

The Unitarity Problem

- NOTATION

- G is the real points of a linear connected reductive group.
- $\mathfrak{g}_{0}:=\operatorname{Lie}(G), \theta$ Cartan involution, $\mathfrak{g}:=\left(\mathfrak{g}_{0}\right)_{\mathbb{C}}, \mathfrak{g}_{0}=\mathfrak{k}_{0}+\mathfrak{s}_{0}$, K maximal compact subgroup.
- A representation (π, \mathcal{H}) on a Hilbert space is called unitary, if \mathcal{H} admits a G invariant positive definite inner product.
- PROBLEM

Classify all irreducible unitary representations of G.
By results of Harish-Chandra, it is enough to solve the

- ALGEBRAIC PROBLEM

Classify all irreducible admissible unitary (\mathfrak{g}, K) modules.

Irreducible admissible representations of G

- $P=M A N$ a parabolic subgroup of $G, \mathfrak{a}_{0}:=\operatorname{Lie}(A), \mathfrak{a}$ its complexification,
- $\left(\delta, V_{\delta}\right)$ an irreducible tempered unitary representation of M,
- $\nu \in \mathfrak{a}^{*}$, with real part in the open positive Weyl chamber,
- $X_{P}(\delta \otimes \nu)$ the corresponding Harish-Chandra induced (normalized induction) standard module,
- $\bar{X}_{P}(\delta \otimes \nu)$: the unique irreducible quotient.

Classification

Langlands, early 1970s:

- Every irreducible admissible representation of G is infinitesimally equivalent to a Langlands quotient $\bar{X}_{P}(\delta \otimes \nu)$.
- Two Langlands quotients $\bar{X}_{P}(\delta \otimes \nu)$ and $\bar{X}_{P^{\prime}}\left(\delta^{\prime} \otimes \nu^{\prime}\right)$ are infinitesimally equivalent if and only if there exists an element ω of K such that

$$
\omega P \omega^{-1}=P^{\prime} \quad \omega \cdot \delta \cong \delta^{\prime}, \quad \omega \cdot \nu=\nu^{\prime}
$$

- $\bar{X}(\delta, \nu)$ is the image of an intertwining operator

$$
A(\bar{P}, P, \delta, \nu): X_{P}(\delta, \nu) \longrightarrow X_{\bar{P}}(\delta, \nu)
$$

Hermitian Langlands Quotients

Knapp and Zuckerman, 1976:
$\bar{X}_{P}(\delta \otimes \nu)$ admits a non-degenerate invariant Hermitian form if and only if there exists $\omega \in K$ satisfying

$$
\omega P \omega^{-1}=\bar{P} \quad \omega \cdot \delta \simeq \delta \quad \omega \cdot \nu=-\bar{\nu}
$$

(because the Hermitian dual of $\bar{X}_{P}(\delta \otimes \nu)$ is $\bar{X}_{\bar{P}}(\delta \otimes-\bar{\nu})$).
Any non-degenerate invariant Hermitian form on $\bar{X}_{P}(\delta \otimes \nu)$ is a real multiple of the form induced by the Hermitian operator

$$
B=\delta(\omega) \circ R(\omega) \circ A(\bar{P}: P: \delta: \nu)
$$

from $X_{P}(\delta \otimes \nu)$ to $X_{P}(\delta \otimes-\bar{\nu})$.
$\bar{X}_{P}(\delta, \nu)$ is unitary if and only if B is positive semidefinite.

The signature of B

- For every K-type $\left(\mu, E_{\mu}\right)$, we have a Hermitian operator $R_{\mu}(\omega, \nu): \operatorname{Hom}_{K}\left(E_{\mu}, X_{P}(\delta \otimes \nu)\right) \rightarrow \operatorname{Hom}_{K}\left(E_{\mu}, X_{P}(\delta \otimes-\bar{\nu})\right)$.
- By Frobenius reciprocity:
$R_{\mu}(\omega, \nu): \operatorname{Hom}_{M \cap K}\left(\left.E_{\mu}\right|_{M \cap K}, V^{\delta}\right) \rightarrow \operatorname{Hom}_{M \cap K}\left(\left.E_{\mu}\right|_{M \cap K}, V^{\delta}\right)$.
If P is the minimal parabolic subgroup, and $\delta=$ Triv, then

- G is split, in particular $S L(n, \mathbb{R}), S p(2 n, \mathbb{R}), S O(n, n), F_{4}, E_{6}$, E_{7}, E_{8}.
- $P=M A N$ is a minimal parabolic subgroup of G.
- δ is the trivial representation of M.
- ν is a real character of A.

