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ABSTRACT
A design tool for routing channel segmentation in island-
style FPGAs is presented. Given the FPGA architecture
parameters and a set of benchmark designs, the tool opti-
mizes routing channel segmentation using the average inter-
connect power-delay product as a performance metric, which
is estimated from placed and routed designs. A simulated-
annealing procedure is used, whereby segmentation is in-
crementally changed in each iteration, the benchmark de-
signs are mapped using VPR, and the performance metric
is computed to decide whether to accept or reject the new
segmentation. Run time is significantly reduced by using
incremental routing in each iteration and parallelizing the
metric evaluation. Experimental results using the MCNC
benchmark designs demonstrate an average of 22% and 15%
reduction in delay and power relative to a baseline segmen-
tation. The results also show that average segment length
should decrease with technology scaling. Finally, we demon-
strate how the tool can be used to optimize other aspects of
programmable routing in an FPGA

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: [Types and Design Styles]

General Terms
Design, Experimentation, Measurement, Performance

Keywords
FPGA, segmentation, routing, architecture, design.

1. INTRODUCTION
Studies have shown that programmable interconnect con-

tributes the majority of FPGA area, delay and power con-
sumption [1, 2]. As such, optimizing programmable inter-
connect is key to improving FPGA performance. An ap-
proach that all FPGAs use to improve programmable in-
terconnect performance is segmentation [3, 4, 5], whereby
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routing channels comprise different length interconnect seg-
ments. The mix of segment lengths used can have a sig-
nificant impact on interconnect performance. On the one
hand, using short segments results in better routability and
hence higher logic density and lower power consumption due
to low excess net loading, but at the expense of higher net
delay due to the high number of switch points that a net
needs to go through. Using long segments, on the other
hand, can improve delay, but at the expense of a reduction
in logic density due to the need for more tracks and increase
in power consumption due to the increase in excess net load-
ing. It was further observed in [6] that the utility of long
segments decreases with CMOS technology scaling due to
the increased wire parasitics relative to that of devices, and
hence the average segment length should decrease with scal-
ing. Given these tradeoffs, how should channel segmentation
be chosen to optimize FPGA performance?

The problem of segmented routing channel design was
first introduced for row-based FPGAs in [7]. Assuming
random connection origination point and geometric connec-
tion length distribution, the paper showed that it is possi-
ble to construct a segmented routing channel that is only
a constant factor wider than a custom channel, such that
1-segment routing of all nets is feasible, with high probabil-
ity. Using similar statistical approaches, Zhu et al [8] and
Pedram et al [9] improved upon the results in [7] and corrob-
orated their results experimentally. A statistical approach is
also used in [10] for island-style FPGAs. Empirical distribu-
tions for horizontal and vertical net segment left point and
length are first determined by performing statistical analy-
sis on net routings in placed designs. Separate horizontal
and vertical channel segmentations are then found based
on the demand for each segment length. The statistical
approaches used in the above studies have several short-
comings: (i) the model for connections is oversimplified and
does not accurately model the results produced by the actual
placement and routing tools, (ii) delay and power consump-
tion are considered only indirectly, (iii) buffered segments
are not considered, (iv) only the channel part of the pro-
grammable routing is considered, and (v) the results are
technology independent. The approaches in [11, 12] par-
tially addresses the first shortcoming using graph theoretic
algorithms. In [12], a bipartite graph matching approach
is used to construct a segmented channel for a given set of
connections from placed designs. A multi-level matching-
based algorithm for general channel segmentation is then
described and shown to yield good routability.

An experimental approach to segmentation design that
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better addresses the aforementioned shortcomings is used in
[13, 14]. In [13], Betz et al studied segmentation design for
island-style FPGAs implemented in 0.35µm CMOS technol-
ogy node. A set of designs are placed and routed using VPR
in FPGAs with various segmentations. They showed that
among channels of equal length segments, a channel with
only length 4 segments achieves the lowest routing area and
critical path delay. They also showed that a channel with a
mixture of length 4 and 8 segments can outperform a channel
with only length 4 segments. In [14], optimal uniform seg-
mentation is investigated experimentally for nanometer FP-
GAs with single Vdd and programmable Vdd. They showed
that length 3 segment leads to the lowest energy consump-
tion as well as the energy-delay-area product. These stud-
ies, however, consider only a very small number of possible
segmentations and as such may have arrived at a highly
suboptimal segmentation.

