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Abstract. We prove that there is a Gδ σ-ideal of compact sets
which is strictly above NWD in the Tukey order. Here NWD is
the collection of all compact nowhere dense subsets of the Cantor
set. This answers a question of Louveau and Veličković asked in
[4].

1. Introduction

Given two directed partial orders (P,≤P ) and (Q,≤Q), we say that

P is Tukey reducible to Q, in symbols P ≤T Q, if there exists a function

f : P → Q such that for each q ∈ Q, {p ∈ P : f(p) ≤Q q} is bounded

in P . Tukey reducibility is used to compare the cofinal structure of

directed partial orders. The reader is referred to the literature cited in

[8] for a glimpse of the work done so far on the subject. Each directed

partial order is easily seen to be Tukey bi-reducible with the ideal of

its bounded subsets ordered by inclusion. Thus the study of Tukey

reducibility is equivalent to the study of Tukey reducibility of ideals of

sets ordered by inclusion.

In order to rule out pathologies and make the study more tractable, it

is natural to impose additional structural and definability requirements

on the ideals under consideration. Recently in [8] the class of basic

orders was introduced as a class which both included many of the

motivating examples and for which a broad theory of Tukey reduction

can be developed. The class of basic orders includes two subclasses of

ideals that have emerged as playing a fundamental role. They are the
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analytic P-ideals of subsets of ω and the analytic σ-ideals of compact

sets in a fixed compact metric space. These two classes are referred to

in [8], as the measure leaf and the category leaf, respectively. Within

each class, one obtains a further automatic reduction in descriptive

complexity: the analytic P-ideals are all Fσδ (i.e. Π0
3) [6] and the

analytic σ-ideals of compact sets are all Gδ (i.e. Π0
2) [3].

It was proved in [4] that the ideal

{x ⊆ ω :
∑
n∈x

1

n + 1
< ∞}

is the largest element with respect to the Tukey reduction in the mea-

sure leaf. Louveau and Veličković asked in [4] if the ideal of nowhere

dense compact subsets of 2ω is the largest element with respect to the

Tukey reduction in the category leaf. In Theorem 3.1, we answer this

question in the negative. In fact, we show that there exists a Gδ, σ-

ideal of compact subsets of 2ω that is Tukey strictly above the nowhere

dense ideal. It should be noted, however, that in [7] a condition was

isolated which is fulfilled by all “naturally occurring” analytic σ-ideals

of compact sets and which insures that the ideal is Tukey reducible to

the nowhere dense ideal.

In this note the letters i, j, k, l, m, and n will always represent

elements of the set ω of natural numbers. Hence “j < 2” should be

interpreted as meaning that j comes from the set {0, 1}. We will use

FF to denote the collection of all functions whose domain is a finite,

non-empty subinterval of ω and whose range is contained in {0, 1}.
We will use 0̄ and 1̄ to denote the constant sequences of unspecified

(possibly infinite) length. If σ is in FF, [σ] will be used to denote the

clopen set {x ∈ 2ω : σ ⊆ x}. If X is a topological space, NWD(X) will

be used to denote the collection of all closed nowhere dense subsets of

X. For brevity, we will write NWD for NWD(2ω).

2. The definition of I0 and its basic properties

The first examples of “exotic” Gδ σ-ideals of compact sets were con-

structed by Mátrai in [5] in order to answer a question of Kechris from

[2]. The Gδ σ-ideal of compact sets, which will be used to prove our

theorem, was defined in [7, Section 6] and was called there I0. We will

retain this notation here. We will recall the definition of I0 and, for

completeness, re-prove that it is a Gδ. This proof also draws out some
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of the important features of the ideal. (After the present paper was

completed, Mátrai showed that also his ideal from [5] does not Tukey

reduce to NWD. It is not clear if it is Tukey strictly above NWD.)

