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1. INTRODUCTION
In 1948, Katétov proved the following metrization theorem.

Theorem 1.1. [3] If X is a compact space' and every subspace of X3
18 normal, then X is metrizable.

This is an immediate consequence of the following two results which
are of independent interest.

Theorem 1.2. [3] If X x Y is hereditarily normal, then either X is
perfectly normal or else every countable subspace of Y is closed and
discrete.

Theorem 1.3. [7] If X is a compact space and the diagonal is a G
subset of X2, then X is metrizable.

Katétov then asked whether the dimension in his theorem could be
lowered to 2. In [1] Gruenhage and Nyikos present two examples which
show that consistently this is not possible.

Theorem 1.4. [1] If there is a Q-set then there is a separable compact
space X such that X? contains an uncountable discrete subspace and
yet has every subspace normal.

Theorem 1.5. [1] If the Continuum Hypothesis is true, then there is
a non-metrizable compact space X such that every subspace of X? is
separable and normal.

The first construction is due to Nyikos and is optimal in the sense
that the existence of such a space implies the existence of a Q)-set [1].
The second construction is due to Gruenhage and does not obviously
require the full strength of the Continuum Hypothesis.

In [4], Larson and Todorcevic proved that it is consistent that Katétov’s
problem has a positive answer.
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Theorem 1.6. [4] [t is relatively consistent with ZFC that if X is a
compact space and X? is hereditarily normal, then X is metrizable.

The solution they give represents a set theoretic breakthrough. The
purpose of this section is to suggest how one might obtain a positive
solution to Katétov’s problem via an analysis which is almost purely
topological. The broader goal is to obtain a better understanding of
hereditary and perfect normality in compact topological spaces.

I will begin by giving a list of questions which have so far have not
received much attention. I was made aware of most if not all of them
by Todorcevic.

Question 1.7. If X is compact and X? is hereditarily normal, must
X be separable?

Recall that a space X is premetric of degree < 2 iff there is a contin-
uous map f from X into a metric space such that the preimage of any
point contains at most two elements. Both Gruenhage’s and Nyikos’s
examples in [1] are premetric of degree < 2.

Question 1.8. (see [8]) If X is compact and X? is hereditarily normal,
must X be premetric of degree < 27

Question 1.9. [f there is a compact non-metrizable X which is pre-
metric of degree < 2 such that X? is hereditarily normal, must there
exist either a QQ-set or a Luzin set?

In each case, a positive answer to the question is a consequence
of a positive answer to Katétov’s problem and hence is consistent by
[4]. The hope is that it is possible to prove positive answers to these
questions in ZFC.

Notice that a counterexample to Question 1.7 is necessarily a com-
pact L space. While a Suslin line comes to mind as a candidate for an
example, M. E. Rudin has shown that this is not possible — if L is a
compact Suslin line, then L? is not hereditarily normal [6]. Interest-
ingly, however, 2% < 2% implies that a counterexample to Question
1.7 must have a square which does not satisfy the countable chain con-
dition. This is a consequence of the following results of Shapirovskii
and Todorcevic.

Theorem 1.10. (see [11]) The reqular open algebra of any hereditarily
normal ccc space has size at most continuum.

Theorem 1.11. [10] If X is compact and X? does not contain an
uncountable discrete subspace, then X 1is separable.
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Observe that a positive answer to Question 1.8 would give a positive
answer to Question 1.7 since every premetric compactum of degree < 2
is separable.

Question 1.9 is motivated Theorem 1.14 below which shows that
Gruenhage’s construction requires the existence of a Luzin set. Observe
that it is relatively easy to obtain a model of set theory in which there
are no ()-sets or Luzin sets — this is true after adding Ny random reals
to any model, for instance. Hence a positive solution of the above
questions would yield a different solution to Katétov’s problem.

We will now revisit Gruenhage’s example mentioned above. The con-
struction is closely based around a well known construction of Kunen.

Theorem 1.12. [2] If the Continuum Hypothesis is true, then there
is a strengthening of the topology on R to a topology which is locally
countable, locally compact, and such that the difference between the
closure of a set in this and the usual topology is countable. In particular
such a space is hereditarily separable but not Lindelof.

M. Wage observed that the construction could be carried out on
an arbitrary uncountable set of reals instead of just R assuming the
Continuum Hypothesis. Such spaces have come to be known as Kunen
lines. Gruenhage’s construction is connected in the sense that his X?
contains a subspace Z which maps 2-1 onto a Kunen line where the
underlying set of reals is a Luzin set.

