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Abstract—A lower bound on the secrecy capacity of the
wiretap channel with state information available causally
at both the encoder and decoder is established. The lower
bound is shown to be strictly larger than that for the
noncausal case by Liu and Chen. Achievability is proved
using block Markov coding, Shannon strategy, and key
generation from common state information. The state
sequence available at the end of each block is used to
generate a key, which is used to enhance the transmission
rate of the confidential message in the following block.
An upper bound on the secrecy capacity when the state
is available noncausally at the encoder and decoder is
established and is shown to coincide with the lower bound
for several classes of wiretap channels with state.

I. INTRODUCTION

Consider the 2-receiver wiretap channel with state
depicted in Figure 1. The sender X wishes to send
a message to the legitimate receiver Y while keeping
it asymptotically secret from the eavesdropper Z. The
secrecy capacity for this channel can be defined under
various scenarios of state information availability at the
encoder and decoder. When the state information is not
available at either party, the problem reduces to the
classical wiretap channel for the channel averaged over
the state and the secrecy capacity is known [1]. When
the state is available only at the decoder, the problem
reduces to the wiretap channel with augmented receiver
(Y, S).
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Fig. 1: Wiretap channel with State

The interesting scenarios to consider therefore are
when the state information is available at the encoder
and may or may not be available at the decoder. This
raises the question of how the encoder and decoder can

make use of the state information to increase the secrecy
rate. In [2], Chen and Vinck established a lower bound
on the secrecy capacity when the state information is
available noncausally only at the encoder. The lower
bound is established using a combination of Gelfand–
Pinsker coding and Wyner wiretap coding. Subsequently,
Liu and Chen [3] used the same techniques to establish
a lower bound on the secrecy capacity when the state
information is available noncausally at both the encoder
and decoder. In a related direction, Khisti, Diggavi,
and Wornell [4] considered the problem of secret key
agreement, first studied in [5] and [6], for the wiretap
channel with state and established the secret key capacity
when the state is available causally or noncausally at the
encoder and decoder. The key is generated in two parts;
the first using a wiretap channel code while treating
the state sequence as a time-sharing sequence, and the
second part is generated from the state itself.

In this paper, we consider the wiretap channel with
state information available causally at the encoder and
decoder. We establish a lower bound that can be strictly
larger than the lower bound for the noncausal case in [3].
Our achievability scheme is quite different from the
scheme in [3]. We use block Markov coding, Shannon
strategy for channels with state [7], and secret key
agreement from state information, which builds on the
work in [4]. However, unlike [4], we are not directly
interested in the size of the secret key, but rather in
using the secret key generated from the state sequence
in one transmission block to increase the secrecy rate in
the following block. This block Markov scheme causes
additional information leakage through the correlation
between the secret key generated in a block and the
received sequences at the eavesdropper in subsequent
blocks. We show that this leakage is asymptotically
negligible. Although a similar block Markov coding
scheme was used in [8] to establish the secrecy capacity
of the degraded wiretap channel with rate limited secure
feedback, in their setup no information about the key is
leaked to the eavesdropper because the feedback link is
assumed to be secure.

We also establish an upper bound on the secrecy
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capacity of the wiretap channel with state information
available noncausally at the encoder and decoder. We
show that the upper bound coincides with the aforemen-
tioned lower bound for several classes of channels. Thus,
the secrecy capacity for these classes does not depend
on whether the state information is known causally or
noncausally at the encoder.

In the following section, we provide the needed defi-
nitions. In Section III, we present the lower bound. The
upper bound and secrecy capacity results are presented
in Section IV. The omitted proofs and other results are
given in the extended version posted online at ArXiv:
http://arxiv.org/abs/1001.2327.

