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A UNIVERSAL ARONSZAJN LINE

Justin Tatch Moore

Abstract. The purpose of this note is to define an Aronszajn line ηC and prove that
under the assumption of PFA it is universal for the class of Aronszajn lines. Moreover
ηC can be easily described in terms of a fixed Countryman type C: it is the direct limit
of the finite lexicographic products of the form C × (−C)× . . .× (±C).

1. Introduction

An uncountable linear order is Aronszajn if it has no uncountable separable sub-
orders and does not contain a copy of ω1 or −ω1. These linear orders were considered
and proved to exist by Aronszajn and Kurepa [8] (see also [15, §5]) in the course of
studying Souslin’s Problem [14]. One of the main difficulties in dealing with this class
lies in the fact that it is defined in terms of what order types its members do not
contain. Hence its members are typically dealt with in a fairly abstract manner.

In this paper I will use the Proper Forcing Axiom (PFA) to prove that all Aronszajn
lines are isomorphic to a suborder of a single canonical Aronszajn line ηC . Here PFA
is a strong Baire category assumption due to Baumgartner. It extends MAℵ1 to a
broader class of partial orders and is a natural assumption in this context (see [1], [3],
[17, §8], [19], [20]). The universality of ηC and the results of this paper also hold in
Woodin’s canonical model for the failure of the Continuum Hypothesis [22].

In [10] it was proved that, assuming PFA, the Aronszajn lines contain a two element
basis. That is, there are two Aronszajn lines such that any other contains an isomor-
phic copy of one of these two. The elements of this basis have the following property:
their Cartesian square can be covered by countably many non decreasing relations.
Such orders are said to be Countryman and were first constructed by Shelah in [12].
Unlike being Aronszajn, being Countryman is phrased in terms of the existence of
a simple global structure on the linear order. Remarkably, the existence of such a
structure automatically entails that the order is Aronszajn. A further important ob-
servation is that if C is Countryman and −C is its reverse, then no uncountable linear
order can embed into both C and −C. In particular, the Aronszajn lines cannot have
a single element basis.

In [16], Todorcevic produced a number of concrete representations of Countryman
lines (see also [21]). He moreover proved that such linear orders are canonical in the
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presence of MAℵ1 . The following is a strong form of [21, 2.1.12] which is proved by a
similar argument.1

Theorem 1.1. (MAℵ1) Every two ℵ1-dense non stationary Countryman lines are
either isomorphic or reverse isomorphic. In particular if C is a Countryman line,
then C and −C form a two element basis for all Countryman lines.

The construction of ηC is as follows. Fix a Countyman line C and let ζC denote
the direct sum −C ⊕ {0} ⊕C. The order ηC is the subset of the lexicographic power
(ζC)ω consisting of those elements which are eventually 0.

Theorem 1.2. (PFA) Every Aronszajn line is isomorphic to a suborder of ηC .

Notice that if we let η denote the ordertype of Q, then we have a rather strong
analogy between the relationship of N and −N to η and the relationship of C and −C
to ηC .

In the course of proving the main result, I will also establish the following result
which is of independent interest.

Theorem 1.3. (PFA) If A is an Aronszajn line which is not Countryman, then A
contains an isomorphic copy of both C and −C for some (equivalently any) Country-
man line C.

As this result is proved, it will be remarked how the argument can be adapted to
yield a complete proof of Theorem 1.1.

This paper is intended to be fairly self contained, although I will cite some estab-
lished consequences of PFA at appropriate points. The reader is, however, assumed
to have some familiarity with set theory – [7] is a standard reference (chapter 2 is
particularly relevant). The reader should recall in particular that ordinals are taken,
in the sense of von Neumann, to be the set of their predecessors. A sequences is
a function whose domain is an ordinal. Further information on the Proper Forcing
Axiom and associated arguments can be found in [4], [13], and [17]. The reader can
find additional information on trees and linear orders in [15].

