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Abstract-We investigate distributed source coding of two
correlated sources X and Y where messages are passed to a
decoder in a cascade fashion. The encoder of X sends a message
at rate R 1 to the encoder of Y. The encoder of Y then sends
a message to the decoder at rate R 2 based both on Y and
on the message it received about X. The decoder's task is to
estimate a function of X and Y. For example, we consider the
minimum mean squared-error distortion when encoding the sum
of jointly Gaussian random variables under these constraints. We
also characterize the rates needed to reconstruct a function of
X and Y losslessly.

Our general contribution toward understanding the limits
of the cascade multiterminal source coding network is in the
form of inner and outer bounds on the achievable rate region
for satisfying a distortion constraint for an arbitrary distortion
function d(x, y, z). The inner bound makes use of a balance
between two encoding tactics-relaying the information about X
and recompressing the information about X jointly with Y. In
the Gaussian case, a threshold is discovered for identifying which
of the two extreme strategies optimizes the inner bound. Relaying
outperforms recompressing the sum at the relay for some rate
pairs if the variance of X is greater than the variance of Y.

I. INTRODUCTION

Distributed data collection, such as aggregating measure­
ments in a sensor network, has been investigated from many
angles [1]. Various algorithms exist for passing messages to
neighbors in order to collect information or compute functions
of data. Here we join in the investigation of the minimum
descriptions needed to quantize and collect data in a network,
and we do so by studying a particular small network. These
results provide insight for optimal communication strategies
in larger networks.

In the network considered here, two sources of information
are to be described by separate encoders and passed to a
single decoder in a cascade fashion. That is, after receiving a
message from the first encoder, the second encoder creates a
final message that summarizes the information available about
both sources and sends it to the decoder. We refer to this setup
as the cascade multiterminal source coding network, shown
in Figure 1. Discrete i.i.d. sources Xi E X and Yi E Yare
jointly distributed according to the probability mass function
Po(x, y). Encoder 1 summarizes a block of n symbols X"
with a message I E {l, ..., 2n R 1 } and sends it to Encoder
2. After receiving the message, Encoder 2 sends an index
J E {l, ..., 2n R 2 } to describe what it knows about both sources
to the decoder, based on the message I and on the observations
Y", The decoder then uses the index J to construct a sequence
Z", where each Zi is an estimate of a desired function of Xi
and Yi.

X n y n
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Encoder 2
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i(Xn) j(1, yn) zn(J)

~zn
Fig. 1. Cascade Multiterminal Source Coding. The i.i.d. source sequences
Xl, ... , X nand Yl, ... , Yn are jointly distributed according to Po(x, y).
Encoder 1 sends a message 1 about the sequence Xl, ... , X n at rate Rl
to Encoder 2. The second encoder then sends a message J about both
source sequences at rate R2 to the decoder. We investigate the rates required
to produce a sequence Z 1, ... , Zn with various goals in mind, such as
reconstructing estimates of X" or yn or a function of the two.

For example, consider the lossless case. Suppose we wish to
compute a function of X and Y in the cascade multiterminal
source coding network. What rates are needed to reliably
calculate Zi == !(Xi, Yi) at the decoder? Computing functions
of observations in a network has been considered in various
other settings, such as the two-node back-and-forth setting
of [2] and the multiple access channel setting in [3]. In the
cascade multiterminal network, the answer breaks down quite
intuitively. For the message from Encoder 1 to Encoder 2, use
Wyner-Ziv encoding [4] to communicate the function values.
Then apply lossless compression to the function values at
Encoder 2. Computing functions of data in a Wyner-Ziv setting
was introduced by Yamamoto [5], and the optimal rate for
lossless computation was shown by Orlitsky and Roche [6] to
be the conditional graph entropy on an appropriate graph.

A particular function for which the optimal rates are easy to
identify is the encoding of binary sums of binary symmetric
X and Y that are equal with probability p, as proposed by
Komer and Marton [7]. For this computation, the required
rates are R 1 2:: h(p) and R 2 2:: h(p), where h is the binary
entropy function. Curiously, the same rates are required in the
standard multiterminal source coding setting.

