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Abstract—This paper presents an information theoretic source
coding formulation of distributed averaging. We assume a net-
work with m nodes each observing an i.i.d. Gaussian source; the
nodes communicate and perform local processing with the goal
of computing the average of the sources to within a prescribed
mean squared error distortion. A general cutset lower bound on
the network rate distortion function is established and shown to
be achievable to within a factor of 2 via a centralized protocol in
the star network. A lower bound on the network rate distortion
function for distributed weighted-sum protocols that is larger
than the cutset bound by a factor of log m is established. We also
establish an upper bound on the expected network rate distortion
function for gossip-based weighted-sum protocols that is only a
factor of loglogm larger than this lower bound. The results
suggest that using distributed protocols results in a factor of
log m increase in communication relative to centralized protocols.

I. INTRODUCTION

Gossip-based protocols for distributed consensus have at-
tracted much attention recently due to interest in applications
ranging from distributed coordination in autonomous vehicles
to data aggregation and distributed computation in sensor
networks, ad-hoc networks, and peer-to-peer networks.

This paper presents a lossy source coding formulation of the
distributed averaging problem which is a canonical example
of distributed consensus. We assume that each node in the net-
work observes a Gaussian source and the nodes communicate
and perform local processing with the goal of computing the
average of the sources to within a prescribed mean squared
error distortion. We investigate the network rate distortion
function in general and for the class of distributed weighted-
sum protocols, including random gossip-based protocols.

Most previous work on distributed averaging, e.g., [1],
[2], has involved the noiseless communication and compu-
tation of real numbers, which is unrealistic. Recognizing
this shortcoming, the effect of quantization on distributed
averaging has been recently investigated. Our work is related
most closely to the work in [3]-[5]. Compared to [3], [4],
our information-theoretic approach deals more naturally and
fundamentally with quantization and provides limits that hold
independent of implementation details. Our results, however,
cannot be compared directly to results in these papers because
of differences in the models and assumptions. While the work
in [5] is information-theoretic, its formulation is different
from ours and the results are not comparable. Our formulation
of the distributed averaging problem can be viewed also
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as a generalization of the CEO problem [6], where in our
setting every node wishes to compute the average and the
communication protocol is significantly more complex in that
it allows for interactivity, relaying, and local computing, in
addition to multiple access.

In the following section, we introduce the lossy averaging
problem. In Section III, we establish a general cutset lower
bound on the network rate distortion function and show that
it can be achieved within a factor of 2 using a centralized
protocol. In Section IV, we investigate the class of distributed
weighted-sum protocols. We establish a lower bound on the
network rate distortion function for this class as well as an
upper bound for gossip-based weighted-sum protocols. The
full paper is posted on arXiv.org [7].

II. LOoSSY AVERAGING PROBLEM

Consider a network with m sender-receiver nodes, where
node ¢ = 1,2,...,m observes a source X;. Assume that
the sources are independent white Gaussian noise (WGN)
processes each with average power of one. The nodes commu-
nicate and perform local processing with the goal of computing
the average of the sources S = (1/m) ;" X, at each node
to within a prescribed mean squared error distortion D.

The topology of the network is specified by a connected
graph (M, &), where M = {1,2,...,m} is the set of nodes
and & is a set of undirected edges (node pairs) {3, j}, 7,7 € M
and 7 # j. Communication is performed in rounds and each
round is divided into time slots. Each round may consist of
a different number of time slots. One edge is chosen at each
round and only one node is allowed to transmit in each time
slot. Without loss of generality, we assume that the selected
node pair communicates in a round robin manner. Further,
we assume a source coding setting, where communication is
noiseless and instant, that is, every transmitted message is
successfully received by the intended receiver in the same time
slot it is transmitted in.