2. Preliminary analysis

It will be helpful to first define some notation and make some observations about
Aronszajn lines. First, recall that every Aronszajn line has cardinality ℵ1 [15, §5]
and hence can be represented as a linear ordering on ω1. Let A be a fixed Aronszajn
ordering on ω1. A can be represented as a lexicographic ordering on a subset of 2ω1

in the following way. For each α < ω1, let aα : ω1 → 2 be the characteristic function
of the set of ξ < ω1 such that ξ <A α. It is easy to see that the function sending α to
aα preserves order if its domain is given the order from A and its range is given the
lexicographic order.

If α 6= β, it will be useful to let ∆A(α, β) denote the least ξ such that aα(ξ) 6= aβ(ξ).
The following fact is routine to verify.

Fact 2.1. Suppose that α ≤A α′ ≤A β′ ≤A β. Then ∆A(α, β) ≤ ∆A(α′, β′).

1I made an incorrect reference to this result in [11] by omitting “non stationary” from the state-
ment. Without “non stationary” this theorem becomes false in a very strong sense [2] (see [15, 5.7]).
See [18] for further information on the role of stationary sets in the context of Aronszajn lines.
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Notice that, since A is Aronszajn, its elements have both countable cofinality and
co-initiality. Consequently, for each α < ω1, there is a least ξ < ω1 such that
∆A(α, β) < ξ whenever β < ω1. By letting E be the set of fixed points of the
operation α 7→ ξ, we have the following fact.

Fact 2.2. There is a club E ⊆ ω1 such that if α < β < ω1, then ∆A(α, β) <
min(E \ α).

Let TA denote the set of all aξ � η such that ξ < ω1 and η ≤ min(E \ (ξ + 1)). In
addition to its tree structure given by sequential extension, TA is also equipped with
the lexicographic ordering which extends the ordering of sequential extension (i.e. if
s is an initial part of t, then s ≤lex t). Notice that the map ξ 7→ aξ � min(E \ (ξ + 1))
is an embedding of A into (TA,≤lex).

Recall that a linear order L is ℵ1-dense if whenever a < b are in L ∪ {−∞,+∞},
the set of all x in L with a < x < b has cardinality ℵ1. Also, an Aronszajn line
A is non stationary if there is a continuous ⊆-increasing sequence 〈Dξ : ξ < ω1〉
of countable subsets of A which cover A and have the property that no maximal
interval of A \ Dξ has a greatest or least element for any ξ < ω1. Stationarity of
Aronszajn lines was introduced in [2] in order to generate a large number of pairwise
non isomorphic Aronszajn lines in ZFC (see also [18]). The following is a standard
fact about Aronszajn lines.

Fact 2.3. Every Aronszajn line contains an ℵ1-dense suborder which is non station-
ary.

Finally, we will need the following fact about Countryman lines which follows easily
from their definition.

Fact 2.4. If C is Countryman, then C does not contain a Souslin suborder. Equiva-
lently, if X is an uncountable subset of TC , then X contains an uncountable antichain.

3. When Aronszajn lines are Countryman

The purpose of this section is to prove Theorem 1.3 — that every non Countryman
Aronszajn line must contain both “orientations” of a given Countryman line. At
appropriate points in the argument, I will note how the proof can be adapted to yield
a proof of Theorem 1.1. The proof in this section is similar to that of [1, §5] and, e.g.,
[21, 2.1.12]. For completeness, I will present an argument which draws out the reasons
why PFA is (likely) needed in the proof of Theorem 1.3 while MAℵ1 is sufficient for
the proof of Theorem 1.1. I will include details which until now have been left to the
reader.

For this section, let A be a given Aronszajn line and C be a given Countryman
line. We will generally be interested in pairs A and C which satisfying the following
hypothesis, but we will make explicit mention of when this property is needed:

H: Whenever X is an uncountable suborder of A, X contains a copy of C.

In particular, (H) implies that A does not contain a Souslin suborder. Without loss
of generality, both A and C are orderings on the underlying set ω1. I will freely use
the notation and observations collected in Section 2.
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Definition 3.1. Define Q0 to be the collection of all finite partial functions from A
to C which preserve order. This is considered as a forcing notion with the order of
reverse inclusion.2

The forcing Q0 fails to satisfy the countable chain condition for any number of
reasons (which should become apparent momentarily). The following notion of [1] is
what is needed to refine Q0 to a collection which does satisfy the c.c.c..

