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JUSTIN TATCH MOORE

Abstract. The purpose of this article is to connect the notion of
the amenability of a discrete group with a new form of structural
Ramsey theory. The Ramsey theoretic reformulation of amenabil-
ity constitutes a considerable weakening of the Følner criterion. As
a by-product, it will be shown that in any non amenable group G,
there is a subset E of G such that no finitely additive probability
measure on G measures all translates of E equally. The analysis of
discrete groups will be generalized to the setting of automorphism
groups of ultrahomogeneous structures.

1. Introduction

A group G is amenable1 if there is a finitely additive, translation
invariant probability measure defined on all subsets of G. This no-
tion was isolated by von Neumann from the Banach-Tarski paradox.
Since then it has played an important role in a diverse cross section of
mathematics. It has a large number of seemingly different equivalent
formulations (see [17], [23]); two of the most celebrated are:

Theorem 1.1. [20] [21] A group G is amenable if and only if there do
not exist elements gi (i < k) of G and a partition of G into sets Ai

(i < k) such that, for some i0 < i, both {giAi : i < i0} and {giAi : i0 ≤
i < k} are partitions of G.
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Theorem 1.2. [5] (see also [11]) A group G is amenable if and only
if for every finite A ⊆ G and every ε > 0 there is a finite B ⊆ G such
that (letting 4 denote symmetric difference)∑

a∈A

|(aB)4B| ≤ ε|B|

The set B which satisfies the conclusion of this theorem is said to be
ε-Følner with respect to A; the assertion that such sets exist for each
ε > 0 is known as the Følner criterion.

One of the main results of the present article is to formulate a weaker
criterion for amenability than the Følner criterion. If A is a set, let
Pr(A) denote the collection of all finitely additive probability measures
on A. If G is a group, then the operation on G is extended to `1(G)
affinely:

µν(A) =
∑
xy∈A

µ({x})ν({y})

(Here and throughout we identify G with both a subset of `1(G) and
a subset of Pr(G) by regarding its elements as point masses.) Observe
that gν(E) = ν(g−1E).

If A and B are finite subsets of G and ε > 0, then B is ε-Ramsey
with respect to A if whenever E ⊆ B, there is a ν in Pr(B) such that

• Pr(A)ν ⊆ Pr(B) and
• |µν(E)− µ′ν(E)| ≤ ε for all µ and µ′ in Pr(A).

The definition is unchanged if E is allowed to be an arbitrary subset
of G (in particular if B is ε-Ramsey with respect to A, then so is
any finite superset of B). Also, one obtains an equivalent statement
if µ ranges over the elements of A — these are the extreme points of
Pr(A). Observe that if ν is a finitely supported probability measure
on G, then Pr(A)ν can be regarded as a copy of Pr(A). Thus B is
ε-Ramsey with respect to A if whenever we induce an affine coloring of
Pr(B) by assigning the values 0 and 1 to the elements of B, there is a
copy of Pr(A) on which the coloring is ε-monochromatic.

Theorem 1.3. Let G be a group. The following are equivalent:

(1) For every E ⊆ G and every finite A ⊆ G, there is a µ in Pr(G)
such that µ(gE) = µ(E) for all g in A.

(2) For every finite A ⊆ G, there is a finite B which is 1
2
-Ramsey

with respect to A.
(3) For every finite A ⊆ G, there is a finite B which is 0-Ramsey

with respect to A.
(4) G is amenable.
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The equivalence of (1) and (4) was unexpected and while they are
purely global statements about G involving its typically infinite sub-
sets, the proof crucially employs the finitary interpolation provided by
(2). Also notice that the only examples of 0-Følner sets are the trivial
ones: a finite group is a 0-Følner set in itself. Thus (3) represents a
new phenomenon for which the Følner criterion provides no analog.
The proof of Theorem 1.3 will also provide a quantitative relationship
between ε-Ramsey sets and ε-Følner sets; this is the content of Section
4.

Let us say that a subset E of a group G is invariantly measurable if
there is a µ in Pr(G) such that µ(gE) = µ(E) for all g in G. By the
above theorem, a group is amenable exactly when all of its subsets are
invariantly measurable. That the invariant measurability of sets can
be witnessed by a single measure turns out not to be a phenomenon
present in arbitrary groups.

Theorem 1.4. There are two invariantly measurable subsets of F2

which can not be simultaneously measured invariantly.

Theorem 1.3 tells us that if a group G is not amenable, then there
is a single set E ⊆ G which can not be measured invariantly. It is
natural to ask to what extent E can be specified by a finite amount of
information. Let A be a fixed finite subset of G. If E ⊆ G, define

X A
E = {Eg−1 ∩ A : g ∈ G}.

(When A is clear from the context, the superscript will be suppressed.)
Thus if A is a ball about the identity, Eg−1 ∩ A is a “picture” of E
centered at g where the scope of the image is specified by A. The set
XE is then the collection of all such pictures of E taken from different
vantage points in G. If Y is a collection of subsets of A, then we say
that Y is realized in G if Y = XE for some E ⊆ G.

A collection Y of subsets of a finite set A is ε-balanced if there is a
probability measure µ on Y such that

|µ({Y ∈ Y : a ∈ Y })− µ({Y ∈ Y : b ∈ Y })| ≤ ε

whenever a and b are in A. Balanced will be taken to mean 0-balanced.
It follows from the Hahn-Banach Separation Theorem that a collec-
tion Y is unbalanced if and only if there is an f : A → R such that∑

a∈A f(a) = 0 and for every Y in Y ,
∑

a∈Y f(a) > 0.
We will prove the following analog of Theorem 4.2 of [1].

