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CURVATURE PINCHING ESTIMATE AND SINGULARITIES OF

THE RICCI FLOW

XIAODONG CAO∗

Abstract. In this paper, we first derive a pinching estimate on the traceless Ricci
curvature in term of scalar curvature and Weyl tensor under the Ricci flow. Then
we apply this estimate to study finite-time singularity behavior. We show that
if the scalar curvature is uniformly bounded, then the Weyl tensor has to blow
up, as a consequence, the corresponding singularity model must be Ricci flat with
non-vanishing Weyl tensor.

1. Introduction

Let (M, g) be a smooth, closed n-dimensional Riemannian manifold. In his seminal
paper [7], R. Hamilton proved that any closed 3-manifold which admits a Riemannian
metric with strictly positive Ricci curvature must also admits a metric of constant
positive sectional curvature. He showed that the original metric can be deformed into
the constant-curvature metric by introducing the Ricci flow:

∂

∂t
gij = −2Rij .(1.1)

The Ricci flow equation is a (weakly) parabolic partial differential equation system.
Its short time existence was first proved by Hamilton ([7]) and later the proof was
simplified by D. DeTurck ([5]). One of the main subjects in the study of Ricci flow
is the understanding of long time behavior and formation of singularities. More pre-
cisely, we would like to ask when the flow can exist for all time; and if the flow only
exits up to finite time, we would like to understand the profile of finite-time singu-
larities, which in general will permit us to understand geometry and topology of the
underlying manifold better.

A solution (M, g(t)) to the Ricci flow equation (1.1) is a (finite-time) maximal
solution if it is defined for t ∈ [0, T ), T < ∞. In [7], Hamilton proved that the whole
Riemannian curvature tensor Rm blows up as t → T , i.e., lim sup[0,T ) |Rm| = ∞. In
[25], N. Sesum showed that in fact the Ricci curvature tensor Rc blows up as t → T ,
i.e., lim sup[0,T ) |Rc| = ∞. In other words, if the norm of Riemannian curvature
or Ricci curvature is uniformly bounded on [0, T ), then the flow can be smoothly
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extended past T . In [27], B. Wang extended the above results even further by showing
that that if the Ricci curvature tensor Rc is uniformly bounded from below and
moreover, the space-time integral of scalar curvature R is bounded, namely,

∫ T

0

∫

M

|R|α ≤ C, α ≥
n + 2

2
,

then the Ricci flow can be smoothly extended past T . Similar type results also ap-
peared in [28] by R. Ye and in [16] by L. Ma and L. Cheng.

There is a well-known conjecture that the scalar curvature R should also blow up
at the singular time T . Recently, J. Enders, R. Müller, P. M. Topping ([6]), and N.
Le, Sesum ([15]) partially confirmed this conjecture in the case of Type I maximal
solutions. Their methods both using blow-up argument based on Perelman’s entropy
functionals, reduced distance and pseudolocality theorem.

Definition 1.1. A solution (M, g(t)), 0 ≤ t < T < ∞, is called a Type I maximal
solution of the Ricci flow, if there exists a constant C < ∞ such that the curvature
satisfies

|Rm| ≤
C

T − t
.

Otherwise it’s a Type II maximal solution of the Ricci flow.

In this paper, we study the blow-up behavior of different components of the curva-
ture tensor under the Ricci flow, and their consequences in dilation limits.

For simplicity, we also use the following convention: the constants ci only depend on
the dimension n, but not on the initial metric g(0); while the constants Ci depend not
only on the dimension n, but also on the initial metric g(0). We also restrict ourselves
to the case of positive scalar curvature, even though that most estimates in this
paper can be carried to the general case.

The rest of this paper organized as follows. In Section 2, we briefly review the
orthogonal decomposition of Riemannian curvature and evolution of curvatures under
the Ricci flow. In Section 3, we derive a pinching estimate on the traceless Ricci
curvature tensor. As one application, we obtain some information about curvature
blow up at finite-time; the second application is on manifolds with positive isotropic
curvature. In Section 4, we discuss singularity models and apply the pinching estimate
in Section 3 to study the dilation limit.