Definition 3.2. If f is a partial function from A to C and δ < ω1, then f is said to
respect δ if:

(1) for all α in the domain of f ,

α < δ ⇔ f(α) < δ.

(2) for all α 6= β in the domain of f ,

∆A(α, β) < δ ⇔ ∆C(f(α), f(β)) < δ.

If E is a subset of ω1, then f respects E if f respects every element of E.

The following lemma gives an indication as to why this definition will play a role.
It will be used in the verification of Theorem 1.1.

Lemma 3.3. If R ⊆ A2 is a non decreasing relation, then there is a club E ⊆ ω1

such that if q is in Q0 and q ⊆ R, then for all α 6= β in the domain of q and δ in E,

∆A(α, β) < δ ⇔ ∆A(q(α), q(β)) < δ.

Proof. Suppose that ζ is in A. Define h(ζ) to be the supremum of all countable
ordinals of the form ∆A(β, β′) such that for some α and α′ in A with α <A ζ <A α′,
either both (α, β) and (α′, β′) or both (β, α) and (β′, α′) are in R. This supremum
is countable by Fact 2.1 and the assumption that A is Aronszajn. If E is the club
of those δ < ω1 which are closed under h, then E satisfies the conclusion of the
lemma. �

The following lemma will be needed in proving the countable chain condition of
certain refinements of Q0.

Lemma 3.4. (H) Suppose that 〈qξ : ξ < ω1〉 is a sequence of elements of Q0 which
all respect some fixed club E ⊆ ω1. Then there is an uncountable Γ ⊆ ω1 such that
qξ ∪ qη is in Q0 whenever ξ 6= η are in Γ.

Proof. It will be useful to first make a definition and adopt a notational convention
which will be used later as well. If 〈qξ : ξ < ω1〉 is an uncountable sequence of disjoint
elements of Q0, it is possible by routine arguments (and the use of (H) and Fact 2.4)
to find an uncountable subset Γ of ω1 such that:

(1) for ξ in Γ, |dom(qξ)| does not depend on ξ;
(2) there is a γ < min(Γ) such that if ξ is in Γ, α 6= α′ are in dom(qξ), and

∆A(α, α′) < ξ, then
∆A(α, α′) < γ

∆C(qξ(α), qξ(α′)) < γ;

2In this paper, p ≤ q means that p is a stronger condition in a given forcing notion.
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(3) if ξ < η are in Γ, i < n, α is the ith least element of dom(qξ) and α′ is the ith

least element of dom(qη), then

γ < ∆A(α, α′) < ξ

γ < ∆C(qξ(α), qη(α′)) < ξ;
(4) if ξ < η are in Γ, then every ordinal mentioned in qξ is less than every ordinal

mentioned in qη.
Such a sequence is said to be in standard form (with uniform size n). If only one
such sequence is under discussion and ξ is in Γ, I will use ξi and qξi to denote the ith

<A-least element of dom(qξ) and its respective image under qξ.
Returning to the proof, first refine to a sequence 〈qξ : ξ ∈ Γ0〉 in standard form.

Applying (H) n times, using the fact that C2n is the union of countably many non
decreasing relations, it is possible to find an uncountable Γ ⊆ Γ0 such that if ξ < η
are in Γ, then for all i < n, ξi <A ηi iff qξi <C qηi iff ξ0 <A η0. It suffices to show
that Γ satisfies the conclusion of the lemma. To this end, let ξ < η be in Γ and let
i, j < n.

First suppose that ∆(ξi, ξj) ≥ ξ. By definition of Γ0, this implies ∆(ηi, ηj) ≥ η.
Consequently, ξi <A ηj iff ξi <A ηi iff qξi <C qηi iff qξi <C qηj as desired. Notice
that in the last equivalence we utilized that qη respects η.