In this case we can regard ω as an element of $W:=N_{K}\left(\mathfrak{a}_{0}\right) / M$. The operator $R_{\mu}(\omega, \nu)$ decomposes into a product of factors according to the decomposition of ω into a product of simple reflections (as in Gindikin-Karpelevic). These factors are induced from the corresponding intertwining operators on $S L(2, \mathbb{R})$.

7

Root SL(2)'s

For each $\alpha \in \Delta\left(\mathfrak{n}_{0}, \mathfrak{a}_{0}\right)$, choose a map $\psi_{\alpha}: \operatorname{sl}(2, \mathbb{R}) \longrightarrow \mathfrak{g}_{0}$ which commutes with θ, and satisfies

$$
\psi_{\alpha}\left(\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\right)=E_{\alpha}, \quad \psi_{\alpha}\left(\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\right)=E_{-\alpha}
$$

where $E_{ \pm \alpha}$ are the root vectors, and $\theta\left(E_{\alpha}\right)=-E_{-\alpha}$. Then ψ_{α} determines a map

$$
\Psi_{\alpha}: S L(2, \mathbb{R}) \longrightarrow G
$$

with image G_{α}, a connected group with Lie algebra isomorphic to
$s l(2, \mathbb{R})$. Denote by

$$
\sigma_{\alpha}:=\Psi_{\alpha}\left(\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right), \quad m_{\alpha}:=\sigma_{\alpha}^{2}
$$

and let $Z_{\alpha}:=E_{\alpha}-E_{-\alpha} \in \mathfrak{k}_{0}$.
Definition. A K-type is called petite, if $\mu\left(i Z_{\alpha}\right)=0, \pm 1, \pm 2, \pm 3$.
The operators $R_{\mu}(\omega, \nu)$ have a simpler form for such K-types. The factors corresponding to the simple root reflections are

The operator $R_{\mu}\left(s_{\beta}, \nu\right)$ acts on $\left(E_{\mu}^{*}\right)^{M}$, and depends only on the W-module structure of this space.

P-adic Groups

The formula for $R_{\mu}\left(s_{\beta}, \nu\right)$ coincides with the formula for the similar operator for a split p-adic group. To be more precise, results of Barbasch-Moy reduce the problem of the determination of the Iwahori spherical dual of split p-adic group to the problem of determining the unitary dual of finite dimensional representations of the corresponding affine graded Hecke algebra. In this case, for each representation $\tau \in \widehat{W}$, there is an operator $R_{\tau}(\omega, \nu)$ with the same formula as the one for the real case. A spherical representation $\bar{X}(\nu)$ is unitary if and only if R_{τ} is positive definite for all τ.

Work of Barbasch for the classical groups, Ciubotaru for F_{4}, and Barbasch-Ciubotaru for E_{6}, E_{7}, and E_{8}, determine a set of W-representations, called relevant with the property that a spherical module $\bar{X}(\nu)$ is unitary, if and only if $R_{\tau}(\omega, \nu)$ is positive semidefinite for τ in the relevant set.
PROBLEM Find a set of petite K-types so that the $\left(E_{\mu}^{*}\right)^{M}$ realize all the relevant W-representations.
If we can solve this problem, then we get powerful necessary conditions for unitarity in the real case. Conjecturally the spherical unitary dual for a split reductive group should be independent of whether the field is real or p -adic. This is true for the classical groups, but a conjecture for the exceptional groups.

Let $\left(\mu_{a}, V_{a}\right)$ and $\left(\mu_{b}, V_{b}\right)$ be representations of K. Then
$\operatorname{Hom}_{M}\left[V_{a}, V_{b}\right]$ is endowed with a representation of $N_{K}(M)$ via

$$
n \cdot f(v):=\mu_{b}(n) f\left(\mu_{a}\left(n^{-1}\right) v\right) .
$$

Under this action, $M \subset N_{K}(M)$ acts trivially, so we get a representation of W. Because

$$
\operatorname{Hom}_{M}\left[V_{a}, V_{b}\right] \cong \operatorname{Hom}_{M}\left[V_{a} \otimes V_{b}^{*}, \text { Triv }\right],
$$

this generalizes the action of W on $\left(E_{\mu}^{*}\right)^{M}$ from before.
\square

A K-type is called fine (Bernstein-Gelfand, Vogan), if $\mu\left(i Z_{\alpha}\right)=0, \pm 1$.
These are the lowest K-types of principal series. A fine K-type has the property that its restriction to M is multiplicity free, and is a single $N_{K}\left(\mathfrak{a}_{0}\right)$-orbit of representations of M.
In the case of a linear group, M is abelian, so \widehat{M} is formed of characters.

