S are not too close
M so that the overlap between A, (x), s c 5, is negligible. Note

{Thls n}t]{1is,m =1 that cameras that satisfy this condition can still be close enough,
=1 such that their FOVs overlap andTI~s are dependent. The superscript

"4my" signifies that "only moving occluders are taken into account."
The probability that object m occludes camera s given u is thus Now we can compute pmv (.1I u) using (5) and recursion as fol-
given by lows. Let S {f1, . .. N} (i.e., the set of all cameras). For any

i cE S such thatTrli =0, define

P fTl,sm Ou} J f(xm lu)P {Y/s,m 0 lu, xm} dxm hia = 11..,7-,7--,. 11}

(a) ff P Oldmrb 11..,7-,,7-i. ,7}
f (XMP fTI)m = IX, xl dxmThen,

= qsm(x), Pmfv (ri IU) =PmvQla IU) - Pmv(lV(rI U). (6)

where x is the position part of the state vector u and step (a) uses Both terms in the right-hand-side of (6) are one step closer to pmv (u)
the facts that xm is independent of u and Ths,m is a deterministic (with different 5), because one less element is zero in both na and
function of x and xm. To compute qm (x), refer to Figure 5. With- rlb This means that any pmv (.1 Iu) can be reduced recursively to
out loss of generality, we assume that camera s is placed at the terms consisting of pmv (u), using (6). The bad news is, the com-
origin. We assume that the moving occluder diameter D is small putational load of this is exponential in the number of zeros in ri.
compared to the occluder standard deviations. Object m occludes However, this bottleneck is greatly alleviated by the limited FOV
point x at camera s if its center is inside the rectangle A, (x). This of the cameras as will be explained in the following subsection.
means P {17s,m = 0lx, xm} I if xm C A, (x) and it is zero 4.3 Adding Static Occluders and Limited FOY
everywhere else:

Adding the effects of the static occluders and limited camera

f 1 e~~~(X. T (xm~ FOV to the procedure described above involves a geometric par-]AIx(X)w eY 2 dxm titioning of the particles into bins. Each bin is assigned a set of1~~~/ I Y-M I ~~~~~cameras. After this partitioning, only theTI~s of the assigned cam-
(b) 1 [ef D2u ' ef D(2~~1 eras are considered for the particles in that bin. This is explained
4[\ /v1 \2TJJ \ lv1 \2 J using the example in Fig. 6. In this example, we have 2 cameras

III IJ12 _I_Tv2 (Tand a single static occluder. As denoted by the dashed line in the
erf~ ~ rmV2 + erf IlmV2 (4) figure, we have 2 partitions. Let T'11 0 andT1=p 2

C {0, I}.
1 /ill ~~~~~~~~Letus consider a particle belonging to the upper partition, namely

[COS(om')V~~a-Sin(om,)], VI ~particle £. If the object is at xf, the static occluder makes T11 0,
where v7j [CSOs llOs] 1 \27m1V2 independent of where, the, movingF occl,uders, are. On the, other hand,
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,:f [x f....^0:whS:

a ID scan line b

Cami
Figure 7: The visual hull is computed by back-projecting the

Figure 6: Geometric partitioning to add static occluders and scan lines to the room and intersecting the resulting cones.
limited FOV. If T7i = 1, the object cannot be at xf. If T7i = 0,
only Cam2 needs to be considered for computing pQl lut). Both
cameras need to be considered for computing p(l Uk).

could be used to generate the priors for the moving occluders. An
example of this approach can be found in [23].

Yet another approach to obtaining the occluder priors involves
Similarly, reasoning about occupancy using the "visual hull" (VH) as de-

scribed in [24] (see Fig. 7). To compute the VH, the entire scan
P (71 =1}= {iT2 = 'Y2} U ) = 0 lines from the cameras are sent to the cluster head instead of only
P (Pi = 71i} n [T72 = 72 } |Uk ) = pmv (Tll T/2 IUk) the centers of the object blobs in the scan lines as discussed in Sec-

tion 3. This only marginally increases the communication cost. The
where the fist line follows because if the object is at xf, T7i = 0, cluster head then computes the VH by back-projecting the blobs in
and the second line follows because the static occluder and limited the scan lines to cones in the room. The cones from the multi-
FOV do not occlude particle k. ple cameras are intersected to compute the total VH. Since the re-