2. Decomposition and Evolution of Curvature Tensors

In this section, we will first give a brief introduction of curvature decomposition of
the Riemannian manifold (Mn, g) and some relations of geometric conditions. Then
we will recall some evolution formulae for various curvature tensors, for more details,
please see [7]. We use gij to denote the local components of metric g and its inverse
by gij. In this paper we use Rm to denote the (4, 0) Riemannian curvature tensor
instead of the (3, 1) Riemannian curvature tensor, we denote its local components by
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Rijkl. Let Rc be the Ricci curvature with local components Rik = gjlRijkl, and let
R = gikRik be the scalar curvature. We first recall the Kulkarni-Nomizu product for
two symmetric tensor h, k is defined as:

h ◦ k(v1, v2, v3, v4) =h(v1, v3)k(v2, v4) + h(v2, v4)k(v1, v3)

− h(v1, v4)k(v2, v3)− h(v2, v3)k(v1, v4).

The Einstein tensor or traceless Ricci tensor E is defined as

Eij = Rij −
R

n
gij.

When n ≥ 4, we can decompose the (4, 0) Riemannian curvature tensor Rm in the
following way:

Rm =
R

2n(n− 1)
g ◦ g +

1

n− 2
E ◦ g +W,

here W is the Weyl curvature tensor. And the above decompositions are orthogonal.

In local coordinates, we can write

Wijkl =Rijkl −
1

n− 2
(gikRjl + gjlRik − gilRjk − gjkRil)

+
1

(n− 1)(n− 2)
R(gikgjl − gilgjk).

It is well-known that under conformal change of the metric g
′

= eu · g for some func-
tion u, then W

′

= eu ·W. If we view the Weyl tensor as a (3, 1) tensor, then W
′

= W,
i.e., the (3, 1) Weyl tensor is a conformal invariant.

Under the Ricci flow, the Ricci curvature is evolving by

∂

∂t
Rc = △Rc + 2Rm(Rc, ·)− 2Rc2,

where Rc2ij = RikRkj and the scalar curvature evolves by

∂

∂t
R = △R + 2|Rc|2.(2.1)

As a direct consequence of (2.1), in all dimensions, the positivity (or any lower bound)
of the scalar curvature is preserved by the Ricci flow. In dimension 3, the positivity of
Ricci curvature is preserved (see [7]). In dimension at least 4, positivity of curvature
operator is preserved ([8] and [10]).

In [17], M. Micallef and J. D. Moore introduced a new curvature condition, positive
isotropic curvature. A Riemannian manifold of dimension at least 4 is said to have
positive isotropic curvature, if for every orthonormal 4-frame {e1, e2, e3, e4}, we have

R1313 + R1414 + R2323 + R2424 − 2R1234 > 0.
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Using minimal surface technique, they proved that any compact, simply connected
manifold with positive isotropic curvature is homeomorphic to Sn. In the same pa-
per, they observed that the positivity of isotropic curvature is implied by several other
commonly used curvature conditions, such as positive curvature operator and point-
wise 1

4
-pinched condition. In dimension 4, Hamilton [11] proved that the positivity

of isotropic curvature is preserved by the Ricci flow. This result has been extended
to higher dimensions by S. Brendle and R. Schoen [2] and also by H. Nguyen [19]
independently. Brendle and Schoen further proved the differentiable sphere theorem,
which has been a long time conjecture since the (topological) 1

4
-pinched sphere theo-

rem proved by M. Berger [1] and W. Klingenberg [13] around 1960. More precisely,
Brendle and Schoen showed that any compact Riemannian manifold with pointwise
1
4
-pinched sectional curvature is diffeomorphic to a spherical space form [2].

Another interesting geometric operator in Riemannian geometry, the Weitzenböck
operator P, is defined as

P = Rc ◦ g − 2Rm =
(n− 2)R

n(n− 1)
g ◦ g +

n− 4

n− 2
E ◦ g −W,

or in local coordinates,

Pijkl = (gikRjl + gjlRik − gilRjk − gjkRil)− 2Rijkl.

It is known that in dimension 4, positive isotropic curvature is equivalent to positive
Weitzenböck operator (see for example, [17, 18, 20, 21]). For an even dimensional Rie-
mannian manifold of n > 4, positive isotropic curvature implies positive Weitzenböck
operator ([24, Proposition 1.1]).