Fix a representative δ for each W-orbit, and a fine K-type μ_{δ}. Then

$$
\mu_{\delta} \otimes \mu_{\delta}^{*} \text { is formed of petite K-types only. }
$$

We will use the previous formula to determine the Weyl group representation on $\mu_{\delta} \otimes \mu_{\delta}^{*}$.

Stabilizer of δ

- ${ }^{\vee} \Delta^{\delta}:=\left\{\check{\alpha} \mid \delta\left(m_{\alpha}\right)=1\right\}$ is a root system.
- The Weyl group generated by the roots in ${ }^{\vee} \Delta^{\delta}$ is called W_{δ}^{0}, and is a normal subgroup of the stabilizer W_{δ} of δ.
- The quotient $R_{\delta}:=W_{\delta} / W_{\delta}^{0}$ is a product of \mathbb{Z}_{2} 's.
- $\widehat{R_{\delta}}$ acts simply transitively on the fine K-types containing δ.
- Inflate $\tau \in \widehat{R_{\delta}}$ to W_{δ}. Having fixed a μ_{δ}, there is a 1-1 correspondence

$$
\left\{\tau \in \widehat{W}_{\delta}|\tau|_{W_{\delta}^{0}}=\operatorname{triv}\right\} \longleftrightarrow\left\{\mu_{\delta, \tau}\right\}, \quad \text { triv } \longleftrightarrow \mu_{\delta}
$$

Theorem. As a W-module,

$$
\operatorname{Hom}_{M}\left[\mu_{\delta, 1}, \mu_{\delta, \tau}\right] \cong \operatorname{Ind}_{W_{\delta}}^{W}[\tau] .
$$

Example 1

G type $E_{8}, K=\operatorname{Spin}(16)$. This is really the double cover of the rational points of the linear group. Let ω_{i} be the fundamental weights of K. In this case, $W_{\delta}=W_{\delta}^{0}$. The fine K-types are

K-type	M-type	W_{δ}	
(0)	δ_{1},	trivial representation,	$W\left(E_{8}\right)$
$\left(\omega_{1}\right)$	δ_{16}, \quad dimension 16,	$W\left(E_{8}\right)$	
$\left(\omega_{2}\right)$	$\delta_{120}, \quad 120$ characters,	$W\left(E_{7} A_{1}\right)$	
$\left(2 \omega_{1}\right)$	$\delta_{135}, \quad 135$ characters,	$W\left(D_{8}\right)$	

In all cases, $W_{\delta}^{0}=W_{\delta}$.

$$
\begin{aligned}
& \operatorname{Hom}_{M}\left[\mu_{\delta_{120}}, \mu_{\delta_{120}}\right] \cong \operatorname{Ind} d_{W(E 7 A 1)}^{W(E 8)}[\text { triv }]=1_{x}+35_{x}+84_{x}, \\
& \operatorname{Hom}_{M}\left[\mu_{\delta_{135}}, \mu_{\delta_{135}}\right] \cong \operatorname{Ind} d_{W(D 8)}^{W(E 8)}[\text { triv }]=1_{x}+84_{x}+50_{x} .
\end{aligned}
$$

It is straightforward that the reflection representation 8_{z} corresponds to the representation of K on \mathfrak{s}_{0} :

$$
\begin{equation*}
\omega_{8}=8_{z} \delta_{1}+\delta_{120} \tag{1}
\end{equation*}
$$

Quite a few relevant Weyl group representations do not occur in these two formulas.
The next tables give the Weyl representations on $\left(E_{\mu}^{*}\right)^{M}$ for μ petite.