II. PROBLEM DEFINITION

Consider a discrete memoryless wiretap channel (DM-
WTC) with discrete memoryless state (DM)
(X×S, p(y, z|x, s)p(s),Y,Z) consisting of a finite input
alphabet X , finite output alphabets Y , Z , a finite state
alphabet S, a collection of conditional pmfs p(y, z|x, s)
on Y ×Z , and a pmf p(s) on the state alphabet S. The
sender X wishes to send a confidential message M ∈
[1 : 2nR] to the receiver Y while keeping it secret from
the eavesdropper Z with either causal or noncausal state
information available at both the encoder and decoder.

A (2nR, n) code for the DM-WTC with causal state
information at the encoder and decoder consists of: (i)
a message set [1 : 2nR], (ii) an encoder that gener-
ates a symbol Xi(m) according to a conditional pmf
p(xi|m, si, xi−1) for i ∈ [1 : n]; and a decoder that
assigns an estimate M̂ or an error message to each
received sequence pair (yn, sn). We assume throughout
that the message M is uniformly distributed over the
message set. The probability of error is defined as
P

(n)
e = P{M̂ �= M}. The information leakage rate

at the eavesdropper Z, which measures the amount of
information about M that leaks out to the eavesdropper,
is defined as RL = 1

n
I(M ;Zn). A secrecy rate R is said

to be achievable if there exists a sequence of codes with
P

(n)
e → 0 and RL → 0 as n → ∞. The secrecy capacity

CS−CSI is the supremum of the set of achievable rates.
We also consider the case when the state information

is available noncausally at the encoder. The only change
in the above definitions is that the encoder now generates
a codeword Xn(m) according to the conditional pmf
p(xn|m, sn), i.e., the stochastic mapping is allowed to
depend on the entire state sequence instead of just the
past and present state sequence. The secrecy capacity for
this scenario is denoted by CS−NCSI.

The notation used in this paper will follow that of
El Gamal–Kim Lectures on Network Information The-
ory [9, Lecture 1].

III. LOWER BOUND

The main result in this paper is the following lower
bound on the secrecy capacity of the DM-WTC with
causal state information available causally at both the
encoder and decoder.

Theorem 1: The secrecy capacity of the DM-WTC
with state information available causally at the encoder
and decoder is lower bounded as

CS−CSI ≥ max{RS−CSI−1, RS−CSI−2}, where

RS−CSI−1 = max
p(v|s)p(x|v,s)

min {I(V ;Y |S) − I(V ;Z|S)

+H(S|Z), I(V ;Y |S)} ,

RS−CSI−2 = max
p(v)p(x|v,s)

min{H(S|Z, V ), I(V ;Y |S)}.

Note that if S = ∅, the expression above reduces to
the secrecy capacity for the wiretap channel. In [3], the
authors established the following lower bound for the
noncausal case

CS−NCSI

≥ max
p(u|s)p(x|u,s)

(I(U ;Y, S) − max{I(U ;Z), I(U ;S)})

= max
p(u|s)p(x|u,s)

min {I(U ;Y |S) − I(U ;Z|S)

+I(S;U |Z), I(U ;Y |S)} . (1)

Clearly, RS−CSI−1 is at least as large as this lower
bound. Hence, our lower bound is at least as large as
this lower bound (1). In the extended version of this
paper, we show that (1) is as large as RS−CSI−1. To show
that RS−CSI−2 can be strictly larger than RS−CSI−1,
consider the channel with X ,Y,Z,S ∈ {0, 1} and
p(y, z|x, s) = p(y, z|x) and p(y, z|x) = p(z|x)p(y|z),
where p(z|x) = 1 for x = z and 0 otherwise, and
p(y|z) = 0.9 for y = z and 0.1 otherwise. The state S is
an i.i.d process with H(S) = 1−H(0.1). In the extended
version, we show that RS−CSI−2 = 1 − H(0.1) >
RS−CSI−1.

Proof of Theorem 1

Proof of Theorem 1 follows by proving the achievabil-
ity of RS−CSI−1 and RS−CSI−2 separately. The proof of
achievability for RS−CSI−1 is split into two cases (Cases
1 and 2) while RS−CSI−2 is proved in Case 3.