Now suppose that ∆(ξi, ξj) < ξ. Then ∆(ξi, ξj) = ∆(ηi, ηj) and ∆(qξi, qξj) =
∆(qηi, qηj). Hence ξi <A ξj iff ξi <A ηj and qξq <C qξj iff qξi <A qηj . This finishes
the proof. �

The lemma suggests that, for an appropriately chosen club E ⊆ ω1, we consider
the collection Q ⊆ Q0 of all q which respect E. Such an E will need to satisfy two
conditions — one to ensure that Q satisfies the c.c.c. and the other to guarantee that
certain sets are dense in Q.

Definition 3.5. A club E ⊆ ω1 is fast enough for A and C if whenever 〈qξ : ξ < ω1〉
is a sequence of disjoint elements of Q0 which respect E and α < ω1, there are ξ 6= η
greater than α such that qξ∪qη respects E. An ordinal ν < ω1 is said to be elementary
for A and C iff there is a countable elementary submodel N of H(ω2) such that A
and C are in N and ν = N ∩ ω1.

If E is fast enough for A and C and consists of elementary ordinals, then define
Q to be all elements of Q0 which respect every element of E. It follows immediately
from Lemma 3.4 and the definition of fast enough that Q satisfies the countable chain
condition.

We now turn to the task of finding a fast enough club for a pair A and C.

Lemma 3.6. If A is Countryman and C is isomorphic to a suborder of A, then there
is a club E which is fast enough for A and C.

Proof. Since A is Countryman, there are non decreasing relations Rn ⊆ A2 which
cover A2. Applying Lemma 3.3 and intersecting clubs, it is possible to find a club E
such that if q is an element of Q0 which is a subset of some Rn, then for all α 6= β in
the domain of q and δ in E,

∆A(α, β) < δ ⇔ ∆A(q(α), q(β)) < δ.
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It suffices to show that E is fast enough for A and C.
To this end, suppose that 〈qξ : ξ < ω1〉 is given sequence of elements of Q0 which

each respect E. Select an uncountable Γ ⊆ ω1, an n < ω, and natural numbers mi,j

for i < j < n such that if ξ is in Γ, then the domain of qξ has cardinality n and
if i, j < n, then (ξi, qξj) is in Rmi,j

. It is now follows that if ξ < η are in Γ, then
qξ ∪ qη respects E. In particular, Γ satisfies the desired property with respect to E
and 〈qξ : ξ < ω1〉. �

Hence if both A and C are Countryman, then Q can be built in V and an application
of MAℵ1 to the dense sets provided by Lemma 3.10 below suffices to obtain the
conclusion of Theorem 1.1. The next lemma indicates that fast enough clubs always
exist in appropriate generic extensions by σ-closed forcing notions. The argument of
[1, §5] can be adapted to show that Baumgartner’s forcing for adding a club by finite
approximations also can be used to generate fast clubs.

Lemma 3.7. (H) Suppose V [G] is a generic extension by a σ-closed forcing and
E ⊆ ω1 is a club in V [G] such that for every club E′ ⊆ ω1 in V , E \E′ is countable.
Then E is fast enough for every A and C in V .

Remark 3.8. If the cardinality of P(ω1)∩ V is collapsed to ℵ1 by a σ-closed forcing,
then in the extension, there is a club satisfying the hypothesis of Lemma 3.7.

Proof. Suppose for a moment that 〈qξ : ξ ∈ Γ〉 is a sequence in standard form of
disjoint elements of Q0. Another such sequence 〈q′ξ : ξ < Γ〉 is ∆-equivalent to
〈qξ : ξ < ω1〉 iff they have the same uniform size n and for all i, j < n

∆(ξi, ηj) = ∆(ξ′i, η
′
j)

∆(qξi, qηj) = ∆(qξ′i, qη
′
j).

(Here, e.g., ξ′i and qξ′i have the obvious meaning.) The following claim follows easily
from [15, 8.13].

Claim 3.9. If G is generic for a σ-closed forcing, A and C are in V , and 〈qξ : ξ ∈ Γ〉
is an element of V [G] which is an uncountable sequence of disjoint elements of Q0,
then there is an uncountable subsequence which is ∆-equivalent to a sequence in V .

