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A SOLUTION TO THE L SPACE PROBLEM

JUSTIN TATCH MOORE

1. Introduction

In [23], Todorcevic gives a survey of basis problems in combinatorial set theory,
listing nine theorems and six working conjectures1 — all in the presence of PFA —
including the following three of interest to us here:

Conjecture 1. (Todorcevic; [23]) If R is a binary relation, then either R ≤ ℵ0 ·ω1

or [ω1]<ℵ0 ≤ R.

Conjecture 2. (Hajnal, Juhasz; [5]) If X is a regular Hausdorff space, then the
following are equivalent:

(i) X is hereditarily separable.
(ii) X is hereditarily Lindelöf.
(iii) X does not contain an uncountable discrete subspace.

Conjecture 3. (Gruenhage; [3]) The uncountable regular Hausdorff spaces have a
three element basis consisting of a set of reals of cardinality ℵ1 with the metric, the
Sorgenfrey, and the discrete topology.

According to the survey article [7], Kunen formulated the partition relation

ω1 → (ω1, (ω1;ω1))2,

while studying Conjecture 2 in the 1970s. He showed that it would imply positive
resolution of Conjecture 2 and asked whether it is consistent. Afterward Laver
showed that under MAℵ1 this partition relation is equivalent to the formally weaker
partition relation

ω1 → (ω1;ω1)22.
Around the same time, Galvin showed that the positive square bracket relation
ω1 → [ω1]25 implies ω1 → (ω1;ω1)22.

In [19] Todorcevic showed that ω1 6→ [ω1]25 by employing a new technique — the
method of minimal walks — which has also proved useful in many other applications
(see [24]). This technique will be employed in this paper where I will prove the
following results which refute ω1 → (ω1;ω1)22 and Conjectures 1–3.
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Theorem 1.1. There is a function f : [ω1]2 → ω1 such that whenever A,B ⊆ ω1

are uncountable and ξ < ω1 there are α in A and β in B such that α < β and
f(α, β) = ξ. In particular ω1 6→ (ω1;ω1)22.

Theorem 1.2. There is a family F of binary relations which contains an antichain
of cardinality 2ℵ1 , is downwards directed, and such that for all R in F , R 6≤ ℵ0 ·ω1

and [ω1]<ℵ0 6≤ R.

Theorem 1.3. There is a non-separable, hereditarily Lindelöf subspace L of Tω1 .
Moreover the closure in Tω1 of any uncountable subset of L contains a canonical
homeomorphic copy of Tω1 .

Theorem 1.4. Any basis for the uncountable topological spaces has cardinality
strictly greater than ℵ1.

It is worth noting that it was known early on that the existence of an L space
alone gives a refutation of these conjectures. The above results, however, take the
failures of these conjectures a step further and require slightly different combinato-
rial refinements.

The theorems in this paper are consequences of an analysis of coherent sequences
of finite-to-one functions 〈eβ : β < ω1〉 and lower trace functions L : [ω1]2 →
[ω1]<ω1 . These are combinatorial objects which can be routinely constructed using
the method of minimal walks. If we let osc(α, β) denote the number of changes in
the relation between corresponding entries of eα � L(α, β) and eα � L(α, β) from ≤
to >, then the main result of the paper can be stated as follows.

Theorem 1.5. For every A ⊆ [ω1]k and B ⊆ [ω1]l which are uncountable families
of pairwise disjoint sets and every natural number n, there are a in A and bm

(m < n) in B such that for all i < k, j < l, and m < n:

a < bm

osc
(
a(i), bm(j)

)
= osc

(
a(i), b0(j)

)
+ m.

This can be likened to the following two results of Todorcevic. The first is used
to draw a number of conclusions about Conjecture 2 in [21]. The second yields one
of many proofs in Section 4 of [19] that ω1 6→ [ω1]2ω. See [19] and Section 2 below
for undefined notation.2

Theorem 1.6. [20] If X and Y are unbounded and countably directed in (ωω, <∗)
and consist of monotonic functions, then there is a natural number l such that for
all n there are x and y in X and Y respectively such that

osc(x, y) = n + l.

Theorem 1.7. [19] If X is an uncountable subset of ω1, then the set of all values

osc
(
Tr(ζ, α),Tr(ζ, β)

)
for α 6= β in X with ζ = ∆(α, β) contains arbitrarily long intervals of integers.