Using the functional representation lemma [10], we
can show that it suffices to perform the maximization
for RS−CSI−1 over p(u), p(x|v, s), and functions v(u, s).
Thus, we prove achievability for the equivalent charac-
terization RS−CSI−1

RS−CSI−1 ≥ max
p(u),v(u,s),p(x|v,s)

min{I(U ;Y, S)

− I(U ;Z, S) + H(S|Z), I(U ;Y, S)}. (2)

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

2549



Case 1: RS−CSI−1 with I(U ;Y, S) > I(U ;Z, S)

Codebook generation: Split message Mj into two
independent messages Mj0 ∈ [1 : 2nR0 ] and Mj1 ∈ [1 :
2nR1 ], thus R = R0 + R1. Let R̃ ≥ R. The codebook
generation consists of two steps.

Message codeword generation: We randomly and in-
dependently generate 2nR̃ sequences un(l), l ∈ [1 :

2nR̃], each according to
∏n

i=1 p(ui) and partition them
into 2nR0 equal-size bins C(m0), m0 ∈ [1 : 2nR0 ].
Partition the sequences within each bin C(m0) into 2nRK

equal size sub-bins, C(m0,m1), m1 ∈ [1 : 2nR1 ].
Key codebook generation: We randomly and uniformly

partition the set of sn sequences into 2nRK bins B(k),
k ∈ [1 : 2nRK ].

Encoding: We send b − 1 messages over b n-
transmission blocks. In the first block, we randomly
select a un(L) sequence. The encoder then computes
vi = v(ui(L), si), i ∈ [1 : n], and transmits a randomly
generated sequence Xn according to

∏n

i=1 p(xi|si, vi).
At the end of the first block, the encoder and decoder
declare k1 ∈ [1 : 2nRK ] such that s(1) ∈ B(k1) as the
key to be used in block 2.

Encoding in block j ∈ [2 : b] proceeds as follows.
To send message mj = (mj0,mj1) and given key kj−1,
the encoder computes m′

j1 = mj1 ⊕ kj−1. To ensure
secrecy, we must have R1 ≤ RK [11]. The encoder
then selects a random sequence un(L) ∈ C(mj0, m

′
j1).

The encoder then uses Shannon strategy as depicted in
Figure 2. At time i ∈ [(j − 1)n + 1 : jn], it computes
vi = v(ui(L), si), and transmits Xi ∼ p(xi|si, vi).

Mj

Mj1

Mj0

M ′

j1

Kj−1

Ui

Vi
Xi

p(s)

v(u, s) p(x|v, s)

Si

Si

Fig. 2: Encoding in block j.

Decoding and analysis of the probability of error: At
the end of block j, the decoder declares that l̂ is sent if it
is the unique index such that (un(l̂),Y(j),S(j)) ∈ T

(n)
ε ,

otherwise it declares an error. It then finds the indices
(m̂j0, m̂

′
j1) such that un(l) ∈ C(m̂j0, m̂

′
j1). Finally, it

recovers m̂j1 by computing m̂j1 = m̂′
j1 ⊕ kj−1.

To analyze the error probability, let ε′′ > ε′ > ε > 0,
and define the following events for j ∈ [2 : b]:

E(j) = {M̂j �= Mj},

E1(j) = {(Un(L),S(j)) /∈ T n
ε′ },

E2(j) = {(Un(L),S(j),Y(j)) /∈ T n
ε′′},

E3(j) = {(Un(l̂),S(j),Y(j)) ∈ T n
ε′′ for some l̂ �= L}.

The probability of error is upper bounded as

P(E) = P{∪b
j=2E(j)} ≤

b∑

j=2

P(E(j)).

Each probability of error term can be upper bounded as

P(E(j)) ≤ P(E1(j)) + P(E2(j) ∩ Ec
1(j))

+ P(E3(j) ∩ Ec
2(j)).