Finally notice that for a sequence 〈qξ : ξ < ω1〉 as above, there is a club E~q which is
fast enough for the sequence. Hence a club E as in the statement of the lemma is fast
enough for all ground model sequences and therefore, by Claim 3.9, for all sequences
in V [G] as well. �

Now we turn our attention to the relevant density lemma. The proof of this lemma
is routine but somewhat tedious. Its proof was omitted in the analogous argument
in [21, 2.1.12]. I have included it here for completeness and because this is where the
(essential) assumptions of ℵ1-density and non stationarity are used in the proof of
Theorem 1.1.

Lemma 3.10. Suppose A and C are Aronszajn lines (C need not be Countryman).
If C is non stationary and ℵ1-dense and α is in A, then the set of all q in Q such that
α is in the domain of q is dense in Q. Similarly, if A is non stationary and ℵ1-dense
and β is in C, then the set of all q in Q such that β is in the range of q is dense in
Q.
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Proof. By replacing the role of A and C and elements of Q with their inverses, it
suffices to prove the first half of the lemma. Assume that C is non stationary and
ℵ1-dense and let q be an element of Q and α be in A. If ξ < ω1, let δ(ξ) be the
greatest element of E ∪ {0} which is less than or equal to ξ. If α 6= α′ are in A, then
δA(α, β) will be used to abbreviate δ(∆A(α, α′)) This is similarly defined for α 6= α′

in C.
Let α0 and α1 be elements of dom(q) ∪ {−∞,+∞} such that α0 <A α <A α1 in

A and there is no α′ 6= α in dom(q) such that α0 <A α′ <A α1. We will focus on
the case where neither α0 nor α1 are ±∞ since the argument applies with routine
modification to the degenerate cases. There are now three cases depending on the
relationship between δA(α0, α) and δA(α, α1).

If δA(α0, α) = δA(α, α1), then observe that we also have

δA(α0, α) = δA(α0, α1) = δC(q(α0), q(α1)).

Let ν denote this common value and let ν+ be the least element of E greater than
ν. Using elementarity of ν+ and ℵ1-density of C, select β0 <C β1 such that δ(β0) =
δ(β1) = ν. Again using ℵ1-density of C and elementarity of ν+, choose an extension
q̄ of q to α so that

δ(q̄(α)) = δ(α)
β0 <C q̄(α) <C β1.

Observe that δC(q̄(αi), q̄(α)) is at least ν by Fact 2.1 and at most ν as witnessed by
βi. Transitivity of <A and <C implies q̄ is in Q0 and Fact 2.1 can be used to verify
that q̄ respects E and hence is in Q.

Now suppose that δA(α0, α) 6= δA(α, α1). As the argument is similar in both
cases, I will only present the proof for the case δA(α0, α) < δA(α, α1). By non
stationarity of C and arguing as in the previous case, there is a β in C such that
q(α0) <C β <C q(α1), δ(β) = δ(α), and δC(β, q(α1)) = δA(α, α1). If q̄ is an extension
of q to α so that q̄(α) = β, then q̄ is in Q as desired. �

Finally, in Section 5 it will be useful to have the following lemma.

Lemma 3.11. (MAℵ1) Suppose that C is Countryman. Then there is an uncountable
suborder C0 of C which is isomorphic to C such that whenever x is in C \ C0, there
is a set H ⊆ C which is isomorphic to Q such that x is in H and no two elements of
H have an element of C0 between them.

This can be accomplished by applying Theorem 1.3 to A = C ×Q for any C (the
above arguments show MAℵ1 is sufficient). This gives an embedding of C ×Q into C
and, setting C0 equal to the image of C × {0}, we have the desired suborder.

Remark 3.12. The existence of a pair C0 ⊆ C as in Lemma 3.11 does not require the
assumption of MAℵ1 . This can be achieved either by modifying the constructions of
[21] or invoking Keisler’s completeness theorem for Lω1ω(Q) [5].