In order to state Theorem 1.14 concisely, I will first introduce some
notation.

Definition 1.13. Suppose that X and Y are topological spaces and
[ X — Y is continuous. Define A; to be all pairs (zg,21) in X3
such that f(zo) = f(x1). The function f, : Ay — Y is defined by

fe@y) = f(x) = f(y).

If f is the identity function, then A is the diagonal and the subscript
is suppressed, giving the standard notation.

Theorem 1.14. Suppose that X is a compact non-metrizable space
such that

(1) X? is hereditarily normal,

(2) X is premetric of degree < 2, and

(3) the quotient of Ay \ A by f. is a Kunen line.

Then there is a Luzin set.

Remark. It is not clear whether Gruenhage’s construction can be car-
ried out from the existence of a Luzin set. Todorcevic has shown that
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an analogue of Wage’s construction can be carried out if b = Ny, an
assumption which follows from the existence of a Luzin set.

Theorem 1.15. [9] (b = Ny) If X is a set of reals of size Ny, then
there is a refinement of the metric topology which is locally compact,
locally countable, perfectly normal and hereditarily separable in all of
its finite powers.

Carrying out Gruenhage’s construction assuming only the existence
of a Luzin set seems to be a considerably more subtle matter — see my
note [5] for some limited progress. I conjecture that this is possible.

Proof. Let X be given as in the statement of the theorem and f : X —
K witness that X is premetric of degree < 2. If U is an open subset
of X and {zg,z;} is a pair of points in X then we say that U splits
{x0, 71} if both U and X \ U contain an element of {zg,z;}. Since X
is non-metric and compact, it is possible to recursively select points z¢
in K and open sets U in X such that Ug splits f~(z¢) but does not
split f~1(z,) f € <np<wy. Let Z={z:{ <w}andlet V, (n <w)
enumerate a base for the topology on K. By removing points from Z
if necessary, we may assume that it has no countable neighborhoods.
Observe that if f(z) = z¢ then one of the collections

{f_l(vn) N UE SRS f_l(vn)}
{7 V)T e f7H(Va)}

intersects to the singleton {2} and hence forms a local base for z. Also
observe that since f~(V,) does not split any pair of the form f~!(z)
for 2 € K, sets of the form f~%(V,) N Uz and f~1(V,,) \ U can split
f'(z,) only when n < ¢&.

Suppose that Z is not a Luzin set in clx(Z). It suffices to show that
X? is not hereditarily normal. To this end, let £ C K be a closed set
such that N Z is relatively nowhere dense and uncountable. Define
the following sets

G = {(zo,21) € Ay : xg # 21 and fi(zo,21) € ENZ}
H={(z,z) € X*: f(z) & E}.
Clearly GNH=GNH-= @;It is sufficient to show that if W C X? is
open and contains H then W N G is nonempty.

By shrinking W if necessary, we may assume that is a union of sets
of the form

(V) N U) < (f7H(Va) N U) U (7 (V) \ Te) < (f 7 (Va) \ Te))

for n < w and ¢ < w; such that V,, N E = . Since X? is hereditarily
normal, it follows from [3] that X is perfect and therefore that W is a
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countable union of such sets. Let § be an upper bound for all £ < w;
required in this union. If § < £ < w; and (zg,21) is in Ay \ A with
fe(xo, 1) = 2, then (zg,271) is in W provided that z¢ is not in £. Put

By our assumption on Ay \ A, the closure of Z \ (E U D) in the
metric topology and in the quotient topology induced by f, differ by
a countable set D’. Since E is nowhere dense, D is countable, and Z
has no countable neighborhoods, Z is contained in the metric closure
of Z\ (EUD).

I will now show that if (zg,z1) is in Ap\ A with f,(zg, 21) in Z\ (DU
D"), then either (zg,z1) or (g, 1) is in the closure of W. This finishes
the proof since there is a (z¢, z1) such that f.(xg,z1) isin Z\ (DU D’)
and both (zg,x1) and (z1,z0) are in G. To this end, suppose that
(xo,x1) are given as above and let z = fi(xo, ;). Since z is not in D',
z is a limit point of Z \ (E' U D) in the quotient topology since it is
in the metric topology. This means that there is an element of f;1(z)
which is in the closure of the f.-preimage of Z \ (£ U D). Since this
preimage is contained in W, either (xg,z1) or (z1,x) is in the closure
of W as desired. O
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