Now, P(E1(j)) → 0 as n → ∞ by Law of Large
Numbers (LLN) since P{(Un(L) ∈ T

(n)
ε )} → 1 as

n → ∞ and S(j) ∼
∏n

i=1 p(si) =
∏n

i=1 p(si|ui)
by independence. The term P(E2(j) ∩ Ec

1(j)) → 0
as n → ∞ by LLN since (Un(L),S(j) ∈ T n

e′ and
Y n ∼

∏n

i=1 p(yi|ui, si). For the last term, consider

P(E3(j) ∩ Ec
2(j)) =

∑

l

p(l) P(E3(j) ∩ Ec
2(j)|L = l).

Note that L is independent of the transmission code-
book sequences Un and the current state sequence
S(j). Therefore, by the packing lemma [9, Lecture
3], P(E3(j) ∩ Ec

2(j)|L = l) → 0 as n → ∞ if
R̃ < I(U ;Y, S) − δ(ε′′). Hence, P(E3(j) ∩ Ec

2(j)) → 0
as n → ∞ if R̃ < I(U ;Y, S) − δ(ε′′).

Analysis of the information leakage rate: Note that
Mj0 is transmitted using Wyner wiretap coding. Hence,
it can be kept secret from eavesdropper if I(U ;Y, S) −
I(U ;Z, S) > 0. The new part of the proof is to show
that Mj1 can be kept secret from the eavesdropper. This
involves showing that the eavesdropper has negligible
information about Kj−1, which is correlated with its
received sequences in blocks j − 1 to b. We show that
the eavesdropper has negligible information about Kj−1

provided RK < H(S|Z). We will need the following.
Proposition 1: If RK < H(S|Z) − 4δ(ε) and R̃ ≥

I(U ;Z, S), then the following holds for every j ∈ [1 : b].
1) H(Kj |C) ≥ n(RK − δ(ε)).
2) I(Kj ;Z(j)|C) ≤ 2nδ(ε).
3) I(Kj ;Z

j |C) ≤ nδ′(ε), where δ(ε) → 0 and
δ′(ε) → 0 as ε → 0.

The proof is given in the extended version.
We are now ready to upper bound the leakage rate

averaged over codes. Consider

I(M2, M3, . . . , Mb;Z
b|C) =

b∑

j=2

I(Mj ;Z
b|C, M b

j+1)

(a)

≤
b∑

j=2

I(Mj ;Z
b|C,S(j), M b

j+1)

(b)
=

b∑

j=2

I(Mj ;Z
j |C,S(j)),
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where (a) follows by the independence of Mj and
(S(j),M b

j+1), and (b) follows by the Markov Chain
relation (Zb

j+1,M
b
j+1, C) → (Zj ,S(j), C) → (Mj , C).

Hence, it suffices to upper bound each individual term
I(Mj ;Z

j |C,S(j)). Consider

I(Mj ;Z
j |C,S(j)) = I(Mj0,Mj1;Z

j |C,S(j))

= I(Mj0,Mj1;Z
j−1|C,S(j))

+ I(Mj0,Mj1;Z(j)|C,S(j),Zj−1).

Note that the first term is equal to zero by the indepen-
dence of Mj and past transmissions, the codebook, and
state sequence. For the second term, we have

I(Mj0,Mj1;Z(j)|C,S(j),Zj−1)

= I(Mj0;Z(j)|C,S(j),Zj−1)

+ I(Mj1;Z(j)|C,Mj0,S(j),Zj−1).