Theorem 1.5. For a group G, the following are equivalent:

(1) G is non amenable.
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(2) There is a finite A ⊆ G and an unbalanced collection Y of
subsets of A which is realized in G.

(3) There is a finite A ⊆ G for which there is no finite B which is
0-Ramsey with respect to A.

Thus in order to establish the non amenability of a group, it is suf-
ficient to realize a subcollection of

Yf = {Y ⊆ A :
∑
a∈Y

f(a) > 0}

for some f : A → R such that
∑

a∈A f(a) = 0. Balanced sets have
been studied in game theory (e.g. [18]), although the focus has been
on minimal balanced collections rather than the maximal unbalanced
collections, which are most relevant to the present discussion.

The above theorems concern the amenability of discrete groups.
The amenability of a topological group G can be formulated as fol-
lows: whenever G acts continuously on a compact space K, K sup-
ports an Borel probability measure which is preserved by the action of
G. A strengthening of amenability in this context is that of extreme
amenability : every continuous action of G on a compact space has a
fixed point. In [9], Kechris, Pestov, and Todorcevic discovered a very
general correspondence which equates the extreme amenability of the
automorphism group of an ordered Fräıssé structure with the Ramsey
Property of its finite substructures.

Theorem 1.6. [9] Let G be a closed subgroup of S∞. The following
are equivalent:

(1) G is extremely amenable.
(2) G = Aut(G) where G is a Fräıssé structure with an order rela-

tion and the finite substructures of G have the Ramsey Property.

At the time of [9], it was unclear whether there was an analogous
connection between amenability and Ramsey theory. In Section 7 it
will be shown that such an analog does exist.

The notation will be mostly standard. Following a set-theoretic con-
vention, I will sometimes abbreviate {0, . . . , k − 1} with k. The set of
natural numbers is taken to include 0 and all counting will begin at 0.
The letters i, j, k, l, m, n will be used to denote natural numbers unless
otherwise stated. If H ⊆ G, then we will identify Pr(H) with the set
of those µ in Pr(G) such that µ(H) = 1.

2. A Ramsey theoretic criterion for amenability

In this section we will prove most of Theorem 1.3, deferring the
equivalence of amenability with (3) to the next section. Before we
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begin, it will be necessary to extend the evaluation map (ν, E) 7→ ν(E)
to a bilinear map on Pr(G)× `∞(G) by integration. We will only need
this for finitely supported ν in which case

ν(f) =
∑
g∈B

ν({g})f(g)

We will define f(ν) = ν(f). Observe that the map (ν, f) 7→ ν(f) is
bilinear.

When proving the theorem, it will be natural to further divide the
task as follows.

Theorem 2.1. Let G be a group and H ⊆ G be closed under products
and contain the identity of G. The following are equivalent:

(1) For every E ⊆ G and every finite A ⊆ H, there is a µ in Pr(H)
such that µ(g−1E) = µ(E) for every g ∈ A.

(2) For every finite A ⊆ H, there is a finite B ⊆ H such that B is
1
2
-Ramsey with respect to A.

(3) There is a positive q < 1 such that for every finite A ⊆ H, there
is a finite B ⊆ H such that if f : B → [0, 1], then there is a ν
in Pr(B) such that for all g, g′ ∈ A, gν is in Pr(B) and

|gν(f)− g′ν(f)| ≤ q.

(4) For every finite A ⊆ H and ε > 0, there is a finite B ⊆ H such
that if f : B → [0, 1] then there is a ν in Pr(B) such that for
all g, g′ ∈ A, gν is in Pr(B) and

|gν(f)− g′ν(f)| < ε.

(5) There is a µ ∈ Pr(H) such that for every E ⊆ G, µ(g−1E) =
µ(E) whenever g is in H.

Remark 2.2. The above generality allows H to be the positive elements
of the group with respect to some generating set. This will be useful
below when reformulating the amenability problem for Thompson’s
group F .

Proof. Observe that trivially (5⇒1). It is therefore sufficient to prove
(1⇒2⇒3⇒4⇒5).

(1⇒2): Suppose that (2) is false for some finite A ⊆ H. I claim there
is a set E ⊆ H such that for every µ ∈ Pr(H), there are g, h ∈ A such
that |µ(g−1E)− µ(h−1E)| > 1

2
— a condition which implies the failure

of (1). By replacing G by a subgroup if necessary, we may assume that
G is generated by A and in particular that G is countable. Let Bn

(n < ∞) be an increasing sequence of finite sets covering H. Define Tn

to be the collection of all pairs (n, E) where E is a subset of Bn which



6 JUSTIN TATCH MOORE

witness that Bn is not 1
2
-Ramsey with respect to A. Let T =

⋃
n Tn

and if (n, E) and (n′, E ′) are in T , define (n, E) <T (n′, E ′) if n < n′

and E = E ′ ∩ Bn. Observe that if (n′, E ′) is in Tn′ and n < n′, then
(n, E ′ ∩Bn) is in Tn. Thus (T, <T ) is an infinite finitely branching tree
and hence there is an E ⊆ H such that (n, E ∩Bn) is in Tn for each n.
If there were a measure ν such that |ν(g−1E) − ν(h−1E)| < 1

2
for all

g, h ∈ A, there would exist such a ν which has a finite support S. But
this would be a contradiction since then S∪ (A ·S) would be contained
in some Bn and would witness that (n, E ∩Bn) was not in Tn.