Communication and computing are performed according
to an agreed upon averaging protocol that determines (i)
the number of communication rounds 7', (ii) the sequence
of edge selections, and (iii) the block codes used in each
round to perform communication and local computing. The
averaging protocol may be deterministic or random. In a
random protocol, the sequence of T edges are selected at
random. Given an averaging protocol with 7" rounds, we define



an (Rq, Ra, ..., Rm,n) block code for a feasible sequence of
edge selections to consist of:

1. A set of encoding functions, one for each time slot. Each
encoding function assigns a message to each node source
sequence of block length n and past messages received by the
node. Let the number of bits transmitted by node ¢ in round
t=1,2,...,T be nr;(t). Then the total transmission rate per
source symbol for node i is given by R; := Zthl r;(1).

2. A set of decoding functions, one for each node. At the
end of round 7, the decoder for node ¢ € M assigns an
estimate ;" := (Y;1,Yia,...,Y:,) of the average S™
(S1,52,...,5,) to each source sequence and all messages
received by the node.

The per-node transmission rate for the code is R
(1/m)>"" | R;. The average per-letter distortion associated
with the code is defined as

m n

A = oSSR (8- Yi)?)

i=1 k=1

where the expectation is taken over source statistics. Note that
we are also averaging over the nodes. A rate distortion pair
(R, A) is said to be achievable if there exists a sequence of
(R1,Ra,...,R;,,n) codes with per-node rate R such that
limsup,, .. A <A,

The network rate distortion function for a given feasible
sequence of edge selections R(D) is the infimum over all
achievable rates R such that (R, D) is achievable. The network
rate distortion function R*(D) is the infimum of R(D) over
all averaging protocols. It is clear that R*(D) can be achieved
by a deterministic averaging protocol.

We are also interested in the expected network rate

distortion function for a random averaging protocol. We
consider the expected per-node transmission rate E(R) =
(1/m) > | E(R;), and the limit on the expected distortion
with respect to edge selection statistics E(A) specified by
the random averaging protocol. The expected network rate-
distortion function E(R(D)) for a random averaging pro-
tocol is defined as the infimum over all expected per-node
rate E(R) such that the pairs (R,A) are achievable and
E(A) < D. Clearly for any random averaging protocol,
R*(D) < E(R(D)). Further, any upper bound on E(R(D))
is an upper bound on R*(D).
Centralized versus Distributed Protocols: A goal of our work
is to quantify the communication penalty of using distributed
relative to centralized protocols. In a distributed protocol, the
code used at each round does not depend on the identities
of the selected nodes. The code, however, may depend on
the round number. A protocol is called centralized if it is
not distributed. For example, a node may be designated as
a “cluster-head” and treated differently than other nodes.

III. LOWER BOUND ON R*(D)

Consider the m-node distributed lossy averaging problem
where the sources (X7, Xs,...,X,,) are independent WGN
processes each with average power one. We establish the
following cutset lower bound.
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Theorem 1: The network rate distortion function R*(D)
0if D > (m —1)/m? and is lower bounded by

m—1
m2

Remark: The above cutset lower bound can be readily extended
to correlated WGN sources and weighted-sum computation.
The resulting bound is tight for m = 2 by having each node
independently compress its source and send the compressed
version to the other node using Wyner-Ziv coding [8].

A. Upper Bound on R*(D) for Star Network

Consider a star network with m nodes and m — 1 edges

E={{1,i} : i =2,...,m}. We use a centralized protocol
where node 1 is treated as a “cluster head.” The protocol has
T =2m —3 rounds. Inround t =1,2,...,m — 1, node i =

t+ 1 compresses its source X;* using Gaussian random codes
with average distortion (d/n)> ,_, E(X?%) = d and sends
the index M;(X) to node 1. Node 1 finds the corresponding
reconstruction sequences X I(M;) and computes the estimates