K-type	W-type on $\left(E^{*}\right)^{M}$
$\omega_{3}+\omega_{7}$	160_{z},
ω_{6}	28_{x},
$\omega_{1}+\omega_{5}$	210_{x},
$\omega_{1}+\omega_{2}+\omega_{7}$	560_{z},
$\omega_{2}+\omega_{4}$	567_{x},
$2 \omega_{1}+\omega_{4}$	700_{x},
$3 \omega_{1}+\omega_{3}$	1050_{x},
$\omega_{1}+\omega_{2}+\omega_{3}$	1344_{x},
$3 \omega_{2}$	525_{x},
$2 \omega_{1}+2 \omega_{2}$	972_{x},
$4 \omega_{1}+\omega_{2}$	$700_{x x}$,
$6 \omega_{1}$	168_{y},

Some Proofs

Only ω_{1} is genuine for $K=\operatorname{Spin}(16)$, the others factor to a quotient group. In particular, genuine representations of $\operatorname{Spin}(16)$ restrict to multiples of δ_{16}. All representations are self dual. We compute

$$
\begin{align*}
& \omega_{2} \otimes \omega_{2}=\left(2 \omega_{2}\right)+\left(\omega_{1}+\omega_{3}\right)+\left(2 \omega_{1}\right)+\left(\omega_{2}\right)+\left(\omega_{4}\right)+(0), \\
& \left(2 \omega_{1}\right) \otimes\left(2 \omega_{1}\right)=\left(4 \omega_{1}\right)+\left(2 \omega_{1}+\omega_{2}\right)+\left(2 \omega_{1}\right)+\left(2 \omega_{2}\right)+\left(\omega_{2}\right)+(0) . \tag{2}
\end{align*}
$$

Furthermore, ω_{3} restricts to $35 \delta_{16}$, and

$$
\begin{equation*}
\omega_{1} \otimes \omega_{3}=\left(\omega_{1}+\omega_{3}\right)+\left(\omega_{2}\right)+\left(\omega_{4}\right) . \tag{3}
\end{equation*}
$$

Thus the multiplicity of δ_{1} in $\left(\omega_{1}+\omega_{3}\right)+\left(\omega_{4}\right)$ is 35 . On the other hand, $\operatorname{dim} \omega_{4}=1820$, so the multiplicity of δ_{1} in ω_{4} is nonzero.

From (2) it follows that the multiplicity is exactly 35 , and so

$$
\begin{equation*}
\omega_{4} \longleftrightarrow 35_{x} \tag{4}
\end{equation*}
$$

We also conclude that the multiplicity of δ_{1} in $\omega_{1}+\omega_{3}$ is zero.
From the first equation in (2) we also conclude that $\left(2 \omega_{2}\right)$ contains $\delta_{1} 84$ times, so

$$
\left(2 \omega_{2}\right) \longleftrightarrow 84_{x}
$$

Consider $\left(\omega_{1}+\omega_{2}\right)$ which restricts to $84 \delta_{16}$. Then

$$
\begin{equation*}
\left(\omega_{1}+\omega_{2}\right) \otimes \omega_{1}=\left(2 \omega_{1}+\omega_{2}\right)+\left(2 \omega_{1}\right)+\left(\omega_{1}+\omega_{3}\right)+\left(2 \omega_{2}\right)+\left(\omega_{2}\right) \tag{5}
\end{equation*}
$$

Thus only $2 \omega_{2}$ contains δ_{1}.
These arguments also imply

$$
\begin{equation*}
\operatorname{Hom}_{M}\left[\omega_{1}, \omega_{3}\right] \simeq 35_{x} \tag{6}
\end{equation*}
$$

Combined with the second equation in (2) we get

$$
\begin{equation*}
4 \omega_{1} \longleftrightarrow 50_{x} \tag{7}
\end{equation*}
$$

We illustrate another aspect of the calculation. We know that $8_{z} \otimes 50_{x}=400_{z}$. Furthermore, assume that we have done some earlier calculations, and found that

$$
\begin{aligned}
& \operatorname{Hom}_{M}\left[\omega_{1},\left(3 \omega_{1}\right)\right] \cong 50_{x} \\
& \operatorname{Hom}_{M}\left[\omega_{1}, \omega_{7}\right] \cong 8_{z} \\
& \omega_{2}+\omega_{8} \longleftrightarrow 112_{z}
\end{aligned}
$$

Then,

$$
\begin{align*}
& \left(3 \omega_{1}\right) \otimes\left(\omega_{7}\right)=\left(3 \omega_{1}+\omega_{7}\right)+\left(2 \omega_{1}+\omega_{8}\right) \\
& \left(\omega_{1}+\omega_{8}\right) \otimes \omega_{1}=\left(2 \omega_{1}+\omega_{8}\right)+\left(\omega_{1}+\omega_{7}\right)+\left(\omega_{2}+\omega_{8}\right)+\left(\omega_{8}\right) \tag{8}
\end{align*}
$$