3. Curvature Pinching Estimate

The general evolution formulae of curvature tensors suggests that the orthogonal
parts of Riemannian curvature tensor is not evolving totally independently to each
other, one part might depend on the other part(s). An interesting question in the
study of the Ricci flow is which orthogonal part(s) needs to blow up at a finite-time
T when singularity occurs. In other words, if these parts are uniformly bounded up
to time T , then the Ricci flow can be smoothly extended past T .

Our main theorem in this section is the following estimate, which says that the
traceless Ricci part |E| can be controlled by the scalar curvature R and Weyl tensor
|W|. This improves an earlier result of D. Knopf [14].

Theorem 3.1. Let (Mn, g(t)), t ∈ [0, T ), be a solution to the Ricci flow on a closed
Riemannian manifold of dimension n ≥ 3, then there exist constants C1(n, g0) > 0
and c2(n) ≥ 0, such that for all t ≥ 0, one has R+ c > 0 and

|E|

R + c
≤ C1 + c2 max

M×[0,t]

√

|W|

R + c
.(3.1)
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Furthermore, if R > 0 at t = 0, then we have

|E|

R
≤ C1 + c2 max

M×[0,t]

√

|W|

R
.(3.2)

Remark 3.1. In [14], Knopf first proved a rather surprising result, namely he showed
that under the Ricci flow, there exist constants c(g0) ≥ 0, C1(n, g0) > 0 and c2(n) > 0
such that for all t ≥ 0, one has R + c > 0 and

|E|

R + c
≤ C1 + c2 max

s∈[0,t]

√

|W|max(s)

Rmin(s) + c
.(3.3)

In other words, the traceless Ricci part |E| can be controlled by the maximum and
minimum of the scalar curvature R and the maximum of the Weyl tensor |W|. Notice
that |W|max and Rmin may actually be achieved at different space-time points in (3.3),
while estimates (3.1) and (3.2) proved here do not have this problem. This makes
(3.1) and (3.2) more powerful in studying dilation limits of singularities.

Remark 3.2. We state the theorem both for the general case and for the positive
scalar curvature case. But for simplicity, we will only prove (3.2) here, the proof of
(3.1) is similar.

Remark 3.3. The estimate (3.2) is scaling invariant, so it still holds for normalized
Ricci flow and also for Ricci flow solutions exist for all time [0,∞). In the special
case of Kähler-Ricci flow, it is known that the scalar curvature is bounded (this is
claimed by G. Perelman and a detailed proof is given by Sesum and G. Tian [26]),
hence the whole curvature tensor blows up if and only if the Weyl tensor W blows up
(also see [16]).

For our purpose, we perform a rather general calculation here. For any positive
number γ, define

f =
|E|2

Rγ
=

|Rc|2

Rγ
−

1

n
R2−γ ,

then f satisfies the following evolution equation:

Lemma 3.2. Under the Ricci flow, we have

∂

∂t
f =△f +

2(γ − 1)

R
∇f · ∇R−

2

R2+γ
|R∇iRjk −∇iRRjk|

2 −
(2− γ)(γ − 1)

R2
|∇R|2f

−
2(2− γ)

n
R1−γ |Rc|2 +

4

Rγ
Rm(Rc,Rc)−

2γ

R1+γ
|Rc|4 −

(2− γ)(γ − 1)

nRγ

=△f +
2(γ − 1)

R
∇f · ∇R−

2

R2+γ
|R∇iRjk −∇iRRjk|

2 −
(2− γ)(γ − 1)

R2
|∇R|2f

+
2

R1+γ
[(2− γ)|Rc|2(|Rc|2 −

1

n
R2)− 2(|Rc|4 − R · Rm(Rc,Rc)]−

(2− γ)(γ − 1)

nRγ
.

Proof. We have

∂

∂t
|Rc|2 = △|Rc|2 − 2|∇Rc|2 + 4Rm(Rc,Rc),
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where
Rm(Rc,Rc) = RabcdRacRbd.

We can further express the term as

Rm(Rc,Rc) = RabcdRacRbd =
1

n− 2
(
2n− 1

n− 1
|Rc|2R− 2Rc3 −

R3

n− 1
) +W(Rc,Rc),

hence we arrive at,

∂

∂t
|Rc|2 = △|Rc|2 − 2|∇Rc|2 +

4

n− 2
(
2n− 1

n− 1
|Rc|2R− 2Rc3 −

R3

n− 1
) +W(Rc,Rc).