1

1
W= X7+

m 1
~ > X and U :=Y{" — EX?
i=2
fort=2,3,...,m. Inround t =m — 1,m,...2m — 3, node
1 compresses the estimate U3, ,_, ; using Gaussian random
codes with average distortion (d/n) > B(U3,,_,_1 ) and
sends the index May,—¢—1(U3,_4_1) to nodes 2m — t — 1.
Node i computes the estimate Y;* = (1/m) X 4 U for i =
2,3,...,m, where UZ-” is the reproduction sequence of U
corresponding to the index M;. This establishes the following
upper bound on the network rate distortion function.
Proposition 1: The network rate distortion function for the

star network is upper bounded by
1 2
) ) for D <

2(m —
m3D
Note that the ratio of the upper bound to the cutset lower

bound for D < 1/m? as m — oo is less than or equal to 2.

Thus a centralized protocol can achieve a rate within a factor
of 2 of the cutset bound.

m—1
m2

—1
R D)< ™" "log (
m

IV. DISTRIBUTED WEIGHTED-SUM PROTOCOLS

Again assume that the sources (X, Xo,...,X,,) are inde-
pendent WGN processes each with average power one. We
consider distributed weighted-sum protocols characterized by
the number of rounds 7" and the normalized local distortion d.
Given a network, we define a distributed weighted-sum code
for each feasible edge selection sequence as follows. Initially,
each node ¢ € M has an estimate Y;”(0) = X of the average
S™. In each round, communication is performed in two time
slots. Assume that edge {i,j} is selected in round (¢ + 1).
In the first time slot, node ¢ compresses Y;"(¢) using Gaus-
sian random codes with distortion (d/n)> ,_, E(Y;3 (1)),
and sends the index M;(t + 1)(Y;*(¢t)) to node j at rate
r = (1/2)log(1/d). Similarly, in the second time slot, node
J compresses Y"(t) using Gaussian random codes and sends



the index M;(t+1)(Y;"(t)) to node i at the same rate r. Upon
receiving the indices, nodes ¢ and j update their estimates
1., 1
2O+ 55—y
where an(t) and Y]”(t) are the reproduction sequences corre-
sponding to M;(t+1) and M, (¢t + 1), respectively. At the end
of round T, node ¢ sets Y;* = Y;*(T') if it is involved in at least
one round of communication, and sets Y;” = (1/m)Y;*(0),
otherwise.

Define the rate distortion function for a distributed

weighted-sum protocol and a given edge selection sequence,
Rws(D), the weighted-sum network rate distortion function,
Riyg(D), and the weighted-sum expected network rate dis-
tortion function for a random protocol, E(Rws(D)), as in
Section II.
Remark: The code defined above does not exploit the correla-
tion between the node estimates induced by communication
and local computing. This correlation can be readily used
to reduce the rate via Wyner-Ziv coding. However, we are
not able to obtain upper and lower bounds on the network
rate distortion function with side information because the
correlations between the estimates are time varying and depend
on the particular sequence of edges selected.

Since the estimates Yjq(t),...,Y;,(¢) are iid, from this
point on we suppress the symbol index.

A. Lower Bound on Riy¢(D)

We establish a lower bound on Riyq(D) that applies to
any network. Consider a distributed weighted-sum protocol for
a given network and a feasible sequence of edge selections.
Let t;, be the 7-th time node ¢ is selected and 7;
{ti1, iz, ..., tiT, }, fori = 1,2,...,m, where T; := |T;| is
the number of rounds in which node 7 is selected. Then the
number of rounds T can be expressed as T = (1/2) >_1" | T;,
where the 1/2 factor is due to the fact that two nodes are
selected in each round. We shall need the following properties
of the estimate Y;(¢) to prove the lower bound.

Lemma 1: For a distributed weighted-sum protocol, we can
express the estimate at node ¢ at the end of round ¢ as
Yi(t) = 2200, % (1)Y5(0) + Zi(t), where Z;(t) is Gaussian
and independent of the sources (X7, Xs,...,X,,). Further-
more, the diagonal coefficients satisfy the property

Yn

YvTI(t + 1) = i+j—v

(t) for v =14,3, (1)

1
'Viz'(t) > 27"' fort;,, <t < ti’-,—+1 and T =1,...,T;.