(2⇒3): Let A ⊆ H be a given finite set and let B ⊆ H be finite and
1
2
-Ramsey with respect to A. It suffices to prove that B satisfies the

conclusion of (3) with q = 3/4. Let f : B → [0, 1] be given and define
E = {b ∈ B : f(b) ≥ 1/2}. By assumption, there is a ν in Pr(B) such
that Pr(A)ν ⊆ Pr(B) and for all g, g′ ∈ A, |gν(E) − g′ν(E)| ≤ 1/2.
Also

0 ≤ min(gν(f − 1

2
χE), g′ν(f − 1

2
χE))

max(gν(f − 1

2
χE), g′ν(f − 1

2
χE)) ≤ 1/2

Notice that if 0 ≤ a, b ≤ 1/2, then |a − b| ≤ 1/2. Therefore for all
g, g′ ∈ A

|gν(f)− g′ν(f)| =

|1
2
(gν(E)− g′ν(E)) + gν(f − 1

2
χE)− g′ν(f − 1

2
χE)|

≤ 1

2
|gν(E)− g′ν(E)|+ |gν(f − 1

2
χE)− g′ν(f − 1

2
χE)|

≤ 1/4 + 1/2.

(3⇒4): Let A ⊆ H and ε > 0 be given. Let n be such that qn < ε
and construct a sequence Bi (i ≤ n) such that, setting B0 = A, Bi+1

satisfies the conclusion of (3) with respect to Bi. Construct νi (i <
n) by downward recursion such that Pr(Bi)νi ⊆ Pr(Bi+1) and for all
g, g′ ∈ Bi,

|gνi · · · νn−1(f)− g′νi · · · νn−1(f)| ≤ qn−i

This is achieved by applying (3) to the function fi defined on Bi+1 by

fn−1 = f

fi(g) = (1/q)n−i−1
(
gνi+1 · · · νn−1(f)− min

g′∈Bi+1

g′νi+1 · · · νn−1(f)
)

if i < n − 1. Our inductive hypothesis implies that the range of fi is
contained within [0, 1]. Therefore there is a νi such that Pr(Bi)νi ⊆
Pr(Bi+1) and

|gνi(fi)− g′νi(fi)| ≤ q
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holds for every g, g′ ∈ Bi and thus

(1/q)n−i−1|gνi · · · νn−1(f)− g′νi · · · νn−1(f)|

= (1/q)n−i−1|f(gνi · · · νn−1)− f(gνi · · · νn−1)|

= |fi(gνi)− fi(g
′νi)| = |gνi(fi)− g′νi(fi)| ≤ q.

Multiplying both sides of the inequality by qn−i−1, we see that νi sat-
isfies the desired inequality. This completes the recursion. If ν =
ν0 · · · νn−1, then for all g, g′ in A = B0 we have that

|gν(f)− g′ν(f)| ≤ qn < ε.

(4⇒5): Observe that, by compactness, it is sufficient to prove that
for every ε > 0, every finite list Ei (i < n) of subsets of H, and gi

(i < n) in H, there is a finitely supported µ ∈ Pr(H) such that for all
i < n

|µ(g−1
i Ei)− µ(Ei)| < ε.

Set B0 = {eG} ∪ {gi : i < n} and construct a sequence Bi (i ≤ n)
such that Bi+1 satisfies (4) with Bi in place of A and ε/2 in place of
ε. Inductively construct νi (i < n) by downward recursion on i. If
νj (i < j < n) has been constructed, let νi ∈ Pr(Bi+1) be such that
Pr(Bi)νi ⊆ Pr(Bi+1) and

|µνi · · · νn−1(Ei)− µ′νi · · · νn−1(Ei)| < ε/2

for all µ, µ′ ∈ Pr(Bi). Set µ = ν0 · · · νn−1. If i < n, then since ν0 · · · νi−1

and g−1
i ν0 · · · νi−1 are in Pr(Bi),

|giµ(Ei)− νi · · · νn−1(Ei)| < ε/2

|µ(Ei)− νi · · · νn−1(Ei)| < ε/2

and therefore |µ(g−1
i Ei)− µ(Ei)| < ε. �

I will finish this section with the following basic example, which
shows that existence of 0-Ramsey sets for Z is just the well known
Pigeon Hole Principle. Suppose that A ⊆ Z is finite; without loss of
generality, A = {0, . . . ,m − 1}. Let B = {1, . . . , 2m + m + 1} and
suppose that E ⊆ B. Notice that {A ∩ (E − i) : i ∈ Z} has at most
2m elements and therefore there are 1 ≤ i < j ≤ 2m + 1 such that for
all 0 ≤ k < m, k + i is in E if and only if k + j is in E. Let ν be the
uniform measure on the interval {i, . . . , j − 1}. By our choice of i and
j,

|E ∩ {i, . . . , j − 1}| = |E ∩ {i + k, . . . , j − 1 + k}|
and thus ν(E) = ν(E − k) for all 0 ≤ k < m.
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3. The amenability problem for Thompson’s group F

Perhaps the best known problem concerning the amenability of a
specific group asks whether Richard Thompson’s group F is amenable.
In this section I will discuss how this problem reduces to a natural
finite Ramsey-theoretic statement. I will only briefly review the termi-
nology and basic facts about Thompson’s group; the reader is referred
to [2] and [10] for further background and justification for some of the
statements made below.