Note that the number of cameras assigned to a partition is not sulting polygons are larger than the occupied areas and "phantom"
likely to be large, mainly due to the limited camera FOV. Since the polygons that do not contain any objects may be present, VH pro-
number of zeros in ri is at most the number of cameras assigned vides an upper bound on occupancy. The computation of the VH
to a partition, the actual computational complexity of the recursion is relatively light-weight, and does not require solving the data as-
described in Subsection 4.2 is much lower than exponential. Also, sociation problem. The VH can then be used to compute occluder
because the camera placements, FOV and static occluder positions priors by fitting ellipses to the polygons and using them as Gaus-
are known in advance, the room can be divided into regions before- sian priors. Alternatively, the priors can be assumed to be uniform
hand, with each region assigned the cameras that can see it. The distributions over these polygons. In this case the computation of
number of such regions grows at most quadratically in the number q7 (x) in (4) would need to be modified.
of cameras. During tracking, the particles can be easily divided Although the VH approach to computing occluder priors is quite
into partitions depending on which pre-computed region each par- appealing for a WSN implementation, several problems remain to
ticle is. be addressed. These include dealing with the object's own blob and
We mentioned in Section 3 that the camera nodes can distinguish phantom removal [24], which is necessary because their existence

between the object and the occluders. This may be unrealistic in can cause the killing of many good particles.
some practical settings. To address this problem, one can introduce
another random variable that indicates the event of detecting and
recognizing the object and include its probability in the likelihood. 5. SIMULATION RESULTS
We have not implemented this modification in this paper, however. In a practical tracking setting one is given the room structure

(including information about the static occluders), the range of the
4.4 Obtaining Occiuder Priors number of moving occluders and their motion model, and the re-
Our tracker assumes the availability of priors for the moving oc- quired object tracking accuracy. Based on this information, one

cluder positions. In this subsection we discuss how these priors needs to decide on the number of cameras to use in the room and
may be obtained. In Section 5, we investigate the tradeoff between the amount of prior information about the moving occluder po-
the accuracy of such priors and that of tracking. sitions needed and how to best obtain this information. Making

Clearly, one could run a separate PF for each object, and then fit these decisions involve several tradeoffs, for example, between the
Gaussians to the resulting particle distributions. This requires solv- occluder prior accuracy and the tracker performance, between the
ing the data association problem, which would require substantial number of cameras used and the required occluder prior accuracy,
local and centralized processing. Instead of solving the data asso- and between the number of occluders present and the tracking per-
ciation problem, trackers that represent the states of all objects in a formance. In this section we explore these tradeoffs using simula-
joint state have been proposed (e.g. [20]). This approach, however, tions.
is computationally prohibitive as it requires employing an exponen- In the simulations we assume a square room of size 100 x 100
tially increasing number of particles in the size of the state. units and a maximum of 8 cameras placed around its periphery (see

Another approach to obtaining the priors is to use a hybrid sen- Fig. 8). The black rectangle in the figure depicts a static occluder.
sor network combining, for example, acoustic sensors in addition Note, however, that in some of the simulations we assume no static
to cameras. As these sensors use less energy than cameras, they occluders. All cameras look toward the center of the room. The
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Figure 9: Average tracker RMSE versus the number of cam-
Figure 8: The setup used in simulations. eras for M = 40, and 1 static occluder. The dotted line is the

worst case RMSE when no tracking is performed and the ob-
ject is assumed to be at the center of the room.

camera FOV is assumed to be 900. The standard deviation of the
camera position error is upo, = 1 unit, that of camera angle error is
o7 = 0.01 radians and read noise standard deviation is 07read = 2
pixels. The diameter of each moving occluder is assumed to be To implement the tracker for these two extreme cases, we mod-
D = 3.33 units. We assume that the objects move according to ify the p(l Iu) computation as follows. We assign 0 or 1 to p(l Iu)
random waypoints model. This is similar to the way we draw new depending on the consistency of ri with our knowledge about the
particles from the importance density function as discussed in Sub- occluders. For RMSEoCC = 0, i.e., when we have complete infor-
section 4.1 with the following differences: mation about the moving occluder positions, the moving occluders

