Relevant and Petite K-types

Dan Barbasch

April 2005

1

The Unitarity Problem

• NOTATION

- G is the real points of a linear connected reductive group.
- $\mathfrak{g}_0 := Lie(G)$, θ Cartan involution, $\mathfrak{g} := (\mathfrak{g}_0)_{\mathbb{C}}$, $\mathfrak{g}_0 = \mathfrak{k}_0 + \mathfrak{s}_0$, K maximal compact subgroup.
- A representation (π, \mathcal{H}) on a Hilbert space is called unitary, if \mathcal{H} admits a G invariant positive definite inner product.

• PROBLEM

Classify all irreducible unitary representations of G. By results of Harish-Chandra, it is enough to solve the

• ALGEBRAIC PROBLEM

Classify all irreducible admissible unitary (\mathfrak{g}, K) modules.

Irreducible admissible representations of G

- P = MAN a parabolic subgroup of G, $\mathfrak{a}_0 := Lie(A)$, \mathfrak{a} its complexification,
- (δ, V_{δ}) an irreducible tempered unitary representation of M,
- $\nu \in \mathfrak{a}^*$, with real part in the open positive Weyl chamber,
- $X_P(\delta \otimes \nu)$ the corresponding Harish-Chandra induced (normalized induction) **standard module**,
- $\overline{X}_P(\delta \otimes \nu)$: the unique irreducible quotient.

Classification

Langlands, early 1970s:

- Every irreducible admissible representation of G is infinitesimally equivalent to a **Langlands quotient** $\overline{X}_P(\delta \otimes \nu)$.
- Two Langlands quotients $\overline{X}_P(\delta \otimes \nu)$ and $\overline{X}_{P'}(\delta' \otimes \nu')$ are infinitesimally equivalent if and only if there exists an element ω of K such that

$$\omega P \omega^{-1} = P' \quad \omega \cdot \delta \cong \delta', \quad \omega \cdot \nu = \nu'.$$

• $\overline{X}(\delta, \nu)$ is the image of an intertwining operator

$$A(\overline{P}, P, \delta, \nu) : X_P(\delta, \nu) \longrightarrow X_{\overline{P}}(\delta, \nu).$$

Hermitian Langlands Quotients

Knapp and Zuckerman, 1976:

 $\overline{X}_P(\delta \otimes \nu)$ admits a non-degenerate invariant Hermitian form if and only if there exists $\omega \in K$ satisfying

$$\omega P \omega^{-1} = \bar{P} \qquad \omega \cdot \delta \simeq \delta \qquad \qquad \omega \cdot \nu = -\bar{\nu}$$

(because the Hermitian dual of $\overline{X}_P(\delta \otimes \nu)$ is $\overline{X}_{\bar{P}}(\delta \otimes -\bar{\nu})$). Any non-degenerate invariant Hermitian form on $\overline{X}_P(\delta \otimes \nu)$ is a real multiple of the form induced by the Hermitian operator

$$B = \delta(\omega) \circ R(\omega) \circ A(\bar{P} : P : \delta : \nu)$$

from $X_P(\delta \otimes \nu)$ to $X_P(\delta \otimes -\bar{\nu})$.

 $\overline{X}_P(\delta,\nu)$ is unitary if and only if B is positive semidefinite.

The signature of B

- For every K-type (μ, E_{μ}) , we have a Hermitian operator $R_{\mu}(\omega, \nu)$: $\operatorname{Hom}_{K}(E_{\mu}, X_{P}(\delta \otimes \nu)) \to \operatorname{Hom}_{K}(E_{\mu}, X_{P}(\delta \otimes -\bar{\nu}))$.
- By Frobenius reciprocity:

$$R_{\mu}(\omega, \nu) \colon \operatorname{Hom}_{M \cap K}(E_{\mu} \mid_{M \cap K}, V^{\delta}) \to \operatorname{Hom}_{M \cap K}(E_{\mu} \mid_{M \cap K}, V^{\delta}).$$

If P is the minimal parabolic subgroup, and $\delta = Triv$, then

$$R_{\mu}(\omega, \nu) : (E_{\mu}^*)^M \longrightarrow (E_{\mu}^*)^M.$$

Spherical Representations

- G is **split**, in particular $SL(n,\mathbb{R}), Sp(2n,\mathbb{R}), SO(n,n), F_4, E_6, E_7, E_8.$
- P = MAN is a **minimal** parabolic subgroup of G.
- δ is the **trivial** representation of M.
- ν is a **real** character of A.