4. Families of Aronszajn subtrees and PFA

In the proof that ηC is universal, we will be interested in certain collections of
subtrees of an Aronszajn tree T . In this section I will recall some the result of [6]
which will be needed and also prove some additional related lemmas. For ease of
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reading, T will denote an arbitrary Aronszajn tree for the duration of this section.
A subset U ⊆ T is a subtree if U is uncountable and downward closed — whenever
s < t are in T with t in U , it follows that s is in U .

Definition 4.1. A collection F of subtrees of T is predense if whenever U is a subtree
of T , there is a V in F such that U ∩ V is uncountable (and hence a subtree). If F
is a collection of subtrees, then F⊥ will be used to denote the set of all subtrees U
of T which have countable intersection with every element of F .

Notice that trivially F ∪F⊥ is predense. Also, it is trivial that (F⊥)⊥ contains
F , though in general one does not expect equality to hold.

In order to motivate our interest in these definitions, suppose that T is equipped
with a lexicographic order and that C is a Countryman line. Let ±F consist of all
subtrees U of T which are embeddable into ±C when equipped with the inherited
lexicographic order. It should be clear that every element of +F has countable
intersection with every element of −F or, equivalently, that ±F ⊆ ∓F⊥. This
follows from the basic property of Countryman lines mentioned in the introduction.

Recall the following theorem of [6].

Theorem 4.2. (PFA) If F is a collection of subtrees of T , then there are 〈Uξ : ξ <
ω1〉, 〈Vξ : ξ < ω1〉, and a club E ⊆ ω1 such that:

(1) For all ξ < ω1, either Uξ is in F or is empty and Vξ is in F⊥ or is empty.
(2) If t is in T with height δ in E, then either:

(a) there is a ξ < δ such that t is in Vξ or
(b) there is a δt < δ such that if ν is in E with δt < ν < δ, then there is a

ξ < ν with t � ν in Uξ.

If F = (F⊥)⊥, then it is possible to draw a stronger, simpler conclusion.

Theorem 4.3. (PFA) If F is a collection of subtrees such that F = (F⊥)⊥, then
there is a sequence 〈Uξ : ξ < ω1〉 of elements of F ∪F⊥ and a club E ⊆ ω1 such that
if t is in T of height δ in E, then there is a ξ < δ such that t is in Uξ.

Now we will return to our example.

Lemma 4.4. (PFA) Suppose that +F and −F are defined as above. If U is a subtree
of T and U has countable intersection with every element of ±F , then U is in ∓F
(i.e. ±F⊥ = ∓F ).

Proof. Since −C is also Countryman, it suffices to prove that +F⊥ = −F . Suppose
that U is an arbitrary subtree of T . By Theorem 1.3, it suffices to prove that either
U has uncountable intersection with some element of +F or else every uncountable
subset of U contains an uncountable suborder which embeds into −C. Let X be
an arbitrary uncountable subset of U . By [10], there is a subset Y of X which is
isomorphic to either C or −C. If it is always the case that this set Y is isomorphic
to −C, then we are done.

If Y is isomorphic to C, then I claim that the downward closure V of Y must be
an element of +F . Again, by appealing to Theorem 1.3, it is sufficient to show that
if Z is any uncountable subset of V , then Z contains a subset embeddable into C. To
see that this is indeed the case, let Z ⊆ V be uncountable and select an uncountable
Z0 ⊆ Z which is an antichain in the tree order. For each z in Z0, let φ(z) be an
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element of Y such that z ≤ φ(z) in the tree order on T . It follows from the definition
of lexicographic ordering that φ preserves the lexicographic order and hence embeds
Z0 into an isomorphic copy of C. This finishes the proof. �

5. PFA implies ηC is universal

I am now ready to argue that PFA implies that ηC is universal. In this section A
and C will be as in Section 2 and, for brevity, the subscript of A in TA and ∆A will
be suppressed. Also, fix a C0 ⊆ C as in Lemma 3.11.