* The objects are only in regimes MTT or CT. There is no W are treated as static occluders. On the other hand, for RMSEOcc =

regime. RMSEmax, i.e., when there is no information about the moving oc-
cluder positions, we check the consistency with only the static oc-

* The objects choose their regimes deterministically, not ran- cluder and the limited FOV information to assign zero probabilities
domly. If an object reaches its target or is heading toward the to some particles. For the example in Fig. 6, we set P ({7/1 = 1}
inside of a static occluder or outside the room boundaries, it n{7/2 = -y2} u) = 0, because if camera i can see the object, the
transitions to the CT regime. object cannot be at xf. Any other probability that is non-zero is set

to 1. Note that for these 2 extreme cases, we no longer need the
recursion discussed in Subsection 4.2 to compute the likelihood.

The average speed of the objects is set to 1 unit per time step. The Hence, the computational complexity is considerably lighter com-
standard deviation of the noise added to the motion each time step pared to using Gaussian priors.
is 0.33 units. Fig. 8 also shows a snapshot of the objects for M=40 First in Fig. 9 we plot the average RMSE of the tracker (RMSEtr)
occluders. In the PF tracker we use 1000 particles. In each simu- over 5 simulation runs for the two extreme cases of RMSEOcc = 0
lation, the object and the occluders move according to the random and RMSEoCC = RMSEmax and for RMSEocc = 6.67 (obtained
waypoints model for 4000 time steps. by setting o, = 8) versus the number of cameras (the cameras con-

To investigate tradeoffs involving moving occluder prior accu- stitute a roughly evenly spaced subset of cameras in Fig. 8. For 2
racy, we need a measure for the accuracy of the occluder prior. To cameras, orthogonal placement is used [2]). The dotted line repre-
develop such a measure, we assume that the priors are obtained sents the worst case RMSE, when there are no measurements and
using a KF run on virtual measurements of the moving occluder the object is assumed to be in the center of the room.
positions of the form We then investigate the dependency of the tracker accuracy on

ym(t) m(t) + v(t), m- 1,2 ... M the accuracy of the moving occluder priors. Fig. 10 plots the aver-
age RMSE for the tracker over 5 simulation runs versus RMSEoCC

where xm (t) is the true occluder position, v (t) is white Gaussian for N = 4 cameras. In order to include the effect of moving
noise with covariance o7vI, and y, (t) is the measurement. We then occluder priors only, we used no static occluders in these simu-
use the average RMSE of the KF (RMSEOCC) as a measure of the lations. RMSEmax reduces to 21.3 units for this case. Note that
occluder prior accuracy. Lower RMSEoCC means higher accuracy there is around a factor of 2.35 x increase in RMSEtr from the
sensors or more computation is used to obtain the priors, which re- case of perfect occluder information (RMSEOCC = 0) to the case
sult in more energy consumption in the network. At the extremes, of no occluder information (RMSEOCC = RMSEmax). Moreover,
RMSEoCC = 0 (when oy = 0) corresponds to complete knowl- it is not realistic to assume that the occluder prior accuracy would
edge of the moving occluder positions and RMSEOCC = RMSEmax be better than that of the tracker. With this consideration the im-
(when o7 = oc) corresponds to no knowledge of the moving oc- provement reduces to around 1.94 x (this is obtained by noting that
cluder positions. Note that the worst case RMSEmaX is finite be- RMSEtr =RMSE0cc at around 3.72). These observations suggest
cause when there are no measurements about the occluder posi- that obtaining prior information may not be worthwhile in practice,
tions, one can simply assume that they are located at the center of unless it can be obtained cheaply and to a reasonable accuracy.
the room. This corresponds to RMSEmaX - 25.0 units for the The tradeoff between RMSEOCC and the number of cameras needed
setup in Fig. 8. to achieve average RMSEtr =3 is plotted in Fig. 11. As expected
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Figure 11: Tradeoff between the number of cameras andmingur occluTrader orf accuracy for targettrackmer average Figure 13: Average CPU time for computing the likelihoods
RMSE=3 units for M =40 and no static occluders. relative to that for the case of 2 cameras and no occluder prior,i.e., RMSEocc=RMSEmax. Here M = 40 and there is 1 static

occluder.