In this paper, we describe a tool that we refer to as TORCH,
for channel segmentation design in island-style FPGAs. As
in [13, 14], an experimental approach is used, but a much
larger space of possible segmentations is explored, and as
a result TORCH should yield close-to-optimal results. As
in [15], the exploration of the architecture design space is
facilitated via a simulated annealing procedure. Given the
parameters of an FPGA architecture and a representative
set of benchmark designs, TORCH can find an optimized
segmentation. Because power and delay are the key perfor-
mance metrics in the design of FPGAs today, TORCH uses
interconnect power-delay product averaged over the bench-
mark designs as a performance metric. Routability is con-
sidered only as a constraint and area is indirectly optimized
through power and delay. In each iteration, segmentation is
incrementally changed, the benchmark designs are mapped
into the FPGA with the new segmentation using VPR, the
performance metric is updated, and the new segmentation is
either accepted or rejected. Performing complete placement
and routing of the designs at each iteration, however, would
make the run time of this procedure unacceptably high. This
problem is addressed using the following key observations:

• Because the change in segmentation in each iteration
is small, placements do not need to to be changed in
each iteration. Run time can be significantly reduced
by only infrequently updating the placements.

• Again because the change in segmentation in each it-
eration is small, it affects only a small fraction of the
routed nets. As such, incremental rip-up and reroute
procedure can be performed instead of complete rout-
ing.

• The process of rip-up and reroute and performance
metric evaluation, which is the most compute intensive
part of the procedure, can be performed independently
for each design. This means that the procedure can be
readily parallelized and run on a computer cluster.

Note that TORCH outputs not only an optimized mix of
track segment lengths, as in previous work, but also an op-
timized ordering of the segmented tracks in the channel.
Because of the sparse connectivity of the connection and
switch box designs, track ordering can indeed have a non-
negligible effect on routability, and hence delay and power
consumption. We performed experiments that show around
7% variation in power and delay due to track reordering.

In the next section we provide the background and defini-
tions needed to describe TORCH. The tool is described in
Section 3. Experimental results using TORCH and the 20
largest MCNC designs are presented in Section 4.

2. PRELIMINARIES
In this section we discuss the FPGA architecture parame-

ters and assumptions needed to describe TORCH. We then
show how area, delay, and power used to evaluate the per-
formance metric are estimated.

We choose an island-style FPGA logic fabric [1] as a tar-
get architecture for TORCH. The fabric consists of a 2D
array of logic blocks (LBs) that can be interconnected via
a segmented routing architecture. We assume a Virtex II
style LB consisting of four slices, each comprising two 4-
input Lookup Tables (LUTs), two flip-flops (FFs), and pro-
gramming overhead. The programmable routing comprises
horizontal and vertical channels with identical segmentation
that can be connected to the LB inputs and outputs via con-
nection boxes and to each other via switch boxes. We assume
the MUX-based switch box design described in [16].

For the purpose of clearly defining the input to TORCH,
we define an FPGA architecture A by:

• The LB array size N ×N .

• The switch box width W , flexibility Fs, which is the
number of outputs that an input can connect to, and
switch point pattern. In our experiments we assume
that Fs = 3 and subset switch point pattern [17].

• The connection box flexibility Fc, which is the aver-
age number of tracks that an LB input or output can
be connected to, and the connection pattern. In our
experiments we assume that Fc = 0.5W .

• A set of segment lengths L ⊂ {1, 2, . . . , N}.

• A channel consisting of track bundles. Each bundle
consists of l staggered and uniformly segmented tracks.
The purpose of staggering is to provide uniform con-
nectivity to all LBs. Note that this track structure
makes the number of track bundles in a channel equal
to the switch box width W . In most of the experi-
ments in Section 4, we only allow the following 4 types
of track bundles (see Figure 1):

1. A Single track bundle consists of one track with
length 1 segments.

2. A Double track bundle consists of 2 tracks with
staggered length 2 segments.

3. A Length-3 track bundle consists of 3 tracks with
staggered length 3 segments. Each Length-3 track
can connect only to its leftmost and rightmost LB
inputs and outputs.

4. A Length-6 track bundle consists of 6 tracks with
staggered length 6 segments. Each Length-6 track
can connect only to its leftmost and rightmost LB
inputs and outputs.