This paper is organized as follows. Section 2 provides some background on
the method of minimal walks and introduces the lower trace function which is
used in the statement of the main theorem on oscillations. Section 3 provides

2What I am referring to as Tr(α, β) is denoted as Fα(β) in [19]. Also, the usage of osc(·, ·) in
Theorem 1.7 is different as it counts the oscillations between finite subsets of ω1 — see [19].
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a review of elementary submodels. The main combinatorial results of the paper
are proved in Section 4. Theorem 1.1 is deduced in Section 5 and a two place
function o : [ω1]2 → T is introduced which harnesses most of the strength of the
more technical main theorem. Theorem 1.2 is then deduced in Section 6 after some
motivation is provided. The paper closes with Section 7 where Theorems 1.3 and
1.4 are proved. This final section also contains a basic analysis of the space in
Theorem 1.3.

I would like to thank Boban Veličković for his careful reading of early drafts of
this paper. The clarity of the present arguments owe much to Todorcevic’s and
Veličković’s suggestions. A number of other people — too many to name — have
also made the generous contribution of reading the paper and offering suggestions.
Finally, special thanks is due to the diligent referees for their careful reading of the
paper.

This paper is intended to be accessible to any interested reader who is fluent in
set theory. Basic background can be found in, e.g., [10]. Elementary submodels will
be employed at a number of points in the argument. Ironically, this represents the
only non-elementary technique used in the proofs. The essentials are reviewed in
Section 3. The reader is referred to III.1 of [6] for more information on elementary
submodels and stationary sets. The proofs will also employ the method of minimal
walks introduced in [19]. The necessary background is presented in Section 2. The
reader is referred to [24] for further reading on minimal walks.3

The notation is fairly standard. All ordinals are von Neumann ordinals — they
are the set consisting of their predecessors. In particular, n = {0, 1, . . . , n− 1} and
the first infinite ordinal ω is the set of all finite ordinals {0, 1, 2, . . .} and is identified
with the natural numbers. All counting starts at 0. We will also need the unit circle
viewed as the set

T = {z ∈ C : |z| = 1}
equipped with the usual multiplication operation. If k is a natural number and X
is a set, then [X]k is the set of all k-element subsets of X. If X has a canonical
linear ordering associated with it and a is in [X]k, then a will be identified with the
increasing sequence which enumerates it. If a and b are finite subsets of ω1, then
a < b will be used to abbreviate “α < β whenever α is in a and β is in b.” Similarly
one defines statements such as α < b and a < β if α and β are ordinals.

This paper is dedicated to Stevo Todorcevic for teaching me how to traverse ω1

and for his inspirational [23].

2. The trace functions

In this section I will provide the necessary background on minimal walks; see
[24] for further reading. With the exception of the definition and axiomatization of
L, everything discussed in this section is contained either explicitly or implicitly in
[19]. Minimal walks are facilitated by a C-sequence which one uses to “walk” from
an ordinal β down to a smaller ordinal α.

Definition 2.1. A C-sequence is a sequence 〈Cα : α < ω1〉 such that Cα is a cofinal
subset of α and if γ < α then Cα ∩ γ is finite. It will be useful at certain points to
assume that 0 is an element of every Cα.

3[24] is an updated, expanded, and clearer account of the methods and results of [19]. My
references to [19] are for historical accuracy.



4 JUSTIN TATCH MOORE

The following two functions will be of interest to us. The upper trace will not
be necessary, but is useful in making the other definitions more transparent.

Definition 2.2. [24] (upper trace) If α ≤ β, then Tr(α, β) is defined recursively by

Tr(α, α) = ∅,

Tr(α, β) = Tr
(
α, min(Cβ \ α)

)
∪ {β}.

Definition 2.3. (lower trace) If α ≤ β, then L(α, β) is defined recursively by

L(α, α) = ∅,

L(α, β) = L
(
α, min(Cβ \ α)

)
∪ {max(Cβ ∩ α)} \max(Cβ ∩ α).

Hence the upper trace Tr(α, β) is enumerated by the sequence β = β0 > β1 >
· · · > βl−1 where βi+1 = min(Cβi \ α) and α = βl is in Cβl−1 . It is easily verified
that the lower trace L(α, β) is listed as ξ0 ≤ ξ1 ≤ · · · ≤ ξl−1 where

ξk = max
k⋃

j=0

(Cβj ∩ α).

While the upper trace Tr(α, β) and the full lower trace F (α, β) of a walk are well
studied (see [24]), this is, to my knowledge, the first explicit analysis of the lower
trace L(α, β) ⊆ F (α, β).

For our purposes, the lower trace can be axiomatized by the following facts.

Fact 1. If α ≤ β ≤ γ and L(β, γ) < L(α, β), then

L(α, γ) = L(α, β) ∪ L(β, γ).

Proof. Let α, β, and γ satisfy the hypothesis of the fact. Observe that L(β, γ) < α
and hence Cζ ∩ α = Cζ ∩ β whenever ζ is in Tr(β, γ). Hence β is in Tr(α, γ) and
Tr(α, γ) = Tr(α, β) ∪ Tr(β, γ). Let

γ = γ0 > γ1 > . . . > γl−1

enumerate Tr(α, γ) and let l0 be such that β = γl0 . Then L(α, γ) is listed as

ξ0 ≤ ξ1 ≤ · · · ≤ ξl−1

where

ξk = max
k⋃

j=0

Cγj
∩ α.