Consider the first term

I(Mj0;Z(j)|C,S(j),Zj−1)

= I(Mj0, L;Z(j)|C,S(j),Zj−1)

− I(L;Z(j)|C,Mj0,S(j),Zj−1)

≤ I(Un;Z(j)|C,S(j),Zj−1) − H(L|C,Mj0,S(j),Zj−1)

+ H(L|Z(j),Mj0,S(j))

≤
n∑

i=1

(H(Zi(j)|C,Si(j)) − H(Zi(j)|C, Ui,Si(j)))

−H(L|C,Mj0,S(j),Zj−1) + H(L|Z(j),Mj0,S(j)
)

(a)

≤ nI(U ;Z|S) − H(L|C,Mj0,S(j),Zj−1)

+ H(L|Mj0,S(j),Z(j))

(b)

≤ nI(U ;Z|S) − H(L|C,Mj0,S(j),Zj−1)

+ n(R̃ − R0 − I(U ;Z, S) + δ(ε))

(c)
= n(R̃ − R0) − H(L|C,Mj0,S(j),Zj−1) + nδ(ε)

= n(R̃ − R0) − H(Mj1 ⊕ Kj−1|C,Mj0,S(j),Zj−1)

− H(L|C,Mj0,S(j),Zj−1,Mj1 ⊕ Kj−1) + nδ(ε)

≤ n(R̃ − R0) − H(Mj1 ⊕ Kj−1|C,

Mj0,S(j),Kj−1,Z
j−1) − n(R̃ − R0 − RK) + nδ(ε)

(d)
= nRK − H(Mj1 ⊕ Kj−1|C,Mj0,S(j),Kj−1) + nδ(ε)

= nRK − H(Mj1|C,Mj0,S(j),Kj−1) + nδ(ε) = nδ(ε),

where (a) follows from the fact that
H(Zi(j)|C,Si(j)) ≤ H(Zi(j)|Si(j)) = H(Z|S)
and H(Zi(j)|C, Ui,Si(j)) = H(Z|U, S). Step (b)
follows by Lemma 1 in [12] which requires that (i)
P{(Un(L),S(j),Z(j)) ∈ T

(n)
ε } → 1 as n → ∞, and

(ii) R̃ − R0 ≥ I(U ;Z, S); where (i) can be shown

using the same steps as in the analysis of probability
of error. Step (c) follows by the independence of
U and S. Step (d) follows from the Markov Chain
relation (Zj−1, Mj0,S(j)) → (Kj−1, Mj0,S(j)) →
(Mj1 ⊕ Kj−1, Mj0,S(j)). The last step follows by the
fact that Mj1 is independent of (C, Mj0,S(j), Kj−1)
and uniformly distributed over [1 : 2nRK ]. Next,
consider the second term

I(Mj1;Z(j)|C, Mj0,S(j),Zj−1)

≤ I(Un;Z(j)|C, Mj0,S(j),Zj−1)

− H(L|C, Mj0, Mj1,S(j),Zj−1)

+ H(L|C, Mj0, Mj1,S(j),Zj)

(a)

≤ nI(U ;Z|S) − H(L|C, Mj0, Mj1,S(j),Zj−1)

+ H(L|C, Mj0, Mj1,S(j),Zj)

≤ nI(U ;Z|S) − H(L|C, Mj0, Mj1,S(j),Zj−1)

+ H(L|Mj0,S(j),Z(j))

(b)

≤ nI(U ;Z|S) − H(L|C, Mj0, Mj1,S(j),Zj−1)

+ n(R̃ − R0) − nI(U ;Z, S) + nδ(ε)

= n(R̃ − R0) − H(L|C, Mj0, Mj1,S(j),Zj−1) + nδ(ε),

where (a) follows from the same steps used in bounding
I(Mj0;Z(j)|C,S(j),Zj−1); (b) follows from Lemma 1
in [12]. Next consider

H(L|C, Mj0, Mj1,S(j),Zj−1)

= H(Mj1 ⊕ Kj−1|C, Mj0, Mj1,S(j),Zj−1)

+ H(L|C, Mj0, Mj1, Mj1 ⊕ Kj−1,S(j),Zj−1)

= H(Kj−1|C, Mj0, Mj1,S(j),Zj−1) + n(R̃ − R0 − RK)

= H(Kj−1|C,Zj−1) + n(R̃ − R0 − RK).