Using this lemma, we can establish the following.
Lemma 2: Given 0 < D < (m—1)/m?, if a weighted-sum
protocol with T' rounds achieves distortion D, then

Tlo 1
7 8 '

VD +1/m

We can establish the following lower bound using these
lemmas.

T>

Theorem 2: Given 0 < D < (m — 1)/m?, then

Ryys(D) 2 % (log \/Ei 1/m) <10g .

4mD
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Proof outline: Given a distributed weighted-sum protocol
with 7" rounds and normalized local distortion d. Suppose that
the edge selected at round t;, - is {j1,j2}, then at the end of
this round, the estimate for node & is

Y; (tle) = (Y (tjl‘l' - 1) + }/jl (tle - 1) + Wj1T)/2a

J2 J2
where Wj,» ~ N (0,E (Y}, (tj,» — 1)?) d/(1 — d)). By in-
duction, we can show that the estimate of node ¢ at time
t > tj,, has the form Y;(t) = (1/2)B:;(t)W}, - +Y;(t), where
Bi(t) >0, 3", Bi(t) = 1, and S;(¢) is independent of W, .
Now we compute the distortion at the end of round T’

~Y B -V
1 m
== E
o (5
S d
= w1 =)D

where the inequality follows by the Cauchy—SchwarZ inequal-
ity and Lemma 1. We can repeat the above arguments for the

second term (1/m) 3 " E ((S - YQ(T))Q) and we obtain

& d
7ZES Yi(T 2247”21_ )22(r— 5= 4m’

Thus, d < 4mD. The rest of the proof follows from Lemma 2.
|
Remark: The above lower bound and the cutset bound in
Theorem 1 differ by roughly a factor of logm. Given that
the cutset bound can be achieved within a factor of 2 using a
centralized protocol, this suggests that the log m factor is the
penalty of using a distributed versus centralized protocols.

B. Bounds on E(Rws (D))

In this section, we establish bounds on E(Rws(D)) for
gossip-based weighted-sum protocols [1] characterized by
(T,d,Q), where T is the number of rounds, d is the nor-
malized local distortion, and () is an m X m stochastic matrix
such that Q,;; = 0 if {4, j} ¢ £. Note that this also establishes
an upper bound on R*(D) because R*(D) < E(Rws(D)).

In each round of a gossip-based weighted-sum protocol, a
node 7 is selected uniformly at random from M. Node ¢ then
selects a neighbor j € {j : {4, j} € £} with conditional prob-
ability );;. This node pair selection process is equivalent to
the asynchronous model in [1]. After the node pair {3, j} is se-
lected, the distributed weighted-sum coding scheme previously
described is performed. Let Y (¢) := [Y1(t) Ya(t) ... Y (1)]*
and rewrite the update equations (1) in the matrix form

Y(t+1)= At +1)Y(t) + W(t+ 1), 2)

where (i) A(t+1) = I,,,— 5 (e;—e;)(e;—e;)T with probability
(1/m)Q;;, independent of ¢, where e; and e; are unit vectors
along the i-th and j-th axes, and (i) W (t+1) = W;(t+1)e;+

W;(t + 1)e;, and Wi(t + 1) ~ N (0,E (Y;(t)2d/4(1 — d)))



and W (t+1) ~ N (0,E (Y;(¢)*d/4(1 — d))) are independent
of past estimates.

Recall properties of the matrix A(¢) from [1]. Let Q* be the
stochastic matrix that minimizes the second largest eigenvalue
of the matrix A := E(A(0)), and let Ay be the optimum second
largest eigenvalue, which is a function of the network topology.
We will need the following lower bound on the number of
rounds T to prove the lower bound on E(Rws(D)).

Lemma 3: Given a connected network, if a gossip-based
weighted-sum protocol (T',d, Q) achieves distortion D, then
T>({(m—-1)/2)In((m—1)/mD).