In order to define the ideal I0, it will be useful to introduce some

notation. If x is in 2ω and Π is a partition of ω into finite intervals, let

R(x, Π) be the set of all y in 2ω such that for every i < ω there is a

j < 2 such that

x � Π(2i + j) = y � Π(2i + j).

Here Π(i) is the element of Π with the ith least minimum.

We will let R denote the collection of all R(x, Π) as x and Π vary over

elements of 2ω and partitions consisting of finite non-empty intervals,

respectively. Elements of R will be referred to as test spaces. The ideal

I0 of interest to us is the collection of all compact K ⊆ 2ω such that

K ∩R is nowhere dense in R for every test space R.

While I0 is clearly co-analytic, it is not immediately apparent that

I0 is Gδ. If s is in FF, let Rs denote the set of all non-empty inter-

sections of the form R ∩ [s] such that R is in R. For brevity, R ∩ [s]

will be denoted by R[s]. Notice that membership to I0 is equivalent

to not containing an element of some Rs.

If Π is a partition of ω into finitely many intervals, then we say that

Π is degenerate. In this case we can still define R(x, Π) provided some

extra care is taken. Let l be the number of elements of Π. If l is even,

then R(x, Π) is defined as in the non degenerate case except that i < ω

is replaced by i < l/2. If l = 2k + 1, then R(x, Π) is the set of all y

such that if i < k, then there is a j < 2 such that

x � Π(2i + j) = y � Π(2i + j).

Observe that if Π consists of an odd number of intervals, then R(x, Π)

is clopen and if Π consists of an even number of intervals, then R(x, Π)

is the union of a clopen set and a finite set of points which are each

eventually equal to x.

The reason for considering degenerate partitions is that the set of

all partitions of ω into intervals is compact when equipped with its

natural topology. Moreover, the map sending a pair (x, Π) to R(x, Π)

is easily seen to be continuous. Since degenerate partitions give rise to

sets R(x, Π) with interior, the complement of I0 is the union of the

closures of the sets Rs as s ranges over FF. In particular, I0 is a Gδ

set.
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The following propositions will be needed to establish that NWD is

below I0 in the Tukey order.

Proposition 2.1. If R(x0, Π0) ⊆ R(x1, Π1) are test spaces, then x0 =

x1 and Π0 = Π1.

Proof. We will first show that if R(x0, Π0) ⊆ R(x1, Π1), then Π0 = Π1.

First note that for each i there is k such that max Π1(2i) = max Π0(2k);

otherwise it is easy to find a point in R(x0, Π0) which differs from x1 at

max Π1(2i) and min Π1(2i+1) (and hence is not in R(x1, Π1)). Second,

for each i, Π1(2i) ∪ Π1(2i + 1) is intersected by at most two intervals

of Π0; otherwise there would be an element of R(x0, Π0) which differs

from x1 at min(Π1(2i)) and max(Π1(2i + 1)). These two conditions

together imply that Π0 = Π1.

Now we are left to show that if R(x0, Π) ⊆ R(x1, Π), then x0 = x1.

Suppose that x0(n) 6= x1(n) for some n and let i < ω and j < 2 be

such that n is in Π(2i + j). Define y in 2ω so that y(k) = x0(k) if k

is not in Π(2i + 1 − j) and y(k) = 1 − x1(k) if k is in Π(2i + 1 − j).

Notice that

y � Π(2i + j) = x0 � Π(2i + j) 6= x1 � Π(2i + j)

y � Π(2i + 1− j) 6= x1 � Π(2i + 1− j).

Hence y is in R(x0, Π) \R(x1, Π). �

Proposition 2.2. If an element of R contains an element of Rs, then

the latter has non-empty interior in the former.

Proof. Suppose that R(x1, Π1) is an element of R and R(x0, Π0)[s] is

an element of Rs such that R(x0, Π0)[s] ⊆ R(x1, Π1). Fix i0 and i1
such that

max(dom(s)) < min(Π0(2i0)) ≤ min(Π1(2i1)).

Set m = min(Π1(2i1)).