Using this together with the evolution equation of the scalar curvature

∂

∂t
R = △R + 2|Rc|2,

we have the following two equations:

∂

∂t
(
|Rc|2

Rγ
) =△(

|Rc|2

Rγ
) +

2(γ − 1)

R
∇(

|Rc|2

Rγ
) · ∇R−

2

R2+γ
|R∇iRjk −∇iRRjk|

2

−
(2− γ)(γ − 1)

R2+γ
|Rc|2|∇R|2 +

4

Rγ
Rm(Rc,Rc)−

2γ

R1+γ
|Rc|4,

and

∂

∂t
R2−γ = △R2−γ +

2(γ − 1)

R
∇R2−γ · ∇R + 2(2− γ)R1−γ|Rc|2.

The lemma then follows. �

We can also rewrite the above lemma in the following way.

Lemma 3.3. Under the Ricci flow, we have

∂

∂t
f =△f +

2(γ − 1)

R
∇f · ∇R−

2

R2+γ
|R∇iRjk −∇iRRjk|

2 −
(2− γ)(γ − 1)

R2
|∇R|2f

+
2

R1+γ

[

(2− γ)|Rc|2|E|2 − 2Q + 2RW(Rc,Rc)
]

−
(2− γ)(γ − 1)

nRγ

=△f +
2(γ − 1)

R
∇f · ∇R−

2

R2+γ
|R∇iRjk −∇iRRjk|

2 −
(2− γ)(γ − 1)

R2
|∇R|2f

+
2

R1+γ

[

−γ|E|4 +

(

2(n− 2)

n(n− 1)
−

γ

n

)

|R|2|E|2 −
4

n− 2
RE3 + 2RW(E,E)

]

−
(2− γ)(γ − 1)

nRγ
,

where Q = |Rc|4 − R
n−2

(2n−1
n−1

R|Rc|2 − 2Rc3 − R3

n−1
), and E3 = EijEjkEki.

Consider the special case that γ = 2, i.e.,

f =
|E|2

R2
=

|Rc|2

R2
−

1

n
,

we have
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Lemma 3.4. Under the Ricci flow, we have

∂

∂t
f =△f +

2

R
∇f · ∇R−

2

R4
|R∇iRjk −∇iRRjk|

2

+
2

R3

[

−2|E|4 −
2

n(n− 1)
|R|2|E|2 −

4

n− 2
RE3 + 2RW(E,E)

]

=△f +
2

R
∇f · ∇R−

2

R4
|R∇iRjk −∇iRRjk|

2

+ 4R

[

−f 2 −
1

n(n− 1)
f −

2

n− 2

E3

R3
+

1

R3
W(E,E)

]

.

To estimate the right-hand side of the above equation, we calim that there exist
positive constants c1, c2 depending only on n ≥ 3, such that

∣

∣

∣

∣

2

n− 2
E3

∣

∣

∣

∣

≤ c1|E|
3,

and

|W(E,E)| ≤ c2|W||E|2.

Remark 3.4. In the above estimates, c1 ∼
2

n(n−2)
and c2 ∼ n(n− 1)(n− 2)(n− 3).

Plugging these two inequalities into Lemma 3.4, we derive that

Lemma 3.5. Under the Ricci flow, we have

∂

∂t
f ≤△f +

2

R
∇f · ∇R + 4R

[

−f 2 −
1

n(n− 1)
f + c1f

3/2 + c2
|W|

R
f

]

=△f +
2

R
∇f · ∇R− 4Rf

[

f − c1f
1/2 +

1

n(n− 1)
− c2

|W|

R

]

.

Combining the above inequality and using maximum principle, this lead to the
following

Lemma 3.6. Under the Ricci flow, there exists C1 = C1(c1, g(0)) ≥ c1 > 0, such that
4f(0) ≤ C2

1 , then

f 1/2 ≤
1

2
C1 +

√

1

4
C2

1 −

(

1

n(n− 1)
− c2 max

M×[0,t]

|W|

R

)

.