In this case we can regard ω as an element of $W := N_K(\mathfrak{a}_0)/M$. The operator $R_{\mu}(\omega, \nu)$ decomposes into a product of factors according to the decomposition of ω into a product of simple reflections (as in Gindikin-Karpelevic). These factors are induced from the corresponding intertwining operators on $SL(2, \mathbb{R})$.

7

Root SL(2)'s

For each $\alpha \in \Delta(\mathfrak{n}_0, \mathfrak{a}_0)$, choose a map $\psi_{\alpha} : sl(2, \mathbb{R}) \longrightarrow \mathfrak{g}_0$ which commutes with θ , and satisfies

$$\psi_{\alpha}\left(\begin{bmatrix}0&1\\0&0\end{bmatrix}\right) = E_{\alpha}, \qquad \psi_{\alpha}\left(\begin{bmatrix}0&0\\1&0\end{bmatrix}\right) = E_{-\alpha},$$

where $E_{\pm\alpha}$ are the root vectors, and $\theta(E_{\alpha}) = -E_{-\alpha}$. Then ψ_{α} determines a map

$$\Psi_{\alpha} : SL(2,\mathbb{R}) \longrightarrow G$$

with image G_{α} , a connected group with Lie algebra isomorphic to

 $sl(2,\mathbb{R})$. Denote by

$$\sigma_{\alpha} := \Psi_{\alpha} \left(\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right), \qquad m_{\alpha} := \sigma_{\alpha}^{2},$$

and let $Z_{\alpha} := E_{\alpha} - E_{-\alpha} \in \mathfrak{k}_0$.

Definition. A K-type is called **petite**, if $\mu(iZ_{\alpha}) = 0, \pm 1, \pm 2, \pm 3$.

The operators $R_{\mu}(\omega, \nu)$ have a simpler form for such K-types. The factors corresponding to the simple root reflections are

$$R_{\mu}(s_{\beta}, \nu) = \begin{cases} +1 & \text{on the } (+1)\text{-eigenspace of } \mu(\sigma_{\beta}) \\ \frac{1 - \langle \nu, \check{\beta} \rangle}{1 + \langle \nu, \check{\beta} \rangle} & \text{on the } (-1)\text{-eigenspace of } \mu(\sigma_{\beta}) \end{cases}$$

The operator $R_{\mu}(s_{\beta}, \nu)$ acts on $(E_{\mu}^*)^M$, and depends only on the W-module structure of this space.

P-adic Groups

The formula for $R_{\mu}(s_{\beta}, \nu)$ coincides with the formula for the similar operator for a split p-adic group. To be more precise, results of Barbasch-Moy reduce the problem of the determination of the Iwahori spherical dual of split p-adic group to the problem of determining the unitary dual of finite dimensional representations of the corresponding affine graded Hecke algebra. In this case, for each representation $\tau \in \widehat{W}$, there is an operator $R_{\tau}(\omega, \nu)$ with the same formula as the one for the real case. A spherical representation $\overline{X}(\nu)$ is unitary if and only if R_{τ} is positive definite for all τ .

10

Relevant K-types

Work of Barbasch for the classical groups, Ciubotaru for F_4 , and Barbasch-Ciubotaru for E_6 , E_7 , and E_8 , determine a set of W-representations, called **relevant** with the property that a spherical module $\overline{X}(\nu)$ is unitary, if and only if $R_{\tau}(\omega, \nu)$ is positive semidefinite for τ in the relevant set.