Thompson’s group F is the group with generators xi (i < ∞) sat-
isfying the relations x−1

i xnxi = xn+1 whenever i < n. The positive
elements of F are the products of these generators. It is easy to see
that x0 and x1 already generate the group and it is well known (see
[2]) that every element of F can be written as a fraction of positive
elements. Thus by Ore’s theorem (see [17]), F is amenable if and only
if its action on its positive elements is amenable.

The action of F on its positive elements can be described as follows.
Let (T, ̂) denote the free binary system on one generator. The ele-
ments of T are just formal sums — with associating parentheses —
of some number of 1’s. They can naturally be thought of as rooted
ordered binary trees in the sense of [2] and the following partial action
of F on T

x0 · ((ÂB)̂C) = Â(B̂C)

x1 · (Ŝ((ÂB)̂C)) = Ŝ(Â(B̂C))

is equivalent to the partial action of F on its positive elements (see
[10]).

By unraveling the definitions, one can reformulate the amenability
of F in the following way. Let Tn denote those elements of T with
n leafs and let An denote the set of probability measures on Tn. A
copy of Tm in Tn is a collection of the form {T (U1, . . . , Um) : T ∈ Tm}
where Ui (1 ≤ i ≤ m) is an ordered sequence of elements of T with a
total of n leafs. Here T (U1, . . . , Um) denotes the result of substituting
Ui for the ith occurrence of the generator in T . A copy of Tm in An is
a convex combination of copies of Tm in Tn (formally we take a convex
combination of maps of the form T 7→ T (U1, . . . , Um) to obtain a map
from Tm into An and then collect the range of this map).

Theorem 3.1. The following are equivalent:

(1) Thompson’s group F is amenable.
(2) For every m there is an n such that if f : Tn → {0, 1}, then

there is a copy of Tm in An on which f is constant.
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In order to see the relationship to Ramsey’s theorem, observe that
Ramsey’s theorem can be formulated in the following way. If n and k
are natural numbers, let n[k] denote all partitions of {1, . . . , n+1} into
k + 1 intervals. Notice that there are canonical bijections between this
set and the k element subsets of {1, . . . , n} and also with sequences of
natural numbers of length k +1 which add to n+1. If m ≥ k and X is
in n[m], let X [k] denote all elements of n[k] which are refined by X. In
this language, Ramsey’s theorem asserts that for every m and k there
is an n such that if n[k] is colored red and blue, there is an X in n[m]

such that X [k] is monochromatic.
Let n[[k]] denote all families X of intervals in {1, . . . , n+1} such that:

• the ⊆-minimal elements of X are the singletons of {1, . . . , n+1}
and the ⊆-maximal elements of X are an element of n[k].

• any element of X with more than one element is the union of
two other elements of X.

• if x, y are in X, then x ⊆ y, y ⊆ x, or x ∩ y = ∅.
Thus an element of n[[k]] is the result of starting with {{1}, . . . , {n+1}}
and iteratively joining consecutive pairs of intervals until one obtains
a partition of {1, . . . , n + 1} into k + 1 intervals. There is a canonical
correspondence between n[[k]] and sequences from T of length k + 1
where the total number of leaves is n + 1.

The amenability of Thompson’s group is now the statement that
for every m and k there is an n such that if n[[k]] is colored with red
and blue, there is a probability measure Ξ on n[[m]] such that Ξ[[k]] is
monochromatic. (As above, Ξ is regarded as a formal convex combi-
nation of elements X of n[[m]] and Ξ[[k]] consists of the corresponding
convex combinations of the elements of the X [[k]]’s.) Observe that the
case k = 1 is the strongest assertion and it is, modulo the definitions,
the reformulation given in Theorem 3.1.

4. Comparing the Ramsey and Følner functions

The purpose of this section is to define the Ramsey function of a
finitely generated group with respect to a finite generating set and
relate it to the Følner function which has been studied in, e.g., [3], [4],
[8]. The main result of this section is due to Henry Towsner, answering
a question in an early draft of this paper: The Følner function for
a given group and generating set can be obtained from the Ramsey
function by primitive recursion. It is included with his kind permission.

We will now turn to the definitions of the Følner and Ramsey func-
tions. Let G be a group with a fixed finite generating set S (which is
not required to be closed under inversion). Let Bn denote the elements
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of G whose distance from the identity is at most n in the word metric.
Define the following functions:

• FølG,S(k) is the minimum cardinality of a 1/k-Følner set with
respect to the generating set S.

• FG,S(m, ε) is the minimum n such that there is a ν in Pr(Bn)
such that Pr(Bm)ν ⊆ Pr(Bn) and

∑
g∈Bm

||gν − ν||`1 < ε.

• RG,S(m, ε) is the minimum n such that Bn is ε-Ramsey with
respect to Bm.