We will first show that m is in an element of Π0 of even index.

Suppose that this is not the case and let i < ω be such that m is

in Π0(2i + 1). If n = min(Π1(2i1 + 1)) is in Π0(2i + 1), then since

dom(s) does not intersect Π0(2i) (by choice of i0 and i1), there is a y in

R(x0, Π0)∩ [s] which differs from x1 at m and n. The point here is that

we are free to put y � Π0(2i) = x0 � Π0(2i), leaving us uncommitted

to y’s restriction to Π0(2i + 1) and in particular to its values at m and



A Gδ IDEAL ABOVE NWD 5

n. If n is not in Π0(2i + 1), then pick l > i and j such that n is in

Π0(2l + j). Then find a y in R(x0, Π0) ∩ [s] by first arranging that y

agrees with x0 on Π0(2i) and Π0(2l + j). We are then free to set the

values of y at m and n which are in Π0(2i + 1) and Π0(2l + 1 − j) to

something other than x1(m) and x1(n).

Hence m in an element of Π0 of even index. Extend s to s̄ such that

R(x0, Π0)∩ [s̄] is non-empty and dom(s̄) = m. Observe that, for j < 2,

Rj = {y ∈ 2ω : s̄ˆy ∈ R(xj, Πj)}

is a test space and that R0 ⊆ R1. It follows from Proposition 2.1 that

Π0 and Π1 define the same partition on ω \m and that x0 and x1 agree

on ω \m. Consequently,

R(x0, Π0) ∩ [s̄] = R(x1, Π1) ∩ [s̄]

and therefore R(x0, Π0)[s] has interior in R(x0, Π0).

�

3. I0 is strictly above NWD

Theorem 3.1. The ideal I0 is strictly above NWD in the Tukey or-

dering.

First we will show that NWD ≤T I0. Let R be any test space. Since

R is homeomorphic to 2ω, it is sufficient to show that NWD(R) ≤T I0.

It follows immediately from Proposition 2.2, however, that NWD(R) ⊆
I0 and that, moreover, the inclusion map is a Tukey reduction.

We will now prove the following lemma which will be used to show

that I0 is strictly above NWD in the Tukey order.

Lemma 3.2. Suppose f : 2ω → NWD is Baire measurable and Vi

(i < ω) enumerates a clopen basis for 2ω. There are x in 2ω and

sequences 〈mi : i < ω〉 and 〈ni : i < ω〉 in ω such that:

(1) n0 = 0 and ni < ni+1;

(2) Vmi
is a subset of Vi and if i < j and Vi = Vj, then Vmj

⊆ Vmi
;

(3) if y is in 2ω, then either the set of i < ω such that y extends

x � [ni, ni+1) is finite or else whenever y extends x � [ni, ni+1),

then f(y) is disjoint from Vmi
.

Proof. Let f and Vi (i < ω) be given as in the statement of the lemma.

Suppose that, for some k, we have constructed 〈mi : i < k〉, 〈ni : i < k〉,
and x � nk−1. Suppose further that we have arranged that, for each
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i < k − 1, f−1({K ∈ NWD : K ∩ Vmi
= ∅}) is comeager in [σi] where

σi = x � [ni, ni+1) and that we have fixed a decreasing sequence of open

sets U j
i ⊆ [σi] (j < ω) with U j

i dense in σi for all j and with

∞⋂
j=0

U j
i ⊆ f−1({K ∈ NWD : K ∩ Vmi

= ∅}).

The following claim will be useful.

Claim. Suppose that for some k < ω, {σi}i<k is a sequence of elements

of FF and {Ui}i<k is a sequence of open sets such that Ui ⊆ [σi] is

dense in [σi] for each i < k. If n < ω is such that dom(σi) ⊆ n for all i,

then there is a τ in FF with n = min(dom(τ)) such that [σi ∪ τ ] ⊆ Ui

for each i < k.