Encoding of information sources at separate encoders has
attracted a lot of attention in the information theory community
over the years. The results of Slepian-Wolf encoding and com­
munication through the Multiple Access Channel (MAC) are
surprising and encouraging. Slepian and Wolf [8] showed that
separate encoders can compress correlated sources losslessly
at the same rate as a single encoder. Ahlswede [9] and Liao
[10] fully characterized the capacity region for the general
memoryless MAC, making it the only multi-user memoryless
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where

(1)

{I, 2, ...},

X n ---+ {I, , 2n R 1} ,

yn x {I, , 2n R 1} ---+ {I, ..., 2n R 2 } ,

{I, ..., 2n R 2 } ---+ Z";
3j

3z n

such that

Due to the flexibility in defining the distortion function
d, the decoded sequence Z" can play a number of different
roles. If the goal is to estimate both sources X and Y with
a distortion constraint, then Z == (X, Y) encompasses both
estimates, and d can be defined accordingly. Alternatively, the
decoder may only need to estimate X, in which case Y acts
as side information at a relay, and Z == X. In general, the
decoder could produce estimates of any function of X and Y.

B. Rate-Distortion Region

The triple (R 1, R2 , D) is an achievable rate-distortion triple
for the distortion function d and source distribution Po(x, y)
if the following holds:

For \IE > 0,

3n E

3i

A. Objective

The goal is for X", Y", and Z" to satisfy an average letter­
by-letter distortion constraint D with high probability. A finite
distortion function d(x, y, z) specifies the penalty incurred
for any triple (x, y, z). Therefore, the objective is to reliably
produce a sequence Z" that satisfies

1 n- L acx; Yi, Zi) < D.
n

i=l

The rate-distortion region R for a particular source joint
distribution Po(x, y) and distortion function d is the closure
of achievable rate-distortion triples, given as,

R !!:.- el{achievable (R 1 , R2 , D) triples}. (2)

III. GENERAL INNER BOUND

The cascade multiterminal source coding network presents
an interesting dilemma. Encoder 2 has to summarize both
the source sequence yn and the message I that describes
X": Intuition from related information theory problems, like
Wyner-Ziv coding, suggests that for efficient communication
the message I from Encoder 1 to Encoder 2 will result
in a phantom sequence of auxiliary random variables that
are jointly typical with X" and yn according to a selected
joint distribution. The second encoder could jointly compress
the source sequence yn along with the auxiliary sequence,
treating it as if it was also a random source sequence. But this
is too crude. A lot is known about the auxiliary sequence, such
as the codebook it came from, allowing it to be summarized
more easily than this approach would allow. In some situations

II. PROBLEM SPECIFICS

The encoding of source symbols into messages is described
in detail in the introduction and is depicted in Figure 1.

channel setting that is solved in its full generality. Thus, the
feasibility of describing two independent data sources without
loss through a noisy channel with interference to a single
decoder is solved.

Beyond the two cases mentioned, slight variations to the
scenario result in a multitude of open problems in distributed
source coding. For example, the feasibility of describing two
correlated data sources through a noisy MAC is not solved.
Furthermore, allowing the source coding to be done with
loss raises even more uncertainty. Berger and Tung [11] first
considered the multiterminal source coding problem, where
correlated sources are encoded separately with loss. Even
when no noisy channel is involved, the optimal rate region
is not known, but ongoing progress continues [12] [13].

The cascade multiterminal source coding setting is similar to
multiterminal source coding considered by Berger and Tung in
that two sources of information are encoded in a distributed
fashion with loss. The difference is that communication be­
tween the source encoders in this network replaces one of
the direct channels to the decoder. Thus, joint encoding is
enabled to a degree, but the down side is that any message
from Encoder 1 to the Decoder must now cross two links.

The general cascade multiterminal source coding problem
includes many interesting variations. The decoder may need
to estimate both X and Y, X only, Y only, or some other
function of both, such as the sum of two jointly Gaussian
random variables, considered in Section V-A. Vasudevan, Tian,
and Diggavi [14] looked at a similar cascade communication
system with a relay. In their setting, the decoder has side
information, and the relay has access to a physically degraded
version of it. Because of the degradation, the decoder knows
everything it needs about the relay's side information, so the
relay does not face the dilemma of mixing in some of the
side information into its outgoing message. In the cascade
multiterminal source coding setting of this paper, the decoder
does not have side information. Thus, the relay is faced with
coalescing the two pieces of information into a single message.
Other research involving similar network settings can be found
in [15], where Gu and Effros consider a more general network
but with the restriction that the information Y is a function
of the information X, and [16], where Bakshi et. al. identify
the optimal rate region for lossless encoding of independent
sources in a longer cascade (line) network.