PROBLEM Find a set of petite K-types so that the $(E_{\mu}^*)^M$ realize all the relevant W-representations.

If we can solve this problem, then we get powerful necessary conditions for unitarity in the real case. Conjecturally the spherical unitary dual for a split reductive group should be independent of whether the field is real or p-adic. This is true for the classical groups, but a conjecture for the exceptional groups.

Classical Groups

For type $\mathbf{A_{n-1}}$, $W = S_n$, and the relevant representations are

$$(n-k,k)$$
.

For types $\mathbf{B_n}$, and $\mathbf{C_n}$, the Weyl group W consists of permutations and sign changes of the coordinates of \mathbb{R}^n , and the relevant W-types are

$$(n-k,k)\times(0), \qquad (n-k)\times(k).$$

Similarly for $\mathbf{D_n}$.

Exceptional Groups

The relevant W representations are

$$F_4$$
 1₁, 2₃, 8₁, 4₂, 9₁,

$$E_6 \quad 1_p, 6_p, 20_p, 30_p, 15_q,$$

$$E_7 \quad 1_a, \ 7'_a, \ 27_a, \ 56'_a, \ 21'_b, \ 35_b, \ 105_b,$$

$$E_8 \quad 1_x, \ 8_z, \ 35_x, \ 50_x, \ 84_x, \ 112_z, \ 400_z, \ 300_x, \ 210_x.$$

The notation is as in Kondo's and Frame's work.

Weyl group representations

Let (μ_a, V_a) and (μ_b, V_b) be representations of K. Then $\operatorname{Hom}_M[V_a, V_b]$ is endowed with a representation of $N_K(M)$ via

$$n \cdot f(v) := \mu_b(n) f(\mu_a(n^{-1})v).$$

Under this action, $M \subset N_K(M)$ acts trivially, so we get a representation of W. Because

$$\operatorname{Hom}_{M}[V_{a}, V_{b}] \cong \operatorname{Hom}_{M}[V_{a} \otimes V_{b}^{*}, Triv],$$

this generalizes the action of W on $(E_{\mu}^*)^M$ from before.

Fine K-types

A K-type is called **fine** (Bernstein-Gelfand, Vogan), if $\mu(iZ_{\alpha})=0,\pm 1.$

These are the lowest K-types of principal series. A fine K-type has the property that its restriction to M is multiplicity free, and is a single $N_K(\mathfrak{a}_0)$ -orbit of representations of M.

In the case of a linear group, M is abelian, so \widehat{M} is formed of characters.

Fix a representative δ for each W-orbit, and a fine K-type μ_{δ} . Then

 $\mu_{\delta} \otimes \mu_{\delta}^*$ is formed of petite K-types only.

We will use the previous formula to determine the Weyl group representation on $\mu_{\delta} \otimes \mu_{\delta}^*$.

Stabilizer of δ

- ${}^{\vee}\Delta^{\delta} := \{\check{\alpha} \mid \delta(m_{\alpha}) = 1\}$ is a root system.
- The Weyl group generated by the roots in $^{\vee}\Delta^{\delta}$ is called W_{δ}^{0} , and is a normal subgroup of the stabilizer W_{δ} of δ .
- The quotient $R_{\delta} := W_{\delta}/W_{\delta}^{0}$ is a product of \mathbb{Z}_{2} 's.
- $\widehat{R_{\delta}}$ acts simply transitively on the fine K-types containing δ .
- Inflate $\tau \in \widehat{R_{\delta}}$ to W_{δ} . Having fixed a μ_{δ} , there is a 1-1 correspondence

$$\{\tau \in \widehat{W}_{\delta} \mid \tau|_{W^0_{\delta}} = triv\} \longleftrightarrow \{\mu_{\delta,\tau}\}, \qquad triv \longleftrightarrow \mu_{\delta}.$$