there is a tradeoff between the number of cameras and the accuracy
of the moving occiuder priors as measured by RMSEOCC. As more In Subsections 4.3 and 4.4, we mentioned that the complexity ofcameras are used, the accuracy of the prior information needed de- computing the likelihood given u.is exponential in the number of
creases. The plot suggests that if a large enough number of cam- cameras that cannot see the object and are assigned to the regioneras is used, no prior information would be needed at all. Of course

cx belongs to. We proposed that the limited camera FOV signif-
havig moecaerameas moe cmmuncatins nd pocesing icantly reduces this computational complexity. To verify this, in

cost. So, in the design of a tracking system, one needs to com-'. ' ~~~~~~~~~~Fig.13 we plot the average CPU time (er time step used to com-
pare the cost of deploying more cameras to that of obtaining better g gCru

occluder priors. pute the likelihood relative to that of RMSEocc=RMSEmax case
for 2 cameras, versus the total number of cameras in the room.

Next we explore the question of how the needed moving occluder The simulats were performe onu an 3HIel Xn Proces
prior accuracy depends on the number of occluders present. To do sor running MATLAB R14. Note that the rate of increase of theso, in Fig. 12 we plot the RMSEtr versus the number of moving C t u p i N N
occluders for the two extreme cases, RMSE0cc=0 and RMSEocc CPtieungporisinfcalyowrhn2 hreNsoccluers orthtwoextrme caes, MSE0~=O ad RMEOCC the number of cameras used, and it iS close to the rate of increase
=RMSEmax. Note that the difference between the RMSEtr for the of RmbeocMmas cse. In ct, the rate of increasef
two cases is the potential improvement in the tracking performance
achieved by having occluder prior information. When there are particular example is close to linear in N.
very few moving occluders, prior information does not help (be- 6 XE IMENTAL RESULTS
cause the object is not occluded most of the time). As the number 6. E PRM N A R SU T
of occluder increases prior information becomes more useful. But We tested our tracking algorithm in an experimental setup con-
the difference in RMSEtr between the two extreme cases decreases sisting of 16 web cameras placed around a 22' x 19' room. The
when too many occluders are present (because the object becomes horizontal FOV of the cameras used is 47°. A picture of the lab
occluded most of the time). is shown in Fig. 14(a) and the relative positions and orientations
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Figure 15: Experimental results. Average tracker RMSE ver-
sus the number of cameras for M = 20, and 1 static occluder.

3< 11

2 |< ""/ --<12 cluders. The tracker is provided with complete information about12

g the static occluders and some prior information about the moving
/ / \ / 14 \ occluders. One of the main contributions of this paper is develop-

ing a systematic way to incorporate this information into the tracker
(b) formulation. Using simulations we explored tradeoffs involving the

occluder prior accuracy, the number of cameras used, the number
Figure 14: Experimental setup. (a) View of lab (cameras are of occluders present, and the accuracy of tracking with some inter-
circled). (b) Relative locations of cameras and virtual static oc- esting implications.
cluder. Solid line shows actual path of the object to track. Several areas need to be explored further, including (i) running

simulations and experiments over real world environments to val-
idate our preliminary findings, (ii) developing a theoretical frame-
work for investigating the aforementioned tradeoffs, (iii) exploiting

of the cameras in the room are provided in Fig. 14(b). Each pair the independence between the is for cameras that are far apart to
of cameras is connected to a PC via IEEE 1394 (FireWire) inter- further reduce the computational complexity of computing the like-
face and each can provide 8-bit 3-channel (RGB) raw video at 75 lihoods, and (iv) developing a cheap method for obtaining reason-
Frames/s. The data from each camera is processed independently able accuracy occluder priors (perhaps based on VH).
as described in Section 3. The scan line data is then sent to a central
PC (cluster head), where further processing is performed. Acknowledgments
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