In this paper we present inner and outer bounds on the
general rate-distortion region for the cascade multiterminal
source coding problem. The inner bound addresses the chal­
lenge of compressing a sequence that is itself the result of a
lossy compression. Then we consider specific cases, such as
encoding the sum of jointly Gaussian random variables, com­
puting functions, and even coordinating actions. The bounds
are tight for computing functions and achieving some types of
coordinated actions.
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IV. GENERAL OUTER BOUND

Proof: Identify the message I from Encoder 1 along
with the past and future variables in the sequence yn as the
auxiliary random variable U. •

Theorem 4.1 (Outer bound): The rate-distortion region R
for the cascade multiterminal source coding network of Figure
1 is contained in the region Rout defined in (4). Rate-distortion
triples outside of Rout are not achievable. That is,

(6)R cRout.

conditioned on un(i) E Cu symbol-by-symbol according to
p(vlu). Similarly, for each i and k, independently generate
the sequences zn(k, i) E CZ,i conditioned on un(i) E Cu
symbol-by-symbol according to p(zlu).

Finally, assign bin numbers. For every sequence un(i) E Cu
assign a random bin bu(i) E {I, ..., 2n(I (X;U1Y)+2E)} . Also,

for each i and each vn(j, i) E CV,i assign a random bin
bv(j, i) E {I, ..., 2n(I (X;VIY,U)+2E)} .

Successful encoding and decoding is as follows. Encoder
1 first finds a sequence u" (i) E Cu that is e-jointly typical
with X" with respect to p(x, u). Then Encoder 1 finds a
sequence u" (j, i) E CV,i that is e-jointly typical with the
pair (X"; un(i)) with respect to p(x, u, v). Finally, Encoder 1
sends the bin numbers bu(i) and bv(j, i) to Encoder 2.

Encoder 2 considers all codewords in Cu with bin number
bu(i) and finds that only u" (i) is e-jointly typical with
yn with respect to p(y, u). Then Encoder 2 considers all
codewords in CV,i with bin number bv(j, i) and finds that
only u" (j, i) is e-jointly typical with the pair (Y", u" (i))
with respect to p(y, u, v). Finally, Encoder 2 finds a se­
quence zn(k, i) E CZ,i that is e-jointly typical with the triple
(yn,un(i),vn(j,i)) with respect to p(y,u,v,z) and sends
both i and k to the Decoder.

The decoder produces Z" == zn(k, i). Due to the Markov
Lemma [11] and the structure of p(x, y, z, u, v), the triple
(X", Y", zn) will be e-jointly typical with high probability.
Finally, E can be chosen small enough to satisfy the rate and
distortion inequalities. •

(5)

it proves more efficient to simply pass the description from
Encoder 1 straight to the Decoder rather than to treat it as a
random source and recompress at the second encoder.

While still allowing the message I from Encoder 1 to be
associated with a codebook of auxiliary sequences, we would
like to take advantage of the sparsity of the codebook as we
form a description at Encoder 2. One way to accommodate
this is to split the message from Encoder 1 into two parts.
One part is forwarded by Encoder 2, and the other part is
decoded by Encoder 2 into a sequence of auxiliary variables
and compressed with yn as if it were a random source
sequence. The forwarded message keeps its sparse codebook
in tact, while the decoded and recompressed message enjoys
the efficiency that comes with being bundled with Y. This
results in an inner bound R in for the rate-distortion region
R. The definition of R in is found in (3) at the bottom of this
page. The region R in is already convex (for fixed Po(x, y) and
d), so there is no need to convexify using time-sharing.

Theorem 3.1 (Inner bound): The rate-distortion region R
for the cascade multiterminal source coding network of Figure
1 contains the region R in. Every rate-distortion triple in R in
is achievable. That is,

Proof: For lack of space, we give only a description of
the encoding and decoding strategies involved in the proof and
skip the probability of error analysis. We use familiar tech­
niques of randomized codebook construction, jointly typical
encoding, and binning.

For any rate-distortion triple in R in there is an associated
joint distribution p(x, y, z, u, v) that satisfies the inequalities
in (3). Construct three sets of codebooks, Cu, CV,i, and CZ,i,
for i == 1,2, ... , ICul, where

Co {un(i)}:\,

CV,i {vn(j, i) }j~l'

CZ,i {zn(k, i)};:==l.

Let m.; == 2n(I (X;U)+E), m2 == 2n(I (X;VIU)+E), and m3

2n(I (Y,V;ZIU)+E).