Theorem. As a W-module,

$$\operatorname{Hom}_{M}[\mu_{\delta,1},\mu_{\delta,\tau}] \cong \operatorname{Ind}_{W_{\delta}}^{W}[\tau].$$

Example 1

G type E_8 , K = Spin(16). This is really the double cover of the rational points of the linear group. Let ω_i be the fundamental weights of K. In this case, $W_{\delta} = W_{\delta}^0$. The fine K-types are

K-type			M-type	W_{δ}
(0)	$\delta_1,$	trivial	representation,	$W(E_8)$
(ω_1)		$\delta_{16},$	dimension 16,	$W(E_8)$
(ω_2)		$\delta_{120},$	120 characters,	$W(E_7A_1)$
$(2\omega_1)$		δ_{135} ,	135 characters,	$W(D_8)$

In all cases, $W_{\delta}^{0} = W_{\delta}$.

$$\operatorname{Hom}_{M}[\mu_{\delta_{120}}, \mu_{\delta_{120}}] \cong \operatorname{Ind}_{W(E7A1)}^{W(E8)}[triv] = 1_{x} + 35_{x} + 84_{x},$$

$$\operatorname{Hom}_{M}[\mu_{\delta_{135}}, \mu_{\delta_{135}}] \cong \operatorname{Ind}_{W(D8)}^{W(E8)}[triv] = 1_{x} + 84_{x} + 50_{x}.$$

It is straightforward that the reflection representation 8_z corresponds to the representation of K on \mathfrak{s}_0 :

$$\omega_8 = 8_z \delta_1 + \delta_{120}. \tag{1}$$

Quite a few relevant Weyl group representations do not occur in these two formulas.

The next tables give the Weyl representations on $(E_{\mu}^*)^M$ for μ petite.

Petite K-types for E8

K-type	W-type on $(E_{\mu}^*)^M$
(0)	$1_x,$
ω_8	$8_z,$
ω_4	$35_x,$
$2\omega_2$	84_x ,
$\omega_2 + \omega_8$	112_z ,
$4\omega_1$	50_x ,
$3\omega_1 + \omega_7$	400_z ,
$2\omega_3$	300_x ,

$ \omega_{3} + \omega_{7} $ $ \omega_{6} $ $ 28_{x}, $ $ \omega_{1} + \omega_{5} $ $ 210_{x}, $ $ \omega_{1} + \omega_{2} + \omega_{7} $ $ 560_{z}, $ $ \omega_{2} + \omega_{4} $ $ 567_{x}, $ $ 2\omega_{1} + \omega_{4} $ $ 700_{x}, $ $ 3\omega_{1} + \omega_{3} $ $ 1050_{x}, $
$ \omega_{1} + \omega_{5} $ $ \omega_{1} + \omega_{2} + \omega_{7} $ $ \omega_{2} + \omega_{4} $ $ 210_{x}, $ $ 560_{z}, $ $ 567_{x}, $ $ 2\omega_{1} + \omega_{4} $ $ 700_{x}, $ $ 3\omega_{1} + \omega_{3} $ $ 1050_{x}, $
$\omega_1 + \omega_2 + \omega_7$ 560_z , $\omega_2 + \omega_4$ 567_x , $2\omega_1 + \omega_4$ 700_x , $3\omega_1 + \omega_3$ 1050_x ,
$\omega_2 + \omega_4$ 567_x , $2\omega_1 + \omega_4$ 700_x , $3\omega_1 + \omega_3$ 1050_x ,
$2\omega_1 + \omega_4 \qquad 700_x,$ $3\omega_1 + \omega_3 \qquad 1050_x,$
$3\omega_1 + \omega_3 1050_x,$
$\omega_1 + \omega_2 + \omega_3 \qquad 1344_x,$
$3\omega_2$ 525_x ,
$2\omega_1 + 2\omega_2 972_x,$
$4\omega_1 + \omega_2 700_{xx},$
$6\omega_1$ 168 _y .