Proof. Let’s denote the right side as Φ(t), i.e.,

Φ(t) =
1

2
C1 +

√

1

4
C2

1 −

(

1

n(n− 1)
− c2 max

M×[0,t]

|W|

R

)

,

so Φ(t) is nondecreasing, by our choice of C1, f
1

2 (0) ≤ C1

2
≤ Φ(0). And f satisfies

∂

∂t
f ≤ △f +

2

R
∇f · ∇R− 4Rf

[

f − C1f
1/2 +

1

n(n− 1)
− c2

|W|

R

]

.
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Notice that
√

f(0) ≤ C1

2
≤ Φ(0), then it follows from the maximum principle that

f
1

2 (t) ≤ Φ(t). Since if max f
1

2 (t) > Φ(t), then we have

d

dt

+

max f(t) ≤ 0.

�

Proof. (Theorem 3.1) The inequality (3.2) now follows from standard inequalities. �

As a direct consequence of Theorem 3.1, we have the following claim:

Corollary 3.7. Let (M, g(t)), t ∈ [0, T ), be an maximal solution to the Ricci flow,
here T < ∞. Then we have

(1) either lim sup[0,T )R = ∞,

(2) or lim sup[0,T )R < ∞ but lim sup[0,T )
|W|
R

→ ∞.

Proof. For any finite time singularity, the whole Riemannian curvature (or Ricci cur-
vature) blows up at T . The Riemannian curvature tensor is decomposed into the
scalar curvature part R, the traceless Ricci tensor E and the Weyl tensor W. Follow-

ing from Theorem 3.1, E can not blow up if R and |W|
R

are both bounded, hence the
statement follows. �

Another interesting application of (3.2) is the case when the Weyl tensor |W| is
controlled by the scalar curvature R and traceless Ricci tensor |E|.

Theorem 3.8. (Positive Isotropic Curvature) Let (Mn, g(t)), t ∈ [0, T ), be an max-
imal solution to the Ricci flow, here n ≥ 4 is a even positive integer. Assuming that
g(0) has positive isotropic curvature, then we have lim sup[0,T )R = ∞.

Proof. Since positive isotropic curvature is preserved by the Ricci flow, moreover, it
implies positive Weitzenböck operator in even dimensions. So we have

P = Rc ◦ g − 2Rm =
(n− 2)R

n(n− 1)
g ◦ g +

n− 4

n− 2
E ◦ g −W > 0,

and W is traceless, this implies that

|W|

R
< c3

|E|

R
+ c4.

Substituting this into (3.2), it follows from elementary inequalities that

|E|

R
≤ C.

Hence it follows that
|W|

R
≤ C.

Since positive isotropic curvature implies scalar curvature R > 0, the maximal exis-
tence time T < ∞, so

lim sup
[0,T )

R = ∞.

�
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Remark 3.5. The author is very grateful to Professor Maria Helena Noronha for
several discussions about isotropic curvature and Weitzenböck operator.

4. Finite-time Singularities, Dilation Limits and Singularity Models

In this section, we will use the pinching estimate in Section 3 to study the dilation
limit of Ricci flow solutions. We first need to introducing some notations. In [10,
Sect. 16], Hamilton introduced the notion of singularity model, roughly speaking,
these are dilation limits of the Ricci flow. We briefly describe the strategy here, to
find out exact details about how to dilate singularities based on rate of blowup of
the curvature, see [10, Section 16] or [4, Chapter 8]. If we dilate the solution to the
Ricci flow about a sequence of points and times (xi, ti), where xi ∈ M and ti → T ,
we may choose the sequence of points and time so that |Rm|(xi, ti) is comparable to
the global maximum over the space M and sufficiently large previous time intervals.
We now can define a sequence of pointed dilation solutions (M, gi(t), xi) by:

gi(t) = |Rm|(xi, ti) · g(ti +
t

|Rm|(xi, ti)
),

for time interval
−ti|Rm|(xi, ti) ≤ t < (T − ti)|Rm|(xi, ti),

such that the curvature |Rm|gi(xi, 0) = 1 and the maximum of the (Riemannian)
curvature of gi becomes uniformly bounded, hence we have a sequence of solutions to
the Ricci flow. For finite time singularities on closed manifolds, Perelman’s No Local
Collapsing Theorem [22] provides the injectivity radius estimate, which is necessary
to obtain a noncollapsed limit. Then we can apply Hamilton’s Cheeger-Gromov type
compactness theorem [9] to extract a limit solution of the Ricci flow. This is a com-
plete solution to the Ricci flow with bounded curvature. If the solution is Type I, it
is an ancient solution; if the solution is Type II, then it is an eternal solution. It is
worth to mention that in dimension 3, all dilation limits have nonnegative sectional
curvature due to the pinching estimate of Hamilton [10] and T. Ivey [12].