We now establish an upper bound on distortion.

Lemma 4: The average per-letter distortion of the gossip-
based weighted-sum protocol (7', d, Q) is upper bounded by

1 1
—EB(IY(T) - JYO)) < — (14w - 1)
1 U T 1
ml—>X+u +m1—)\2—u
where u :=d/(2m(1 — d)) and J := (1/m)117.
Proof outline: Referring to the linear dynamical system

(2), express Y(T) as Y(T) = A(T,1)Y(0) + Z(T), where
Z(T) =], A(T, t+1)W(t) and A(ta, t1) = A(t2) A(ts —
1) s A(tl) for to > ty.

Consider the sum of distortions over all nodes

u

+ (14 u) + Mg+ u)7,

E ([Y(T) = JY(0)|?)
= E (|A(T,1)Y(0) = JY(0)|I*) + E (IIZ(T)]?) -

We can show that

E (JAT )Y (0) — 7Y (0)])
<AE([Y(0) ~ JY(0)]?) = (m — 1)AF, and

t
1 -7
v )

B (1201 < 3 (5 +
(14 (m = DA+ E (|26 DP)).

m—1

=1

By induction,
E(|Z(1)]?) < (1+w)"+(m-1)Ae+u)” =1—(m—-1)A3,

for 7 = 1,2,...,T — 1. The proof can be completed by
combining the above results. ]
Using this lemma, we can establish the following.

Theorem 3: For a connected network with associated eigen-
value Ao, (i) if a gossip-based weighted-sum protocol achieves
distortion D < 1/4m, then

) , and

1 m—1
11
mD
(ii) there exists an m(D) and a gossip-based weighted-sum
protocol such that for all m > m(D),

s (v0) (v

<—(In—=

m/\2 D

lo !
& 4mD

m—1
>

E(Rws(D))

2m

In(2/D)

m25\2D

E(Rws(D))

where Ay = 1 — \o.
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Proof outline: (i) We follow the distortion analysis of
Theorem 2 to show that d < 4mD and then use Lemma 3.
(ii) We consider the optimal stochastic matrix QQ* with eigen-
value Ao for the given network topology and set T
In (2/D) /A2, and d = m?X\oD/1In(2/D). Then, we show that
limy,— oo (1/mD) E (||S(T) — JS(0)||?) < 1. The average
distortion D is achievable for average rate

T 1 1 2 o
g m? S\QD

8 d B m5\2 n D

Since Gaussian sources are the hardest to compress, this
upper bound is also an upper bound for non-Gaussian sources.
Remarks:
1. For a complete graph, Ay =1 —1/(m — 1), and the upper
and lower bounds of Theorem 3 differ by a factor of log logm
for distortion D = Q(1/mlogm) and by a constant factor,
otherwise. The lower bound of Theorem 2 is also a lower
bound on E(Rws(D)). The above two lower bounds differ
by a constant factor for D = Q(m~¢) and ¢ > 0 and by a
factor of log(1/D)/logm for D = o(m™¢) and ¢ > 0.
2. For the star network considered in Subsection III-A, Ay =
1 —1/(2(m — 1)) and the upper bounds of Theorem 3 and
of Proposition 1 differ by a factor of (loglogm)logm for
D = Q(1/mlogm) and logm for D = o(1/mlogm) and
D =Q(m™¢), ¢ > 0. The logm factor quantifies the penalty
of using the gossip-based distributed protocols.

In(2/D)

E(R)

V. DISCUSSION

There are many questions that would be interesting to
explore. For example: (i) We have investigated distributed
weighted-sum protocols with a time-invariant normalized local
distortion d. Can the order of the rate be reduced by making
d vary with time? (ii) The distributed weighted-sum protocols
do not take advantage of the build-up of correlation in the
network. Using Wyner-Ziv coding can indeed reduce the rate.
It would be interesting to find bounds with side information.
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