Some Proofs

Only ω_1 is genuine for K = Spin(16), the others factor to a quotient group. In particular, genuine representations of Spin(16) restrict to multiples of δ_{16} . All representations are self-dual. We compute

$$\omega_2 \otimes \omega_2 = (2\omega_2) + (\omega_1 + \omega_3) + (2\omega_1) + (\omega_2) + (\omega_4) + (0),$$

$$(2\omega_1) \otimes (2\omega_1) = (4\omega_1) + (2\omega_1 + \omega_2) + (2\omega_1) + (2\omega_2) + (\omega_2) + (0).$$
(2)

Furthermore, ω_3 restricts to $35\delta_{16}$, and

$$\omega_1 \otimes \omega_3 = (\omega_1 + \omega_3) + (\omega_2) + (\omega_4). \tag{3}$$

Thus the multiplicity of δ_1 in $(\omega_1 + \omega_3) + (\omega_4)$ is 35. On the other hand, dim $\omega_4 = 1820$, so the multiplicity of δ_1 in ω_4 is nonzero.

From (2) it follows that the multiplicity is exactly 35, and so

$$\omega_4 \longleftrightarrow 35_x.$$
 (4)

We also conclude that the multiplicity of δ_1 in $\omega_1 + \omega_3$ is zero. From the first equation in (2) we also conclude that $(2\omega_2)$ contains δ_1 84 times, so

$$(2\omega_2)\longleftrightarrow 84_x.$$

Consider $(\omega_1 + \omega_2)$ which restricts to $84\delta_{16}$. Then

$$(\omega_1 + \omega_2) \otimes \omega_1 = (2\omega_1 + \omega_2) + (2\omega_1) + (\omega_1 + \omega_3) + (2\omega_2) + (\omega_2).$$
 (5)

Thus only $2\omega_2$ contains δ_1 .

These arguments also imply

$$\operatorname{Hom}_{M}[\omega_{1}, \omega_{3}] \simeq 35_{x}. \tag{6}$$

Combined with the second equation in (2) we get

$$4\omega_1 \longleftrightarrow 50_x.$$
 (7)

We illustrate another aspect of the calculation. We know that $8_z \otimes 50_x = 400_z$. Furthermore, assume that we have done some earlier calculations, and found that

$$\operatorname{Hom}_{M}[\omega_{1},(3\omega_{1})] \cong 50_{x},$$
 $\operatorname{Hom}_{M}[\omega_{1},\omega_{7}] \cong 8_{z},$
 $\omega_{2} + \omega_{8} \longleftrightarrow 112_{z}.$

Then,

$$(3\omega_{1}) \otimes (\omega_{7}) = (3\omega_{1} + \omega_{7}) + (2\omega_{1} + \omega_{8}),$$

$$(\omega_{1} + \omega_{8}) \otimes \omega_{1} = (2\omega_{1} + \omega_{8}) + (\omega_{1} + \omega_{7}) + (\omega_{2} + \omega_{8}) + (\omega_{8}).$$
(8)

Since $\omega_1 + \omega_8 = 120\delta_{16}$, and ω_8 contains eight copies of δ_1 , it follows that δ_1 does not occur in $(2\omega_1 + \omega_8) + (\omega_1 + \omega_7)$. We conclude that

$$(3\omega_1 + \omega_7) \longleftrightarrow 400_z. \tag{9}$$

Petite K-types for C_n

$$G = Sp(n, \mathbb{R}), K = U(n).$$

$$\mu_{+}(k) := (\underbrace{1, \dots, 1}_{k}, 0, \dots, 0), \qquad \mu_{-}(k) := (0, \dots, 0, \underbrace{-1, \dots, -1}_{k})$$

are fine K-types containing the same orbit of a character $\delta \in \widehat{M}$. The stabilizers are $W_{\delta}^{0} \cong W(D_{k}) \times W(C_{n-k})$, and $W_{\delta} \cong W(C_{k}) \times W(C_{n-k})$. Then

$$Ind_{W_{\delta}}^{W}[triv] = \sum (n - \ell, \ell) \times (0), \quad 0 \le \ell \le \min(k, n - k),$$
$$Ind_{W_{\delta}}^{W}[\tau] = (n - k) \times (k).$$