Our main result in this section is the following:

Theorem 4.1. Let (M, g(t)), t ∈ [0, T ), be an maximal solution to the Ricci flow
with positive scalar curvature. Then we have one of the following:

(1) either lim sup[0,T )R = ∞,

(2) or if lim sup[0,T )R < ∞, then lim sup[0,T )
|W|
R

= ∞. This must be a Type II
maximal solution, furthermore, the dilation limit must be a complete Ricci-flat
solution with max |W| = 1.

Remark 4.1. In case (2) of Theorem 4.1, lim sup[0,T )
|W|
R

= ∞ is equivalent to
lim sup[0,T ) |W| = ∞.

We first consider Type I solutions, which has been studied extensively recently by
Enders, Muller and Topping [6], Le and Sesum [15], also by Q. S. Zhang and the
author [3].
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Corollary 4.2. If the solution of the Ricci flow is a Type I solution, then we have
|W|
R

is bounded, hence R → ∞.

Proof. If the solution is of Type I and |W|
R

is unbounded. Since R > 0 has a lower
bound, |W| needs to blow up at some point p, and hence |Rm| also blows up at p.
By [6, Theorem 1.8], scalar curvature blow up is equivalent to whole curvature blow
up, and all the blow up rates are same. So |Rm|(p) or |W|(p) is comparable to the
maximum blow up curvature, but the scalar curvature R(p) also blows up at the same

rate. Hence |W|
R

has to be bounded and R → ∞. �

Remark 4.2. This was essentially proven in [6] and [15], notice that we used the fact
from [6, Theorem 1.8] that all Type I singularity notions are equivalent, so we do not
provide an independent proof here.

Remark 4.3. From [6], [15] and [3], such type I dilation limit must be a nontrivial
gradient Ricci solitons. Notice that the dilation limit can not be Ricci flat, otherwise
this contradicts a theorem [23, Theorem 3] of S. Pigola, M. Rimoldi and A. G. Setti.

Combine Corollary 3.7 and the above discussion, we now can finish our proof of
Theorem 4.1:

Proof. We assume that lim sup[0,T )R < ∞, since this is a finite time singularity, the

whole Riemannian curvature tensor |Rm| blows up. So lim sup[0,T )
|W|
R

= ∞, otherwise
by (3.2), the traceless Ricci tensor is also bounded and contradicts it is a finite-time
singularity. Since R > 0 has a lower bound, we have lim sup[0,T ) |W| = ∞. In this
case, rescaling with respect to |Rm| is same as rescaling with respect to |W|. Hence

we have |W̃| = 1 at the origin and new time 0 after dilation. By Theorem 3.1, we
have

|E|

|W|max
≤ C1

R

|W|max
+ C2

√

R

|W|max
,(4.1)

as t → T , |Ẽ| → 0, R̃ → 0, hence R̃c → 0. Hence the dilation limit is a complete
solution to the Ricci flow with bounded curvature, furthermore, it is Ricci-flat with
max |W̃| = 1.

�

Remark 4.4. It came to our attention that there is a short proof for Theorem 4.1
using blow-up argument, without using (3.2), for the completeness of the discussion,
we include it here.

Proof. If both the scalar curvature R and the Weyl tensor W are uniformly bounded,
then after take a blow-up limit around the sequence of points (xi, ti) as we described

at the beginning of this section, the dilation limit will have R̃ = 0 and |W̃| = 0. By
the evolution equation of the scalar curvature, it must also be Ricci-flat (for this,
we only need that R is uniformly bounded), hence the dilation limit is actually flat.
This contradicts our choice of base points (xi, ti) in the blow-up procedure. The rest
follows the same way as before. �
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