Note that each longer segments (Length-3, Length-6)
may include switch-transistors and buffers to optimize
its delay.
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• A channel segmentation s consists of a set of W track
bundles, where bundle i consists of li staggered tracks
each with length li segments.
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Figure 1: An example of interconnect segmentation.

Area, Delay, and Power Estimation
Evaluating the performance metric of TORCH defined in
Section 3 requires estimating the FPGA area, as well as
the delay and power for each placed and routed benchmark
design in a given technology node. The methodology used to
estimate area, delay, and power is the same as that in [6]. We
briefly review this methodology here and define interconnect
delay and power used in TORCH.

As in [6], to estimate FPGA layout area, we estimate the
area of a tile consisting of an LB and a connection and switch
boxes. The tile area is estimated by decomposing it into
components similar in granularity to standard-cell library
elements, estimating the area of each component in λ2 with
a stick diagram and the Magic-8 rules, and adding up the
estimated component areas.

To estimate delay and power we use the transistor and
metal wire RC models shown in Figure 2 and consider 5
technology nodes: 130nm, 90nm, 65nm, 45nm, and 32nm.
The model parameters given in Table 1 are estimated for
these technology nodes using the Berkeley Predictive Tech-
nology Models and HSPICE [18, 19] .

We define interconnect delay for a placed and routed de-
sign as the geometric average of all its pin-to-pin net de-
lays, not including LB delay 1. As in [6], we first use RC
models for the interconnect segments and Elmore delay to
optimize the connection and switch box device sizes as well
as the number and sizes of the buffers for the Length-3 and
Length-6 segments for a given FPGA array size in each tech-
nology node. We then use a modified version of the VPR
delay calculation function to compute net delays.

We define interconnect power for a placed and routed de-
sign as the total equivalent capacitance of all nets. As in [6],
this is computed using added code to VPR. Note that fre-
quency and power supply voltage are not included in the
definition of power because we only consider power of a de-
sign relative to that in a baseline FPGA.

1The critical path delay can be readily used instead of the
geometric average pin-to-pin net delay.
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Figure 2: RC circuit model for CMOS transistors
and metal wires. Cgate is the equivalent transistor
gate capacitance (in fF/2), Cdiff is the transistor dif-
fusion capacitance (in fF/µm), R2 is the transistor
channel resistance (in Ω/2), Cw is the metal wire
capacitance (in fF/mm), Rw is the metal wire resis-
tance (in Ω/mm), and Lw is the length of a metal
wire.

130nm 90nm 65nm 45nm 32nm

Vdd(V) 1.3 1.2 1.1 1.0 0.9

Leff(nm) 49 35 24.5 17.5 12.6

Cgate(fF/µm) 1.73 1.59 1.32 1.24 1.11

Cdiff(fF/µm) 1.13 1.09 1.08 1.03 1.01

R2(kΩ/ 2 ) 32.61 22.70 18.68 16.76 15.88

Rw(Ω/mm) 174 244 448 1527 2444

Lw(nH/mm) 1.68 1.71 1.76 1.89 1.93

Cw(fF/mm) 210 212 177 157 168

Table 1: Transistor and metal wire parasitics for five
technology nodes.

3. TORCH
The input to TORCH is:

• An initial FPGA architecture A that uses a baseline
segmentation. The choice of the baseline segmentation
is arbitrary and is needed only to normalize the power
and delay for each benchmark design. An example
baseline segmentation is given in Section 4.

• Technology node parameters: These include intercon-
nect device sizes and RC parameters for delay and
power calculation in VPR (see Table 1).

• A set of m benchmark designs B.

The output of TORCH is an optimized segmentation s∗.
Given the FPGA architecture A with a segmentation s,

VPR generates the routing graph g(A, s) [17]. Given g, the
technology node parameters, and B, the performance met-
ric of TORCH is defined as follows. Let (pb,0, db,0) be the
power-delay pair for design b mapped to the FPGA with the
baseline segmentation, and (pb,s, db,s) be the power-delay
pair for design b using segmentation s. For power and delay
exponents α, β ≥ 0, the performance metric is

c =
1

m

m
X

b=1

„

pb,s

pb,0

«α

·

„

db,s

db,0

«β

.