• R̃G,S(m, ε, l) is the minimum n such that if fi (i < l) is a se-
quence of functions from Bn into [0, 1], then there is a ν ∈
Pr(Bn) such that Pr(Bm)ν ⊆ Pr(Bn) and such that for every
g, g′ ∈ Bm and i < l,

|gν(fi)− g′ν(fi)| < ε

Set RG,S(m) = RG,S(m, 1/2) and R̃G,S(m, ε) = R̃G,S(m, ε, 1). The defi-
nition of FG,S is formulated so that it is a triviality that RG,S(m, k) ≤
R̃G,S(m, k) ≤ FG,S(m, k) holds for all m and k. The following relation-
ship holds between FG,S and FølG,S:

FølG,S(k) ≤ (2|S|+ 1)FG,S(1,1/k)

The reason for this is that the n-ball in G with respect to S contains
at most (2|S|+ 1)n elements and if ν ∈ `1(G) is such that∑

g∈S

||gν − ν||`1 < ε

then the support of ν contains an ε-Følner set with respect to S [11].
The proof of Theorem 2.1 shows that

R̃G,S(m, ε) ≤ Rp
G,S(m)

whenever (3/4)p < ε (here Rp
G,S denotes the p-fold composition of

RG,S). Furthermore, it shows that

R̃G,S(m, ε, l) ≤ R̃G,S(R̃G,S(m, ε, l − 1), ε)

= R̃G,S(R̃G,S(. . . R̃G,S(m, ε) . . . , ε), ε) ≤ Rlp
G,S(m)

whenever l > 1. Finally we have the following proposition.

Proposition 4.1. FG,S(m, 2ε|S|) ≤ R̃G,S(m, ε, |S|).

Proof. Let B = Bn where n = R̃G,S(m, ε, |S|). Define

C = {〈gν − ν : g ∈ S〉 : ν ∈ Pr(B) and Pr(S)ν ⊆ Pr(B)}.

U = {ξ ∈ (`1(B))S :
∑
g∈S

||ξg||`1 < 2ε|S|}
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Observe that C and U are both convex subsets of (`1(B))S with C
being compact and U being open. If C ∩U is non empty, then there is
a ν in Pr(B) such that Pr(S)ν ⊆ Pr(B) and∑

g∈S

||gν − ν||`1 < 2ε|S|.

In particular, we would have that FG,S(m, 2ε|S|) ≤ n = R̃G,S(m, ε, |S|).
Now suppose for contradiction that C and U are disjoint. By the

Hahn-Banach separation theorem (see [19, 3.4]), there is a linear func-
tional Λ defined on (`1(B))S such that, for some r ∈ R, Λξ < r if ξ ∈ U
and r ≤ Λξ if ξ ∈ C. In the present setting, such a functional Λ takes
the form

Λξ =
∑
g∈S

ξgfg

for some 〈fg : g ∈ S〉 ∈ (`∞(B))S. If we give (`1(B))S the norm by
identifying it with `1(B × S), then we may assume that Λ has norm 1.
Since `1(B × S)∗ is isometric to `∞(B × S), it follows that |fg(b)| ≤ 1
for all b and g with equality obtained for some (b, g) ∈ B×S. It follows
that we may take r = ε|S|. This is a contradiction, however, since by
our choice of B = Bn, there is a ν in Pr(B) such that Pr(S)ν ⊆ Pr(B)
and for all g ∈ S,

|gν(fg)− ν(fg)| < 2ε

(the factor of 2 is because fg maps into an interval of length 2) and
therefore

∑
g∈S |gν(fg)− ν(fg)| < 2ε|S|. �

Putting this together, we have the following upper bound on the
Følner function in terms of the iterated Ramsey function.

Theorem 4.2. FølG,S(k) ≤ (2s + 1)Rps(1) whenever (3/4)p < 1/(2ks)
where s = |S|.

5. Invariantly measurable sets in F2

In light of the theorem of the previous section, it is natural to define,
for an arbitrary group G, the collection MG of subsets of G which are
invariantly measurable. It is tempting to suspect that Theorem 1.3
might be subsumed in a more general result which asserts that, in any
group G, there is a µ which measures each element of MG invariantly.
Theorem 1.4, whose proof we now turn to, asserts that this is not the
case.

Proof. Let a and b denote the generators of F2 and let A denote the
collection of all elements of F2 whose reduced word begins with a or
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a−1. Let h : F2 → Z be the homomorphism which sends a to 1 and b
to −1 and define Zk = {w ∈ F2 : h(w) ≥ k}, setting Z = Z0. Define

A+ = {g ∈ A : h(g) > 0} A− = {g ∈ A : h(g) ≤ 0}.
Notice that A can not be measured invariantly since {bkA : k ∈ N} and
{ak(F2 \ A) : k ∈ N} are both infinite pairwise disjoint families. If µ
measured both A+ and A− invariantly, it would measure A = A+∪A−

invariantly.
It therefore suffices to find measures µ0 and µ1 such that µi(wZ) = i

for i = 0, 1 and w ∈ F2. Such measures are constructed by extending
the families {F2 \ Zk : k ∈ Z} and {Zk : k ∈ Z}, each of which have
the finite intersection property, to ultrafilters, and regarding them as
elements of Pr(F2). �

Remark 5.1. It is not clear whether F2 can be replaced by an arbitrary
non amenable group in Theorem 1.4, even if one allows finitely many
invariantly measurable sets in place of two.

6. A criterion for non amenability: unbalanced puzzles

The purpose of this section is to prove Theorem 1.5. The following
two simple propositions capture most of what is left to prove.

Proposition 6.1. Let G be a group, ε ≥ 0, and A be a finite subset of
G. If E ⊆ G, Y is ε-balanced, and B is a finite set such that

Y = {XE(g) : g ∈ B},
then there is a ν ∈ Pr(B) such that |aν(E) − a′ν(E)| ≤ ε for all
a, a′ ∈ A.