Since $\omega_{1}+\omega_{8}=120 \delta_{16}$, and ω_{8} contains eight copies of δ_{1}, it follows that δ_{1} does not occur in $\left(2 \omega_{1}+\omega_{8}\right)+\left(\omega_{1}+\omega_{7}\right)$. We conclude that

$$
\begin{equation*}
\left(3 \omega_{1}+\omega_{7}\right) \longleftrightarrow 400_{z} \tag{9}
\end{equation*}
$$

The tensor products are

$$
\begin{aligned}
& \mu_{+}(k) \otimes \mu_{-}(k)=\sum_{2 a+b=2 k}(\underbrace{1, \ldots, 1}_{a}, \underbrace{0, \ldots, 0}_{b},-1, \ldots,-1), \\
& \mu_{+}(k) \otimes \mu_{-}(k)=\sum_{2 a+b=2 k}(\underbrace{2, \ldots, 2}_{a}, \underbrace{1, \ldots, 1}_{b}, 0, \ldots, 0) .
\end{aligned}
$$

These K-types are automatically petite, and in fact satisfy $\mu\left(i Z_{\alpha}\right)=0, \pm 1, \pm 2$.

Level 2 Petite K-Types

The petite K-types with the property that $\mu\left(i Z_{\alpha}\right)=0, \pm 1, \pm 2$, have some very nice properties. They are sufficient to determine unitarity in the classical cases, but not the exceptional ones.

Springer Correspondence

- \mathfrak{g} complex semisimple Lie algebra, $\mathfrak{b} \subset \mathfrak{g}$ Borel subalgebra,
- $\mathcal{O} \subset \mathfrak{g}$ nilpotent orbit, $\{e, H, f\}$ Lie triple,
- $A(e)$ component group of the centralizer of e,
- $\mathcal{B}_{e}:=\{\mathfrak{b} \mid e \in \mathfrak{b}\}$, the incidence variety.

The Springer correspondence attaches to each $(\mathcal{O}, \psi \in \widehat{A(e)})$ a representation $\sigma(\mathcal{O}, \psi)$ of W which is irreducible or zero. It is the representation of W on $H^{t o p}\left(\mathcal{B}_{e}\right)^{\psi}$, (maybe tensored with sgn in

30

Then the relevant K-types are

$$
\begin{array}{lr}
\text { K-type } & W\left(C_{k} \times C_{n-k}\right) \text {-type } \\
(\underbrace{1, \ldots, 1}_{a+k}, 0, \ldots, 0, \underbrace{-1, \ldots,-1}_{a}) & (\text { triv }) \otimes[(a, n-k-a) \times(0)] \\
(\underbrace{1, \ldots, 1}_{k-b}, 0, \ldots, 0, \underbrace{-1, \ldots,-1}_{b}) & {[(k-b) \times(b)] \otimes(\text { triv })} \\
(\underbrace{2, \ldots, 2}_{b}, \underbrace{1, \ldots, 1}_{k}, 0, \ldots, 0) & (\text { triv }) \otimes[(n-k-b) \times(b)] \\
(\underbrace{2, \ldots, 2}, \underbrace{1, \ldots, 1}, \underbrace{0, \ldots, 0}) & {[(b, k-b) \times(0)] \otimes(\text { triv }) .}
\end{array}
$$

We get another set of K-types by changing all the signs to minuses. These K-types are petite because they are factors of the tensor
products

$$
\begin{equation*}
\Lambda^{r}\left(\mathbb{C}^{n}\right) \otimes \Lambda^{s}\left(\mathbb{C}^{n}\right), \quad \text { or } \quad \Lambda^{r}\left(\mathbb{C}^{n}\right) \otimes \Lambda^{s}\left(\left(\mathbb{C}^{*}\right)^{n}\right) \tag{12}
\end{equation*}
$$