We are now ready to describe TORCH. The top-level al-
gorithm of TORCH given in Algorithm 1 is based on sim-
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ulated annealing. First, the benchmark designs are placed
and routed using VPR in the FPGA with the baseline seg-
mentation. The delay and power estimates {(pb0, db0 : b =
1, 2, . . . , m} are computed. A random segmentation is cho-
sen and its routing graph is generated. The designs are
then routed assuming the random segmentation and an ini-
tial value of the performance metric is evaluated. An ini-
tial temperature for simulated annealing is set. After a
new segmentation is selected, the designs are incrementally
rerouted, and the performance metric is re-evaluated. If
the metric value is reduced, the segmentation is accepted,
otherwise it is accepted with a probability that depends on
the increase in the value of the metric and temperature.
The process of changing segmentation, computing its perfor-
mance metric, and accepting or rejecting it is repeated until
InnerLoopCriterion is false. After exiting the inner loop,
temperature is reduced and the process is repeated until the
ExitCriterion becomes false. TORCH then outputs the final
segmentation. To further describe the algorithm of TORCH,
we illustrate its structure in Figure 3(a). Our experiments
have shown that the most computationally intensive part
of TORCH is the subroutine EvaluateCost(), which in-
volves placement/routing and computing delay-power for all
benchmark circuits. Fortunately, because evaluating each
circuit design is independent, this part of the algorithm can
be easily parallelized, which can significantly reduce the to-
tal running time of TORCH. We illustrate this idea in Fig-
ure 3(b).

In the following we describe some of the functions referred
to in Algorithm 1 in more detail.

NewSegmentation()
Figure 4 shows how the segmentation is changed in each
trial. One track bundle is selected at random and its seg-
ment length is chosen according to the state diagram in the
figure. Except for the shortest and longest segments, the
track bundle segment length is increased or decreased to one
of the two nearest segment lengths with equal probability.

ExitCriterion() & InnerLoopCriterion()
ExitCriterion() makes sure the freeze count is less than a
predetermined number 100. InnerLoopCriterion() is true
if trials < TRIALS and changes < CHANGES. Both con-
stants TRIALS and CHANGES are related to the problem
size. We set TRIALS and CHANGES equal to 10W and
0.01W , respectively.

IncrementalRoute()
A key ingredient of TORCH is the incremental routing al-
gorithm. This is important because performing complete
routing for each trial would be computationally prohibitive.
Because the change in segmentation from one trial to the
next is very small, on average it affects only 5% of the routed
nets. By ripping out the affected nets and rerouting them
using the new segmentation, we save significant amount of
computing time. IncrementalRoute() uses the ripping and
rerouting nets part of VPR [20] and is described in Algo-
rithm 2. The definitions of the variables used in Algorithm 2
are as follows:

• RNk is the set of routing graph nodes associated with
track bundle k in all channel.

Algorithm 1 TORCH

1: s← RandomSegmentation()

2: T ← InitialTemperature()

3: g ← g(A, s)
4: freeze count ← 0
5: while ( ExitCriterion() is FALSE) do
6: changes ← 0
7: trials ← 0
8: c← EvaluateCost(g,B)
9: while ( InnerLoopCriterion() is FALSE) do

10: trials ← trials + 1
11: snew ← NewSegmentation(s)
12: IncrementalRoute(g(A,Snew), B)
13: ∆c← EvaluateCost(g(A, Snew)) - c

14: if ∆c < 0 /*downhill move*/ then
15: changes ← changes + 1
16: s← snew

17: g ← g(A, S)
18: c∗ ← EvaluateCost(g(A, Snew))
19: end if
20: if ∆c > 0 /*uphill move*/ then
21: r ← Random(0,1)

22: if r < e−
∆c

T then
23: s← snew

24: g ← g(A, S)
25: end if
26: end if
27: end while
28: T ← UpdateTemperature()

29: if c∗ changes then
30: freeze count ← 0
31: end if
32: if changes

trials
< 0.01 then

33: freeze count ← freeze count + 1
34: end if
35: end while

• ANk is the set of nets affected by the change of track
bundle k segmentation.

• Aij is the criticality of the connection from the source
of net i to one of its sinks j.

• dn is the intrinsic delay of routing node n.

• pn is the present congestion cost of node n.

Algorithm 2 first finds RNi (lines 1 to 6). Next, it constructs
ANi (lines 7 to 12). The nets in ANi are then routed using
routines from VPR [17].