Remark 6.2. Notice that a typical B satisfying the hypothesis of this
proposition may well satisfy that it is its own boundary in the Cayley
graph, even if ε = 0. This is again quite different than what is possible
with Følner sets (even if the Følner sets are allowed to be “weighted”).

Proof. Let µ ∈ Pr(Y ) be such that

|µ({X ∈ Y : a ∈ X})− µ({X ∈ Y : a′ ∈ X})| ≤ ε

for every a, a′ ∈ A. By replacing B by a subset, we may assume
that for each b 6= b′ in B, XE(b) 6= XE(b′). Define ν ∈ Pr(B) by
ν({b}) = µ({XE(b)}). Now suppose that a ∈ A.

ν(a−1E) =
∑

{ν({b}) : b ∈ a−1E}

=
∑

{µ({XE(b)}) : ab ∈ E} = µ({X ∈ Y : a ∈ X})
The conclusion now follows from our choice of µ. �
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Proposition 6.3. Let G be a group and A be a finite subset of G. If
E ⊆ G and there is a ν ∈ Pr(G) such that

|ν(a−1E)− ν(b−1E)| ≤ ε

for every a, b ∈ A, then

{X ∈ XE : ν({g ∈ G : XE(g) = X}) > 0}

is ε-balanced (and in particular XE is ε-balanced).

Proof. Let G, A, E, and ν be given as in the statement of the propo-
sition. For each X in XE, define

µ({X}) = ν({g ∈ G : XE(g) = X}).

It is sufficient to show that if a is in A, then
∑

X3a µ({X}) = ν(a−1E).
To this end ∑

X3a

µ({X}) = ν({g ∈ G : a ∈ XE(g)})

= ν({g ∈ G : ag ∈ E}) = ν(a−1E).

�

Now we are ready to prove Theorem 1.5. All implications will be
established by proving the contrapositive. The implication (1⇒2) fol-
lows from Proposition 6.1 together with the equivalence of (1) and (4)
in Theorem 1.3. The implication (2⇒3) is given by Proposition 6.3.

Finally, in order to see the implication (3⇒1), suppose that G is
amenable and A ⊆ G is finite. Let ε > 0 be such that if Y is a
collection of subsets of A which is ε-balanced, then Y is ε′-balanced
for all ε′ > 0. This is possible since the collection of all families of
subsets of A is finite. Let B be ε-Ramsey. It suffices to prove that B
is ε′-Ramsey for each ε′ > 0 since it then follows by compactness that
B is 0-Ramsey. Suppose that E ⊆ B. By our assumption on B, there
is a ν ∈ Pr(B) such that Aν ⊆ Pr(B) and such that

|gν(E)− g′ν(E)| ≤ ε

for all g, g′ ∈ A. By Proposition 6.3,

Y = {XE(g) : (g ∈ B) ∧ (Ag ⊆ B)}

is ε-balanced. By assumption this collection is ε′-balanced for every
ε′ > 0. Therefore by Proposition 6.1, there is a ν in Pr(B) such that
Aν ⊆ Pr(B) and

|gν(E)− g′ν(E)| ≤ ε′.

for all g, g′ ∈ A. This finishes the proof of the theorem.
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I will finish this section by mentioning an intriguing problem concern-
ing which unbalanced sets are required to witness the non amenability
of all non amenable groups.

Problem 6.4. Is there a finite list B of unbalanced families such that
any non amenable group contains a realization of an isomorphic copy
of an element of B?

Here two unbalanced families are isomorphic if one is the set-wise
image of the other under a bijection of the underlying sets.

7. Structural Ramsey theory and KPT Theory

In this section I will place the results of the present paper into
the context of the theory of Kechris, Pestov, and Todorcevic devel-
oped in [9] which equates the property of extreme amenability of cer-
tain automorphism groups to structural Ramsey theory. First we will
need to recall some notation and terminology from [9]; further read-
ing can be found there. A Fräıssé structure is a countable relational
structure A which is ultrahomogeneous — every finite partial automor-
phism extends to an automorphism of the whole structure. If more-
over A includes a relation which is a linear order, then A is said to be
a Fräıssé order structure. Some notable examples of such structures
are (Q,≤), the random graph, and rational Urysohn space. If G is a
countable group, then we may also associate to G the Fräıssé structure
G = (G; Rg : g ∈ G) where

Rg = {(a, b) ∈ G2 : ab−1 = g}
Observe that the automorphisms of G are given by right translation and
therefore Aut(G) ' G. Since every automorphism of G is determined
by where it sends the identity, Aut(G) is discrete as a subgroup of the
group of all permutations of G equipped with the topology of point-wise
convergence.

If A is a Fräıssé (order) structure, then Age(A) is the collection of
finite substructures of A. A collection arising in this way is called a
Fräıssé (order) class. It should be noted that Fräıssé (order) classes
have an intrinsic axiomatization, although this will not be relevant for
the present discussion.

If C is a Fräıssé class and B and A are structures in C , then let
(

B
A

)
denote the collection of all embeddings of A into B. Define C → (B)A

k

if whenever f :
(

C
A

)
→ k, there is a β in

(
C
B

)
such that f is constant on(

β
A

)
= {β ◦α : α ∈

(
B
A

)
}. A Fräıssé class C has the Ramsey Property if

for every A and B in C , there is a C in C such that C → (B)A
2 .
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The main result of [9] is that, for a Fräıssé order structure A, Aut(A)
is extremely amenable if and only if Age(A) has the Ramsey Property.
The power of this theorem comes from the rich literature on the Ramsey
Property of Fräıssé classes. That the finite linear orders form a Ramsey
class is just a reformulation of the finite form of Ramsey’s theorem.
More sophisticated examples are the classes of finite ordered graphs [13]
[14], finite naturally ordered Boolean algebras [7], finite ordered metric
spaces [12], and finite dimensional naturally ordered vector spaces over
a finite field [6]. The branch of mathematics concerned with such results
is known as structural Ramsey theory.