Randomly generate the sequences un(i) E Cu i.i.d. ac­
cording to p(u), independent for each i. Then for each i
and j, independently generate the sequences v n (j, i) E CV, i

3p(x,y,z,u,v) ==Po(x,y)p(u,vlx)p(zly,u,v) such that}
D > E(d(X, y, Z)), .
R 1 > I(X; u, VIY),
R2 > I(X; U) + ttv, V; ZIU).

(3)

3p(x,y,z,u) ==Po(x,y)p(ulx)p(zly,u) such that}
D ~ E(d(X, y, Z)), .
R1 ~ I(X; UIY),
R2 ~ I(X, y; Z).

(4)
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1 Px
R1 < - log2 -p .

2 y

If the variance of X is larger than Y and the rate R 1 is
small, then the optimal encoding method is to forward the
message I from Encoder 1 to the Decoder without changing
it. By rearranging the inequality, we see that 2-2R1Px > Py.

1 Px
R1 > - log2 -p .

2 y

If the rate R 1 is large enough, then the optimal encoding
method is to recompress at Encoder 2. This will allow for
a more efficient encoding of the sum in the second message
J rather than encoding two components of the estimate
separately.

The distortion in this case is

1To perform this optimization, first note that the marginal distribution
p(x, y, u) determines the quantities I(X; U) and I(X; UI:-), and p(x, 'lI'.u)
only has one significant free parameter due to Markovity, All remammg
quantities that define the region Rin are conditioned on U, including the final
estimate at the decoder since U is available to the decoder. Therefore, after
fixing p(x, y, u) we can remove U entirely from the optimization problem
by exploiting the idiosyncracies of the jointly Gaussian distribution. Namely,
reduce the rates R; and R2 appropriately and solve the problem without U
with X replacing X and Y replacing Y, where X is the error in estimating
X with U, and Y is the error in estimating Y with U. This greatly reduces
the dimensionality of the problem.

<R(D)

then

From rate-distortion theory we know that 2-2R1Px is the
mean squared-error that results from compressing X at rate
R 1. The fact that the variance of the error introduced by the
compression at Encoder 1 is larger than the variance of Y
subtly indicates that the description of X was more efficiently
compressed by Encoder 1 than it would be if mixed with Y
and recompressed.

The estimate of X from Encoder 1, represented by U, which
is forwarded by Encoder 2, might be limited by either R1

or R2 . In the case that R2 is completely saturated with the
description of U at rate I (X; U), there is no use trying to use
any excess rate R 1 - I(X; UIY) from Encoder 1 to Encoder
2 because it will have no way of reaching the decoder. On
the other hand, in the case that R 1 is the limiting factor for
the description of U at rate I(X; UIY), then the excess rate
R 2 - I (X; U) can be used to describe Y to the decoder. We
state the distortion separately for each of these cases.

If R 2 < ~ log2 (22;~;/) then,

D 2-2R2 (Px+y + (1 - p2) (22R2 - 1) Py) .

1 (22 R 1 p2) hIf R2 > 21og2 1-;2 ten,

D ((1 - p2)2- 2R1 - (1 - p22-2R1) 2-2R2) Px

+ 2-2R2 (Px+y + (22R1 - 1) Py) .

Again, Px+y is the variance of the sum X + Y.
2) Outer bound: The outer bound Rout is optimized with

Gaussian auxiliary random variables. However, for simplicity,
we optimize an even looser bound by minimizing R 1 and R2

separately (cut-set bound) for a given distortion constraint. The
result is the following lower bound on distortion.

D > max{2- 2R 1(1 - p2)PX, 2-2R2Px+y}. (8)

3) Sum-Rate: Consider the sum-rate R 1 + R 2 required to
achieve a given distortion level D. We can compare the sum­
rate-distortion function R(D) for the inner and outer bounds.

Let Px ~ Py. This puts us in the recompress regime of
the inner bound. By optimizing (7) subject to R 1 + R2 == R,
we find that the optimal values Ri and R2 satisfy

R; - u; ~ log2 ((1 ~:~)PX ) ,
as long as R is greater than the right-hand side. Notice that
R2 is more useful than R 1 , as we might expect. From this
we find a piece-wise upper bound on the sum-rate-distortion
function. Similarly we find a piece-wise lower bound based
on (8).