Proof of Claim. Let {σi}i<k, {Ui}i<k, and n be given as in the state-

ment of the lemma. Construct τξ (ξ ∈ 2n) such that the domain of τξ is

interval, τξ is an initial part of τη whenever ξ <lex η, min(dom(τξ)) = n

for all ξ in 2n, and if ξ extends σi for some i < k, then [ξ ∪ τξ] is a

subset of Ui ∩ [ξ]. The proof is finished by setting τ equal to τ1̄. �

Returning to the proof of Lemma 3.2, the claim allows us to find a

τ in FF such that min(dom(τ)) = nk−1 and for all i < k, [σi ∪ τ ] ⊆ Uk
i .

By the Baire category theorem, there is an mk < ω such that Vmk
⊆ Vk

and

[σ ∪ τ ] ∩ f−1({K ∈ NWD : K ∩ Vmk
= ∅})

is non-meager where σ =
⋃

i<k σi. Since f is Baire measurable, we can

fix nk and σk : [nk−1, nk) → 2 such that σk extends τ and f−1({K ∈
NWD : K∩Vmk

= ∅}) is comeager in [σ∪σk]. The recursion is finished

by fixing a decreasing sequence U j
k (j < ω) of open dense subsets of

[σ ∪ σk] satisfying

∞⋂
j=0

U j
k ⊆ f−1({K ∈ NWD : K ∩ Vmk

= ∅}).

Now suppose that y is in 2ω and that there are infinitely many i < ω

such that σi ⊆ y. If σi ⊆ y, then we claim that y is in U j
i for all j < ω

and consequently f(y) is disjoint from Vmi
. In order to see this, let j

be given. Pick a k > j such that σk ⊆ y. Then y is in Uk ⊆ Uj, as

desired. �
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We are now ready to finish the proof of Theorem 3.1. Suppose for

contradiction that F : I0 → NWD is a Tukey reduction. By [8,

Theorem 5.3(i)], we may assume without loss of generality that F is

measurable with respect to the σ-algebra generated by analytic sets.

Define f : 2ω → NWD by setting f(x) = F ({x}). Now, f is also

measurable with respect to the σ-algebra generated by analytic sets

and, therefore, it is Baire measurable. Let Vi (i < ω) be an enumeration

of the non-empty clopen subsets of 2ω such that for all i, V2i+1 = V2i.

Let x, 〈mi : i < ω〉, and 〈ni : i < ω〉 be given as in the conclusion of

Lemma 3.2. Define

E = 2ω \
∞⋃
i=0

Vm2i+1

and let R be the set of all y in 2ω such that for every i < ω, there is a

j < 2 such that

y � [n2i+j, n2i+j+1) = x � [n2i+j, n2i+j+1).

The set R is a test space and hence {{y} : y ∈ R} is unbounded in

I0. On the other hand, E is nowhere dense since if U ⊆ 2ω is open,

there is an i < ω such that Vi ⊆ U and then Vm2i+1
⊆ Vm2i

⊆ Vi is

disjoint from E. Also, if y is in R, then f(y) is disjoint from Vm2i+1

for any i < ω and consequently F ({y}) ⊆ E for every y in R. It

follows that F−1({K ∈ NWD : K ⊆ E}) is unbounded, contradicting

our assumption that F was a Tukey map. The theorem is therefore

proved.

Two remarks about the proof above are in order. First, Proposition

2.2 shows that whenever L is a compact set which is positive with

respect to I0, there is a positive compact set K ⊆ L such that both

I0 � K ≤T NWD and NWD ≤T I0 � K. This suggests the following

question: If J is a Gδ σ-ideal of compact sets, must every J -positive

compact set contain a J -positive compact set K such that J � K ≤T

NWD? Second, in order to deny the existence of a Tukey function

from I0 to NWD, we needed to analyze its restriction to the set of all

singletons of the underlying space. This occurs frequently in proofs of

non-existence of Tukey functions defined on ideals of compact sets. Its

first appearance we found in [1, 3M Proposition (a)].
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