If G is a countable group, the collection G of finite substructures of
G will never form a Ramsey class. One reason for this is the result
of Veech [22] asserting that a locally compact group can never be ex-
tremely amenable. In the case of finitely generated groups, this can be
seen explicitly: the failure of the Ramsey property is witnessed by the
function f :

(
G
e

)
→ 2 defined by

f(g) ≡ dS(e, g) mod 2

where S is a generating set for G, dS is the word metric, and e is {e}
regarded as a substructure of G. (Observe that

(
G
e

)
can naturally be

identified with the singletons in G.)
We can however modify the Ramsey Property as follows. Let A and

B be substructures of a relational structure X with A being finite.
Define

〈
B
A

〉
to be the collection of all finitely supported probability

measures on
(

B
A

)
. If f :

(
B
A

)
→ R, then f extends to an affine function

defined on the vector space generated by
(

B
A

)
; this extension will also

be denoted by f . Extending ◦ bilinearly, we define
(

β
A

)
and

〈
β
A

〉
when

β is in
〈

X
B

〉
.

Define C → 〈B〉Ak to mean that whenever f :
(

C
A

)
→ k, there is a

β ∈
〈

C
B

〉
such that if α, α′ ∈

〈
β
A

〉
,

|f(α)− f(α′)| ≤ 1/2.

It follows from the definitions that if A and B are finite subsets of
a group G, then B → 〈A〉e2 is equivalent to asserting that B is 1/2-
Ramsey with respect to A. Therefore, by Theorem 1.3 the amenability
of G is equivalent to the following convex Ramsey property of G : for
every A and B in G there is a C in G such that C → 〈B〉A2 . The
purpose of the remainder of this section is to prove the following gen-
eralization of Theorem 2.1 to the setting of automorphism groups of
Fräıssé structures.
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Theorem 7.1. If X is a Fräısse structure, then the following are equiv-
alent:

(1) for every A and B in Age(X), and every f :
(

X
A

)
→ {0, 1}, there

is a β in
〈

X
B

〉
such that for every α, α′ ∈

〈
β
A

〉
, |f(α)− f(α′)| ≤

1/2.
(2) Age(X) satisfies the convex Ramsey property: for every A and

B in Age(X) there is a C in Age(X) such that C → 〈B〉A2 .
(3) there is a p < 1 such that for every A and B in Age(X) there

is a C in Age(X) such that for every f :
(

C
A

)
→ [0, 1], there is a

β in
〈

C
B

〉
such that for every α, α′ ∈

〈
β
A

〉
,

|f(α)− f(α′)| ≤ p.

(4) for every A and B in Age(X), every ε > 0, there is a C in
Age(X) such that for every f :

(
C
A

)
→ [0, 1], there is a β in

〈
C
B

〉
such that for every α, α′ ∈

〈
β
A

〉
,

|f(α)− f(α′)| ≤ ε.

(5) for every A and B in Age(X), every ε > 0, and n, there is a C
in Age(X) such that for every sequence fi (i < n) of functions
from

(
C
A

)
to [0, 1], there is a β in

〈
C
B

〉
such that for every α in〈

β
A

〉
,

|fi(α)− fi(α
′)| ≤ ε.

(6) Aut(X) is amenable.

Remark 7.2. The equivalence of (5) and (6) was noticed by Todor
Tsankov, prior to the results of this paper. I would like to thank
him for a helpful conversation in which it became clear that the above
theorem should be true.

Proof. I will only prove the implications (1⇒2), (4⇒5), (5⇒6), and
(6⇒1). The remaining implications are only notationally different from
their counterparts in Theorem 2.1 and the implications which will be
proved will demonstrate how these notational adaptations are made.

To see (1⇒2), we will suppose that (2) is false and prove that (1) is
false. To this end, let A and B be given. Let X be the underlying set
for the structure X and let Xn (n < ∞) be an increasing sequence of
finite sets whose union is X. For each n, fix a fn :

(
Xn

A

)
→ 2 such that

there is no β ∈
〈

Xn

B

〉
such that for all α, α′ ∈

〈
β
A

〉
, |fn(α)−fn(α′)| ≤ 1/2.

Find a subsequence fnk
(k < ∞) such that for every m, if k, k′ ≥ m,

then

fnk
�

(
Xm

A

)
= fnk′

�

(
Xm

A

)
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Define f :
(

X
A

)
→ {0, 1} by f(α) = fnk

(α) whenever the range of α is

contained in Xm and m ≤ k. If there were a β in
〈

X
B

〉
such that for all

α, α′ ∈
〈

β
A

〉
, |f(α)− f(α′)| ≤ 1/2, then such a β would be contained in〈

Xm

B

〉
for some m. Then for any k > m, β would contradict our choice

of fnk
.