The tensor products are

$$\mu_{+}(k) \otimes \mu_{-}(k) = \sum_{2a+b=2k} \underbrace{(1,\ldots,1,0,\ldots,0,-1,\ldots,-1)}_{b},$$

$$\mu_{+}(k) \otimes \mu_{-}(k) = \sum_{2a+b=2k} \underbrace{(2,\ldots,2,1,\ldots,1,0,\ldots,0)}_{b}.$$

These K-types are automatically petite, and in fact satisfy $\mu(iZ_{\alpha}) = 0, \pm 1, \pm 2.$

The precise correspondence is

K-type

W-representation on $(E_{\mu}^*)^M$

$$(\underbrace{2,\ldots,2}_{\ell},0,\ldots,0) \qquad (n-\ell)\times(\ell)$$

$$(n-\ell)\times(0)$$

$$(\underbrace{1,\ldots,1}_{k},0,\ldots,0,\underbrace{-1,\ldots,-1}_{k})$$
 $(n-k,k)\times(0)$

Level 2 Petite K-Types

The petite K-types with the property that $\mu(iZ_{\alpha}) = 0, \pm 1, \pm 2$, have some very nice properties. They are sufficient to determine unitarity in the classical cases, but not the exceptional ones.

Springer Correspondence

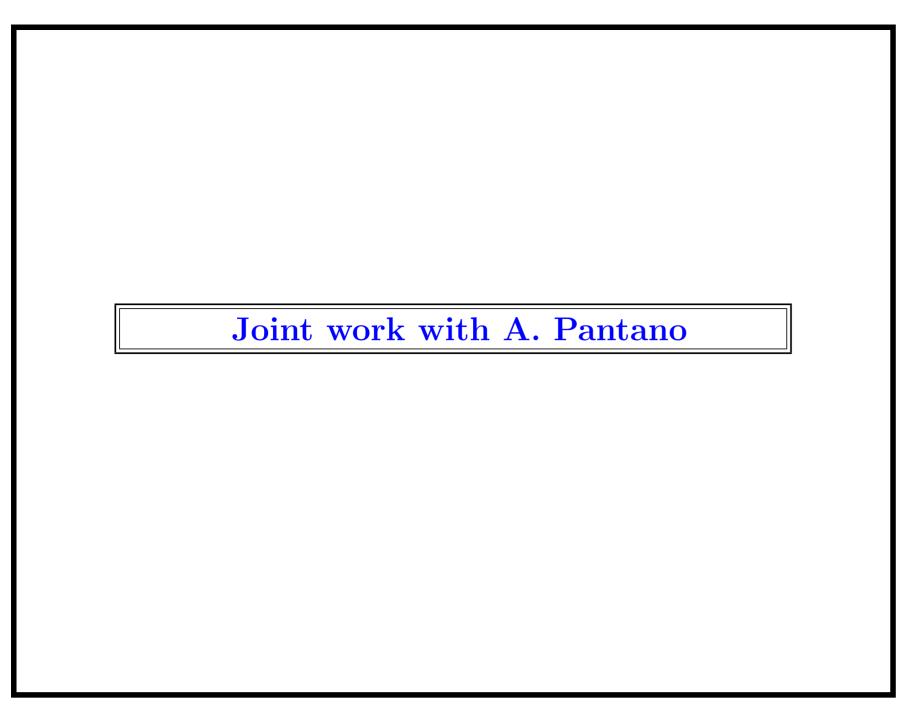
- \bullet g complex semisimple Lie algebra, $\mathfrak{b}\subset\mathfrak{g}$ Borel subalgebra,
- $\mathcal{O} \subset \mathfrak{g}$ nilpotent orbit, $\{e, H, f\}$ Lie triple,
- A(e) component group of the centralizer of e,
- $\mathcal{B}_e := \{ \mathfrak{b} \mid e \in \mathfrak{b} \}$, the incidence variety.