4. EXPERIMENTAL RESULTS
In this section we describe experiments using TORCH and

the largest 20 MCNC benchmark designs. We choose a LB
array size of 52 × 52, which accommodates all the designs
with minimum utilization of 12%. We use Fc = 0.5W and
Fs = 3. We ran experiments with uniform all one segmen-
tation to determine the minimum channel width needed for
each design. Based on these experiments we set W = 56.
For baseline segmentation, we assume 18 Single, 16 Double,
10 Length-3, and 12 Length-6 segments. Table 2 lists the
pass-transistor and buffer sizes used for each of the five tech-
nology nodes. As discussed in Section 1 , to save the running
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Figure 3: Flow diagram of (a) Algorithm 1 and (b)
parallel implantation of the EvaluateCost() function.

time of TORCH, we perform both incremental routing and
infrequent placement. Our experimental results have shown
that on average, an incremental routing can reduce the run-
ning time of a complete rerouting by about 25 times. Addi-
tionally, we only perform placement every 20 segmentation
updates.

Figures 5 show the improvement in interconnect power
and delay for the 20 designs using the TORCH segmenta-
tion, relative to the baseline segmentation and the all-one
segmentation, for 45nm technology and α = β = 1, i.e.,
equal weight on delay and power in the performance metric.
The average reduction in delay and power relative to the
baseline segmentation are 22% and 15%, respectively. The
PC machine used to conduct the experiments has an AMD
Athlon(tm) 64×2 Dual Core Processor 5200+ with 2 Giga-
bytes memory and clock frequency of 2.6 GHz. The typical

Algorithm 2 Incremental Routing Algorithm

1: RNk ← ∅
2: for all nodes n in the whole routing graph do
3: if node n is in the routing track k then
4: RNk ← RNk ∪ node n

5: end if
6: end for
7: affected nets ANk ← ∅
8: for all nets p in the previously routed circuit do
9: if net p contains a routing node that belongs to RNk

then
10: ANk ← ANk∪ net p

11: end if
12: end for
13: for all net i in ANk do
14: Aij ← 1 for each sink j

15: end for
16: while shared routing nodes exist do
17: for all nets i in ANk do
18: rip up routing tree RTi

19: initialize the queue PQ

20: for all sinks tij do
21: enqueue each node n in RTi at costs Aijdn to

PQ

22: while tij is not found do
23: dequeue node m with the lowest cost from PQ

24: for all fanout node n of m do
25: if node n is unseen then
26: mark node n as seen
27: enqueue n to PQ with the cost of Aijdn +

(1−Aij)dnpn

28: end if
29: end for
30: for all node n in the routed path tij to sj do
31: update the cost of node n

32: add n to RTi

33: end for
34: end while
35: end for
36: mark all nodes in PQ as unseen
37: update Aij for net i

38: end for
39: end while

CB Single Double Length-3 Length-6

Tech. bi,bo x,y ml ml, lN, nN

32nm 6,6 8,7 10 12 12,1,8 14,2,11

45nm 5,5 7.7 9 10 11,1,8 14,2,10

65nm 4,4 6,6 8 9 11,1,7 13,2,9

90nm 4,5 6,5 8 9 10,1,7 12,2,8

130nm 4,4 5,4 6 8 9,1,6 11,1,7

Table 2: Pass-transistor and buffer sizes for FPGA
interconnects for different technology nodes. bi: LB
input buffer size; bo: LB output buffer size; x: PT
size from LB output to CB; y: PT size from inter-
connect to LB input; lN : Number of buffers inserted
in a long interconnect; ml: SP buffer size for inter-
connect of length l, nl: Size of inserted buffer in long
interconnect.
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Figure 4: State transition diagram for NewSegmen-
tation() in Algorithm 1.

running time for one run of TORCH is around 29 hours. As
illustrated in Figure 3-(b), the run time can be significantly
reduced by parallelizing the implementation of the Evalu-
ateCost function. The improvements relative to the all one
segmentation are 25% and 8%, respectively. Figure 6 shows
the TORCH segmentation, which has an average segment
length of 1.91 versus 2.71 for the baseline.
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Figure 5: Improvements in power and delay relative
to baseline segmentation.