In order to see the implication (4⇒5), let A, B, and ε > 0 be given.
Construct Ci (i ≤ n) such that C0 = B and for all i ≤ n, if f :

(
Ci

A

)
→

[0, 1], there is a ν ∈
〈

Ci

Ci−1

〉
such that for all α, α′ ∈

〈
ν
A

〉
, |f(α)−f(α′)| ≤

ε. Define βn = Cn and construct βi (i < n) by downward induction
such that βi is in

〈
βi+1

Ci

〉
and if α, α′ ∈

〈
βi

A

〉
, then |fi(α) − fi(α

′)| < ε.
This is achieved by applying our hypothesis on Ci+1 to the function
f̃i :

(
Ci+1

A

)
→ [0, 1] defined by f̃i(α) = fi(βi+1 ◦ α). If νi ∈

〈
Ci+1

Ci

〉
is such

that for all α, α′ ∈
〈

Ci+1

A

〉
|f̃i(α)− f̃i(α

′)| ≤ ε

then βi = βi+1 ◦ νi is as desired. Since i < j < n implies
〈

βi

A

〉
⊆

〈
βj

A

〉
,

we have that β = β0 satisfies the conclusion of (5).
Next we will prove (5⇒6). We will use the following characterization

of amenability of a topological group: G is amenable if and only if
whenever G acts continuously on a compact space K, K admits a
(countably additive) G-invariant Borel probability measure. To this
end, fix a continuous action of Aut(X) on a compact space K. Recall
that the Borel probability measures form a weak* compact subset of
C(K)∗. Therefore it is sufficient to prove that for every ε > 0, every
sequence fi (i < n) of elements of C(K), and every sequence gi (i < n)
of elements of Aut(X), there is a finitely supported measure ν on X
such that for every i < n

|fi(gi · ν))− fi(ν)| ≤ ε.

Let fi (i < n) and gi (i < n) be given and assume without loss of
generality that fi maps into [0, 1].

By the compactness of K, there is an open neighborhood U of idX

such that if g is in U , then for all i < n

|fi(g · ν)− fi(ν)| ≤ ε

2

(Here we have extended the action linearly to an action of Aut(X)
on the finitely supported measures. Similarly, elements of C(K) are
extended affinely to the finitely supported measures on K.) Therefore
there is a finite substructure A of X such that if g � A = idA, then g is
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in U . Let B be the finite substructure of X with domain

B = A ∪
⋃
i<n

g−1
i (A).

Let C be the finite substructure of X which satisfies the conclusion of
(5) with ε/2 in place of ε.

Fix an element x0 of K. Observe that if i < n and g and h are in
Aut(X) are such that g−1 � A = h−1 � A, then

|fi(g · x0)− fi(h · x0)| ≤
ε

2

This is because otherwise gh−1 ∈ U and x = h · x0 would contradict
our choice of U .

For each f in C(K), define f̃ :
(

X
A

)
→ [0, 1] by

f̃(α) = inf{f(h · x0) : h ∈ Aut(X) ∧ h−1 � A = α}.
By our choice of C, there is a β in

〈
C
B

〉
such that for every α, α′ ∈

〈
β
A

〉
and i < n,

|f̃i(α)− f̃i(α
′)| ≤ ε

2
.

Let βj (j < m) be the elements of
(

C
B

)
such that for some choice

of positive λj (j < m), β =
∑

j<m λjβj. For each j < m, fix an

hj ∈ Aut(X) such that hj extends βj. This is possible since X is
ultrahomogeneous. Finally, define

ν =
∑
j<m

λjδh−1
j ·x0

where δx denotes the point mass at x. Define αi = g−1
i � A, observing

that αi ∈
(

B
A

)
. Now for each i < n,

|fi(gi · ν)− f(ν)| = |fi(gi

∑
j<m

λj · δh−1
j ·x0

)− fi(
∑
j<m

λjδh−1
j ·x0

)|

= |fi(
∑
j<m

λj(gi ◦ h−1
j ) · δx0)− fi(

∑
j<m

λjh
−1
j · δx0)|

≤ |f̃i(β ◦ αi)− f̃i(β ◦ idA)|+ ε

2
≤ ε

which is what we needed to prove.
Finally, we will prove (6⇒1). To this end, let A and B be given

and let f0 :
(

X
A

)
→ 2 be arbitrary. Observe that 2(X

A) is a compact

space and that Aut(X) acts continuously on 2(X
A) on the left by g ·

f(α) = f(g−1 ◦ α). Let Z denote the orbit of f0 under this action and
let K denote the closure of Z. Since Aut(X) is amenable, there is a
probability measure µ on K which is invariant under the action. Since
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µ is invariant,
∫

f(α)dµ(f) does not depend on α ∈
(

X
A

)
; let r denote

the constant value.
Since the collection of all probabilities measures on K whose support

is finite and contained in Z is dense, there are γj (j < m) in Aut(X)

and positive λj (j < m) such that for each α ∈
(

B
A

)
|
∑
j<m

λjf0(γj ◦ α)− r| ≤ 1/4.

Now define βj = γj � B, β =
∑

j<m λjβj and observe that if α, α′ ∈
〈

B
A

〉
|f0(β ◦ α)− f0(β ◦ α′)| ≤ |f0(β ◦ α)− r|+ |f0(β ◦ α′)− r| ≤ 1/2.

�
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ory, and topological dynamics of automorphism groups. Geom. Funct. Anal.,
15(1):106–189, 2005.

[10] J. Tatch Moore. Fast growth in Følner function for Thompson’s group F . ArXiv
preprint 0905.1118, Aug. 2009.

[11] I. Namioka. Følner’s conditions for amenable semi-groups. Math. Scand.,
15:18–28, 1964.
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