The Springer correspondence attaches to each $(\mathcal{O}, \psi \in \widehat{A(e)})$ a representation $\sigma(\mathcal{O}, \psi)$ of W which is irreducible or zero. It is the representation of W on $H^{top}(\mathcal{B}_e)^{\psi}$, (maybe tensored with sgn in

this case so that $\sigma((0), triv) = triv \in \widehat{W}$).

We have the following two assertions for μ petite, level 2.

- $\sigma \cong (E_{\mu}^*)^M$ if and only if the restriction of σ to any rank two Levi does not contain sgn,
- $\sigma \cong (E_{\mu}^*)^M$ if and only if $\sigma = \sigma(\mathcal{O}, \psi)$ where \mathcal{O} meets a Levi component with factors of type A_1 only.



Principal Series, Classical Groups

Type C

Consider

$$\delta_{k} = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k}) \longleftrightarrow \qquad \mu_{k}^{+} = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k})$$

$$\mu_{k}^{-} = (\underbrace{0, \dots, 0}_{n-k}, \underbrace{-1, \dots, -1}_{k})$$

$$(10)$$

Then the relevant K-types are

K-type

$$\underbrace{(\underbrace{1,\ldots,1}_{a+k},0,\ldots,0,\underbrace{-1,\ldots,-1})}_{a+k} \qquad (triv)\otimes[(a,n-k-a)\times(0)]$$

$$\underbrace{(\underbrace{1,\ldots,1}_{k-b},0,\ldots,0,\underbrace{-1,\ldots,-1})}_{b} \qquad [(k-b)\times(b)]\otimes(triv)$$

$$\underbrace{(\underbrace{2,\ldots,2}_{b},\underbrace{1,\ldots,1}_{k},0,\ldots,0)}_{b} \qquad (triv)\otimes[(n-k-b)\times(b)]$$

(11)

 $W(C_k \times C_{n-k})$ -type

We get another set of K-types by changing all the signs to minuses.

These K-types are petite because they are factors of the tensor

products

$$\Lambda^r(\mathbb{C}^n) \otimes \Lambda^s(\mathbb{C}^n), \quad \text{or} \quad \Lambda^r(\mathbb{C}^n) \otimes \Lambda^s((\mathbb{C}^*)^n).$$
 (12)

Type D

These are the cases SO(2n,2n) and SO(2n+1,2n+1). For simplicity, just use 2n, the other case is equivalent. Consider

$$\delta_{k} = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k}) \longleftrightarrow \qquad \mu_{k}^{+} = (\underbrace{1, \dots, 1}_{k}, \underbrace{0, \dots, 0}_{n-k}) \otimes (0, \dots, 0)$$

$$\mu_{k}^{-} = (0, \dots, 0) \otimes (\underbrace{0, \dots, 0}_{n-k}, \underbrace{-1, \dots, -1}_{k})$$

$$(13)$$

Then the relevant K-types are

$$\underbrace{(1,\ldots,1,0,\ldots,0)}_{a+k} \otimes \underbrace{(1,\ldots,1,0,\ldots,0)}_{a},
\underbrace{(1,\ldots,1,0,\ldots,0)}_{b} \otimes \underbrace{(1,\ldots,1,0,\ldots,0)}_{b},
\underbrace{(2,\ldots,2,1,\ldots,1,0,\ldots,0)}_{b} \otimes (0,\ldots,0),
\underbrace{(2,\ldots,2,1,\ldots,1,0,\ldots,0)}_{b} \otimes (0,\ldots,0).$$

We get another set of K-types with the same properties by interchanging the factors.