Type D

These are the cases $S O(2 n, 2 n)$ and $S O(2 n+1,2 n+1)$. For simplicity, just use $2 n$, the other case is equivalent. Consider

$$
\begin{array}{r}
\delta_{k}=(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{n-k}) \longleftrightarrow \quad \mu_{k}^{+}=(\underbrace{1, \ldots, 1}_{k}, \underbrace{0, \ldots, 0}_{n-k}) \otimes(0, \ldots, 0) \\
\mu_{k}^{-}=(0, \ldots, 0) \otimes(\underbrace{0, \ldots, 0}_{n-k}, \underbrace{-1, \ldots,-1}_{k})
\end{array}
$$

Then the relevant K-types are

$$
\begin{align*}
& (\underbrace{1, \ldots, 1}_{a+k}, 0, \ldots, 0) \otimes(\underbrace{1 \ldots, 1}_{a}, 0, \ldots, 0), \\
& (\underbrace{1, \ldots, 1}_{k-b}, 0, \ldots, 0) \otimes(\underbrace{1, \ldots, 1}_{b}, 0, \ldots, 0), \\
& (\underbrace{2, \ldots, 2}_{b}, \underbrace{1, \ldots, 1}_{k}, 0, \ldots, 0) \otimes(0, \ldots, 0), \tag{14}\\
& (\underbrace{2, \ldots, 2}_{b}, \underbrace{1, \ldots, 1}_{k-2 b}, \underbrace{0, \ldots, 0}_{n-k+b}) \otimes(0, \ldots, 0) .
\end{align*}
$$

We get another set of K-types with the same properties by interchanging the factors.

K-type	M-type	(15)
$\left(\omega_{1}\right)$	1_{x}	
$\left(\omega_{1}+\omega_{2}\right)$	84_{x}	
$\left(\omega_{3}\right)$	35_{x},	
$\left(\omega_{7}\right)$	$8{ }_{z}$,	
$\left(3 \omega_{1}\right)$	50_{x}.	
The missing ones are		
K-type	M-type	
$\left(\omega_{1}+\omega_{8}\right)$	$8{ }_{z}+112_{z}$,	
$\left(2 \omega_{1}+\omega_{7}\right)$	$400{ }_{z}+\ldots$,	(16)
$\left(\omega_{2}+\omega_{3}\right)$	$300{ }_{x}+\ldots$,	(16)
$\left(\omega_{1}+\omega_{4}\right)$	$210_{x}+\ldots$,	
$\left(\omega_{5}\right)$	$210_{x}+\ldots$	

δ_{120}		
K-type	W-type	
$\left(\omega_{2}\right)$	$1_{a} \otimes 2$	
$\left(2 \omega_{2}\right)$	$21_{b}^{\prime} \otimes 11$	
$\left(\omega_{1}+\omega_{3}\right)$	$27_{a} \otimes 2$	
$\left(\omega_{8}\right)$	$1_{a} \otimes 11$	
$\left(\omega_{4}\right)$	$7_{a}^{\prime} \otimes 11$	
$\left(\omega_{1}+\omega_{7}\right)$	$7_{a}^{\prime} \otimes 2$	
$\left(\omega_{2}+\omega_{8}\right)$	$27_{a} \otimes 11+21_{b}^{\prime} \otimes 2+\ldots$	
$\left(\omega_{1}+\omega_{5}\right)$	$56_{a}^{\prime} \otimes 11$	
$\left(2 \omega_{1}+\omega_{8}\right)$	$56_{a}^{\prime} \otimes 2$	(18)
$\left(\omega_{1}+\omega_{2}+\omega_{7}\right)$	$35_{b} \otimes 11+\ldots$.	

Useful Identities

Let μ, μ_{1}, μ_{2} be genuine representations. The main point is that δ_{16} is the unique genuine representation of M, and it IS the irreducible K-module ω_{1}.

- As a W-representation,

$$
\operatorname{Hom}_{M}\left[\mu_{1}, \mu_{2}\right] \cong \operatorname{Hom}_{M}\left[\mu_{1}, \omega_{1}\right] \otimes \operatorname{Hom}_{M}\left[\mu_{2}, \omega_{1}\right] .
$$

Decompose LHS as a K-module, RHS as a W-module.

- For $\delta=\bar{\delta}_{120}$ or $\delta=\bar{\delta}_{135}$, (irreducible representation of M)

$$
\operatorname{Hom}_{M}\left[\delta, \omega_{1} \otimes \mu\right]=\operatorname{Re}_{W_{\delta}} \operatorname{Hom}_{M}\left[\omega_{1}, \mu\right] .
$$

Decompose $\omega_{1} \otimes \mu$ as a K-module, the RHS as a W_{δ}-module.