Sum-rate upper bound. Low distortion region:

D < (1 _ p2)PX (2 _(1 - p2)PX) ,
Px+y

(7)

D (1 - p2) (1 - 2-2R2) 2-2R1Px

+ 2-2R2Px+y,

where Px+y is the variance of the sum X + Y.
Case 2: (Forward)

V. SPECIAL CASES

A. Sum ofJointly Gaussian

Suppose we wish to encode two jointly Gaussian data
sources at Encoder 1 and Encoder 2 in order to produce an
estimate of the sum at the decoder with small mean squared­
error distortion. Let X and Y be zero-mean jointly Gaussian
random variables, where X has variance Px , Y has variance

. I' ffici E(XY)Py , and their corre ation coe cient IS p == a X ay .

1) Inner bound: We can explore the region R in byoptimiz­
ing over jointly Gaussian random variables U, V, and Z to find
achievable rate-distortion triples (R1, R2 , D). This restricted
search might not find all extremal rate-distortion points in R in ;

still it provides an inner bound on the rate-distortion region. 1

The optimization of R in with the restriction of only consid­
ering jointly Gaussian distributions p(x, y, z, u, v) leads to two
contrasting strategies depending on the variances Px and Py

of the sources and the rate R 1. The two encoding strategies
employed are to either forward the message from Encoder 1",to
the Decoder, or to use the message to construct an",estimate X"
at Encoder 2 and then compress the vector sum X" + yn and
send it to the Decoder, but not both. In other words, either
let V == 0 (forward only) or let U == 0 (recompress only).
The determining factor for deciding which method to use is a
comparison of the rate R1 with the quantity ~ log2 ~ .

Case 1: (Recompress)
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2The optimal rate region for computing functions of data in the standard
multiterminal source coding network is currently an open problem [17].

High distortion region: (up to D ::; Px+y)

R(D) < ~ 10 (PX+y - (1 - p2)PX)
2 g2 D - (1 - p2)PX .

Sum-rate lower bound. Low distortion region:

due to the Markovity constraint X - (Y,V) - Z and the fact that
Z is a function of X and Y. Therefore, for this distribution
p, all of the inequalities in R in are satisfied for the point
(R 1 , R 2 , D).

The outer bound Rout makes it clear that optimal encoding
is achieved by using Wyner-Ziv encoding from Encoder 1
to compute the value of the function Z at Encoder 2. This
optimization is carefully investigated in [6] and equated to a
graph entropy problem. Then Encoder 2 compresses Z to the
entropy limit.

C. Markov Coordination

It is possible to talk about achieving a joint distribution
of coordinated actions p(x, y, z) == Po(x, y)p(zlx, y) without
referring to a distortion function, as in [18]. Under some
conditions of the joint distribution, the bounds R in and Rout

are tight. One obvious condition is when X, Y, and Z form

(9)

(10)

R1 > I(X; ZIY),

R 2 > I(X; Z),
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the Markov chain X - Y - Z. In this case, there is no need to
send a message I from Encoder 1, and the only requirement
for achievability is that R2 2: I (Y; Z).

Another class of joint distributions Po(x, y)p(zlx, y) for
which the rate bounds are provably tight is all distributions
forming the Markov chain Y - X - Z. This encompasses the
case where Y is a function of X, as in [15]. To prove that the
bounds are tight, choose U == Z and V == 0 for R in . We find
that rate pairs satisfying

H(Z) - H(ZIY, V)

H(Z) - H(ZIY, V, X)
H(Z)

I(X, Y; Z),

I(Y, V; Z)

then

R(D) > 11 (PX+Y) 11 ((1 - p2)PX)2" og2 -V + 2" og2 D .

High distortion region: (up to D ::; Px +y )

R(D) > ~ log2 ( p~y ) .

Lemma 5.1: The gap between the upper and lower bounds
on the optimal sum-rate (derived from R in and Rout) needed
to encode the sum of jointly Gaussian sources in the cas­
cade multiterminal network with a squared-error distortion
constraint D is no more than 1 bit, shrinking as D increases,
for any jointly Gaussian sources satisfying Px ::; Py.

B. Computing a Function

Instead of estimating a function of X and Y, we might
want to compute a function exactly. Here we show that the
bounds R in and Rout are tight for this lossless case." To do
so, we consider an arbitrary point (R 1, R 2 , D) E Rout and its
associated distribution p(x, y, z, u). For the inner bound R in

we use the same distribution p; however, let U == 0 and V take
the role of U from the outer bound. Notice that the Markovity
constraints are satisfied. Now consider,
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