Principal Series, Type E8

 δ_{16}

In the case of genuine principal series, only level $\leq 3/2$ K-types are petite. This has to do with the representation theory of the double cover $\widetilde{SL(2,\mathbb{R})}$. The matchings are

```
\delta_{135}
                                     K-type
                                                       W-type
                                        (2\omega_1)
                                                       8 \times 0
                                        (\omega_4)
                                                       71 \times 0
                                        (4\omega_1)
                                                       44 \times 0
                                 (\omega_1 + \omega_7)
                                                       7 \times 1
                                        (2\omega_2)
                                                     62 \times 0
                                                                                                      (17)
                               (2\omega_1 + \omega_4) \qquad 6 \times 2
                               (2\omega_1+\omega_2)
                                                    4 \times 4_{-}
                                (\omega_2 + \omega_8) 61 \times 1
                                (\omega_1 + \omega_3) 6 \times 2
                               (2\omega_1 + \omega_8) \qquad 5 \times 3 + 7 \times 1.
```

36

K-type W-type
$$(\omega_6) \qquad 6 \times 11$$

$$(2\omega_1 + \omega_4) \qquad 53 \times 0 + 4 \times 4_+ + 71 \times 0 + 51 \times 2 + 31 \times 4 + 42 \times 2$$

$$(\omega_1 + \omega_5) \qquad 4 \times 4_+ + 51 \times 2 + 6 \times 11 + 71 \times 0 + 6 \times 2.$$

Theorem. A parameter (δ_{135}, ν) is unitary only if the corresponding spherical parameter (δ_1, ν) is unitary for D_8 .

```
\delta_{120}
                                 K-type
                                                   W-type
                                     (\omega_2)
                                                   1_a \otimes 2
                                                  21_b'\otimes 11
                                   (2\omega_2)
                            (\omega_1 + \omega_3)  27_a \otimes 2
                                     (\omega_8)
                                                  1_a \otimes 11
                                     (\omega_4) 7'_a \otimes 11
                                                                                                       (18)
                            (\omega_1 + \omega_7) 7'_a \otimes 2
                            (\omega_2 + \omega_8) 27_a \otimes 11 + 21_b' \otimes 2 + \dots
                           (\omega_1 + \omega_5) 56'_a \otimes 11
                         (2\omega_1 + \omega_8) \qquad 56'_a \otimes 2
                   (\omega_1 + \omega_2 + \omega_7) \qquad 35_b \otimes 11 + \dots .
```

K-type
$$M-type$$

$$(2\omega_1 + \omega_2) \qquad 35_b \otimes 11 + \dots$$

$$(3\omega_1 + \omega_7) \qquad 105_b \otimes 11 + \dots$$

$$(2\omega_1 + \omega_4) \qquad 105_b \otimes 2 + \dots$$

Theorem. A parameter (δ_{120}, ν) is unitary only if the corresponding spherical parameter (δ_1, ν) is unitary for E_7A_1 .

Useful Identities

Let μ , μ_1 , μ_2 be genuine representations. The main point is that δ_{16} is the unique genuine representation of M, and it IS the irreducible K-module ω_1 .

• As a W-representation,

$$\operatorname{Hom}_M[\mu_1, \mu_2] \cong \operatorname{Hom}_M[\mu_1, \omega_1] \otimes \operatorname{Hom}_M[\mu_2, \omega_1].$$

Decompose LHS as a K-module, RHS as a W-module.

• For $\delta = \overline{\delta}_{120}$ or $\delta = \overline{\delta}_{135}$, (irreducible representation of M)

$$\operatorname{Hom}_{M}[\boldsymbol{\delta}, \omega_{1} \otimes \mu] = \operatorname{Res}_{\boldsymbol{W}_{\boldsymbol{\delta}}} \operatorname{Hom}_{M}[\omega_{1}, \mu].$$

Decompose $\omega_1 \otimes \mu$ as a K-module, the RHS as a W_{δ} -module.

40