From Proposition 1, H(Kj−1|C,Zj−1) ≥ n(RK −
δ(ε) − δ′(ε)), which implies that

I(Mj1;Z(j)|C, Mj0,S(j),Zj−1) ≤ n(δ′(ε) + 2δ(ε)).

This completes the analysis of information leakage rate.
Combining the rate constraints and performing

Fourier-Motzkin elimination gives the bounds in (2).

Case 2: RS−CSI−1 with I(U ;Y, S) ≤ I(U ;Z, S)

In this case, only the key from the previous block is
used to encrypt the message transmitted to the eaves-
dropper. Part of the key is also used to generate uncer-
tainty at the eavesdropper about the codeword sent, to
ensure that a sufficiently large secret key rate is achieved
in the current block. The proof is given in the extended
version of the paper.
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Case 3: RS−CSI−2

Achievability of RS−CSI−2 uses the same techniques
as for Case 2 of RS−CSI−1. However, here the key
generated in a block is used only to encrypt the message
in the following block. The eavesdropper may be able
to decode the codeword transmitted in a block, which
would reduce the key rate generated at the end of that
block. This is compensated for by the fact that the entire
key is used for encryption.

IV. UPPER BOUND AND SECRECY CAPACITIES

We establish the following upper bound on the secrecy
capacity of the wiretap channel with noncausal state
information available at both the encoder and decoder
(which holds also for the causal case).

Theorem 2: The following is an upper bound to the
secrecy capacity of the DM-WTC with state noncausally
available at the encoder and decoder

CS−NCSI ≤min {I(V1;Y |U, S) − I(V1;Z|U, S)

+H(S|Z,U), I(V2;Y |S)} .

for some U, V1 and V2 such that p(u, v1, v2, x|s) =
p(u|s)p(v1|u, s)p(v2|v1, s)p(x|v2, s).

The achievable rate RS−CSI−1 in Theorem 1 coincide
with Theorem 2 when I(U ;Y |S) ≥ I(U ;Z|S) for U
such that (U, S) → (X,S) → (Y,Z) form a Markov
chain, i.e., when Y is less noisy than Z for every state
s ∈ S [13].

Theorem 3: The secrecy capacity for the DM-WTC
with the state information available causally or non-
causally at the encoder and decoder when Y is less noisy
than Z is

CS−CSI = CS−NCSI = max
p(x|s)

min{I(X;Y |S)

− I(X;Z|S) + H(S|Z), I(X;Y |S)}.

Setting p(y, z|x, s) = p(y, z|x) and considering the case
when Z is a degraded version of Y , Theorem 3 special-
izes to the secrecy capacity for the wiretap channel with
a key [14]

CS−CSI = CS−NCSI

= max
p(x)

min{I(X;Y ) − I(X;Z) + H(S), I(X;Y )}.

In addition, RS−CSI−2 in Theorem 1 and Theorem 2
coincide for the following.

Theorem 4: The secrecy capacity for the DM-WTC
with the state information available causally or non-
causally at the encoder and decoder when p(y, z|x, s) =
p(y, z|x) and Z is less noisy than Y is

CS−CSI = CS−NCSI = max
p(x)

min{H(S), I(X;Y )}.

Proofs of Theorems 2, 3, 4 and other secrecy capacity
results are given in the extended version.

V. CONCLUSION

We established bounds on the secrecy capacity of the
wiretap channel with state information causally avail-
able at the encoder and decoder. We showed that our
lower bound can be strictly larger than the best known
lower bound for the noncausal state information case.
The upper bound holds when the state information is
available noncausally at the encoder and decoder. We
showed that the bounds are tight for several classes of
wiretap channels.

As we have seen, the secrecy capacity for several
special classes of the wiretap channels with state avail-
able at both the encoder and the legitimate receiver does
not depend on whether the state is available causally
or noncausally. An interesting question posed by an
anonymous reviewer is whether this observation holds
in general for our setup.
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