Applying the results of Section 4, fix a sequence 〈Uξ : ξ < ω1〉 of closed subtrees of
T and a club E ⊆ ω1 satisfying the conclusions of the Lemma 4.3. Let σξ ∈ {+,−} be
such that Uξ is in σξF and pick fξ : Uξ → σξC0 which is order preserving. Here we
view the range of fξ as a subset of ζC . Define Ûξ for ξ < ω1 to be the set of all s in S
with length in E such that either s is in Uξ or else the length of s is at most the least
element of E greater than ∆(s, Uξ). Notice that, for a fixed ξ < ω1, every interval of
Ûξ which is disjoint from Uξ is countable. It follows that fξ can be extended to an
order preserving map from Ûξ to C. This extension will also be denoted by fξ.

Since A is isomorphic to a suborder of T , it is sufficient to define an order preserving
map from T into ηC . If t is in T , define two finite sequences 〈ξi : i < k〉 and 〈νi : i < k〉
of ordinals as follows. Set ν0 equal to the least element of E. If νi has been defined,
ξi is the least ordinal such that t � νi is in Uξi . If ξi has been defined and t is not
in Uξi , let νi+1 be the least element of E such that t � νi+1 is not in Uξi . Let k be
minimal such that t is in Uξk−1 . Notice that, for all i < k, t � νi is in Ûξi . Define Φ(t)
in ηC as follows. If i < k, put Φ(t)(i) = fξi(t � νi) and if i ≥ k, put Φ(t)(i) = 0.

It now suffices to show that Φ preserves order. Suppose that s <lex t be in T and
let γ be the least ordinal such that s(γ) 6= t(γ). The sequences of ξi’s and νi’s which
are constructed for s and t coincide at least until νi is greater than γ; let i be maximal
such that νi ≤ γ. We know that s � γ = t � γ is in Uξ and therefore that s � (γ + 1)
and t � (γ + 1) are in Ûξ.

Observe that since s � νi = t � νi, Φ(s)(j) = Φ(t)(j) for all j < i. Also, s <lex t
iff s � νs

i+1 <lex t � νt
i+1 iff s � (γ + 1) <lex t � (γ + 1). It follows that s <A t iff

Φ(s)(i) <ζC
Φ(t)(i) iff Φ(s) <ηC

Φ(t). Since s and t were arbitrary, Φ preserves order.

6. Concluding remarks and questions

As mentioned in the introduction, the results of this paper suggest an analogy
between the relationship of ω and −ω to η = otp(Q) and the relationship of C and
−C to ηC under the assumption of PFA. In this analogy, ζC corresponds to the
order type ζ of Z. Notice that, just as any linear order which does not contain η
must contain a non empty interval which is embeddable into ω or −ω, we have the
following proposition.

Proposition 6.1. (PFA) If A is an Aronszajn line, then either A is bi-embeddable
with C or else A contains a non empty interval which is bi-embeddable with C or −C.

If we define an Aronszajn line to be fragmented3 if it does not contain a copy of ηC ,
then the above analogy extends to give a strong connection between the (countable)

3This definition is only appropriate under a hypothesis such as PFA.
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scattered linear orders and the fragmented Aronszajn lines. In particular, one can
associate a rank to a fragmented Aronszajn line which corresponds to how many
applications of a derivative operation are necessary in order to trivialize it.

Laver has shown the countable linear orders are well quasi-ordered by embeddabil-
ity [9] and the above analogy suggests the following conjecture.

Conjecture 6.2. (PFA) The Aronszajn lines are well quasi-ordered by embeddability.

This could be verified using the methods of [9] if one could prove the following
from PFA (see [9] for undefined notions): If Q is a better quasi-order and C is a
Countryman line, then QC is a better quasi-order.

Finally, it should be noted that some large cardinal assumptions are likely necessary
in order to establish the relative consistency of the results in this paper. The results
of [6] show that all of the conclusions mentioned in this paper can be established
consistent relative to the existence of a Mahlo cardinal. The conclusion of Theorem
4.2 implies that there are no Kurepa trees and hence has the consistency strength
of at least an inaccessible cardinal. It is an open problem, however, whether the
conclusion of Theorem 1.2 has any non-trivial consistency strength. It is also an
intriguing problem whether the conclusion of Theorem 1.2 implies |R| ≤ ℵ2.
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