Technology Scaling
In [6], we observed that average segment length should de-
crease with technology scaling. This decrease is expected
because of the significant increase in wire parasitics rela-
tive to transistor parasitics with technology scaling. We
use TORCH to study how segmentation should change with
technology scaling more systematically. Figure 7 shows the
segmentations produced by TORCH for the five technology
nodes and their average segment lengths. Note that average
segment length is reduced from 2.18 at 130nm to 1.88 at
32nm. These results corroborate the observation in [6].

Switch Box Width
TORCH can be used to optimize other interconnect archi-
tecture parameters, such as switch box width and switch
and connection box flexibilities. Here we demonstrate how
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Figure 6: Improvements in power and delay relative
to all-one segmentation.
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Figure 7: (a) Segmentation results for different tech-
nology nodes. (b) Average segment length for dif-
ferent technology nodes.

TORCH can be used to select the switch box/channel width.
Figure 8 plots the average interconnect delay and power ob-
tained by TORCH in 45nm technology with α = β = 1 for
different switch box widths together with the corresponding
estimates of the FPGA area relative to the FPGA with base-
line segmentation. Note that average delay first drops from
0.87 at W = 40 to 0.76 at W = 60, then remains roughly
unchanged. This is because when W is too small, many
nets are routed in a highly suboptimal manner resulting in
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increased delay. As W increases, nets are more optimally
routed, which decreases delay. This decrease in delay di-
minishes as W becomes too large. Power also first decreases
as W is increased, but then begins to increase as W be-
comes too large because of the increase in parasitic loading
due to the increase in area and number of tracks. To opti-
mize power and delay, the graph suggests that W ≈ 60 is
the best choice.
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Figure 8: Delay, power, and area improvements for
different switch box width.

Power Delay Tradeoff
The performance metric used in TORCH allows for a trade-
off between power and delay. Figure 9 plots the average
segment length for different choices of α and β in 45nm
technology. As expected, average segment length increases
as delay is emphasized more than power. The average power
and delay are plotted in Figure 10.
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Figure 9: Routing channel segmentation results for
different α and β at 45nm technology node.
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Figure 10: Delay and power improvements for dif-
ferent α and β at 45nm technology.

Set of Segment Lengths
In the previous results we limited the set of allowable seg-
ment length to {1, 2, 3, 6}. Is there a benefit from using more
segment types? To explore this question we increased the
size of the set of allowable segment lengths to {1, 2, . . . , 8}
and ran TORCH with α = β = 1 and 45nm technology. Fig-
ure 11 shows the resulting segmentation and the reduction
in delay and power relative to the FPGA with optimized
segmentation assuming segment length set {1, 2, 3, 6}. Note
that on average delay is improved by 6% and power is im-
proved by 7%. The estimated FPGA area is, however, in-
creased by a factor of 0.12. The run time of the tool is also
significantly longer.

(a) Segmentation results for 1 to 8. 
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Figure 11: Reductions in delay and power using seg-
ment length set {1, 2, . . . , 8} relative to the FPGA
with optimized segmentation for segment length set
{1, 2, 3, 6}.
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5. CONCLUSION
We described a design tool for routing channel segmenta-

tion in island-style FPGAs. Given the FPGA architecture
parameters and a set of benchmark designs, TORCH uses
a simulated annealing procedure to find an optimized seg-
mentation based on an average delay-power product. In
each iteration, segmentation is incrementally changed, the
benchmark designs are mapped into the FPGA with the
new segmentation using VPR, the performance metric is
updated, and the new segmentation is either accepted or
rejected. Run time is significantly reduced by performing
placements infrequently, performing only incremental rout-
ing in each iteration, and parallelizing the metric evaluation.
TORCH outputs both an optimized mix of track segment
lengths and an optimized ordering of the segmented tracks
in the channel.

We demonstrated TORCH experimentally and showed that
significant improvements in delay and power can be achieved
by optimizing segmentation. We used TORCH to validate
our observation in [6] that average segment length should de-
crease with technology scaling. We also showed how TORCH
can be used to optimize switch box width. Other routing
architecture parameters such as connection and switch box
flexibilities and buffer sizes can be similarly optimized.

Although TORCH assumes an island-style FPGA and
uses VPR for placement and routing, it can be readily adapted
to any FPGA architecture, any placement and routing tool,
and any performance metric based on placed and routed
benchmark designs.
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