If k < l0, then Cγk
∩ α = Cγk

∩ β and so L(β, γ) = {ξk}l−1
k=0. On the other hand,

max
(
Cγl0

∩ α
)

> ξl0−1

and so if k ≥ l0

max
k⋃

j=0

(
Cγj ∩ α

)
= max

k⋃
j=l0

(
Cγj ∩ α

)
and hence L(α, β) = {ξk}l−1

k=l0
. �

Fact 2. If α < β, then L(α, β) is a non-empty finite set and if 0 < β is a limit
ordinal, then

lim
α→β

minL(α, β) = β.
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Proof. This follows immediately from the observation that

minL(α, β) = max(Cβ ∩ α).

�

Remark 2.4. Notice that if 0 < β < γ are fixed and β is a limit ordinal, then Fact
2 implies that for all but a bounded set of α < β, the inequality in Fact 1 holds.

At this point I recall the following definition.

Definition 2.5. If 〈eβ : β < ω1〉 is a sequence of functions such that eβ : β → ω for
all β < ω1, then the sequence is coherent if whenever β ≤ β′ < ω1, eβ′ � β differs
from eβ only on a finite set.

For brevity, if I say that 〈eβ : β < ω1〉 is a coherent sequence of finite-to-one
functions, then it is implicit that each eβ is a function from β to ω. The main com-
binatorial result of the paper will be concerned with counting oscillations between
pairs of elements of such sequences. The following construction provides a standard
example.

Definition 2.6. [19](maximal weight) If α ≤ β, then %1(α, β) is defined recursively
by

%1(α, α) = 0

%1(α, β) = max
(
|Cβ ∩ α|, %1

(
α, min(Cβ \ α)

))
.

Alternately, %1(α, β) is the maximum value of the form |Cζ ∩ α| where ζ ranges
over Tr(α, β). For each β < ω1, define eβ : β → ω by eβ(α) = %1(α, β).

Fact 3. [19] 〈eβ : β < ω1〉 is a coherent sequence of finite-to-one functions.

Proof. Let β ≤ β′ < ω1 and n < ω be given and set D equal to the set of all α < β
such that either eβ(α) ≤ n or eβ(α) 6= eβ′(α). It suffices to show that D has no
limit points.

To this end, suppose δ ≤ β. It is easy to check that there is a δ0 < δ such that

Tr(α, β) = Tr(α, δ) ∪ Tr(δ, β),

Tr(α, β′) = Tr(α, δ) ∪ Tr(δ, β′),
|Cδ ∩ α| > n

whenever δ0 < α < δ. Notice that if δ is a successor, then this can be made
vacuously true by letting δ0 = δ − 1. If δ0 < α < δ, then

eβ(α) ≥ |Cδ ∩ α| > n

eβ(α) = eδ(α) = eβ′(δ)
and hence α is not in D. Consequently δ is not a limit point of D. �

Remark 2.7. It is interesting to note that while coherence and the finite-to-one
property are at tension with each other, the verifications of these properties in the
previous fact are virtually identical.

Remark 2.8. It follows from Fact 3 that T (%1) = {eβ � α : α ≤ β < ω1} is an
Aronszajn tree — its levels and chains are countable.

Throughout this paper we will assume that L and 〈eβ : β < ω1〉 satisfy Facts
1–3. We will also need the following two place function.
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Definition 2.9. If α < β < ω1, then let ∆(α, β) be the least ordinal ξ such that
either eα(ξ) 6= eβ(ξ) or ξ = α.

3. Basic facts about elementary submodels

In the proof of the main theorem, we will need the following facts about ele-
mentary submodels of H(ℵ+

1 ). Recall that H(ℵ+
1 ) is the collection of all sets of

hereditary cardinality at most ℵ1. This structure is of interest to us since it con-
tains all of the objects relevant to us (e.g. ω1, L, and 〈eβ : β < ω1〉), is closed under
taking subsets, and satisfies all of the axioms of ZFC except the power set axiom.
An elementary submodel M of H(ℵ+

1 ) is a subset of H(ℵ+
1 ) such that whenever φ is

a logical formula with parameters in M , M satisfies φ if and only if H(ℵ+
1 ) satisfies

φ. The following fact is well known.

Fact 4. If M is a countable elementary submodel of H(ℵ+
1 ), then M ∩ ω1 is an

ordinal. Moreover, if F is a countable subset of H(ℵ+
1 ), then the set of all ordinals

of the form M ∩ω1 such that M is a countable elementary submodel of H(ℵ+
1 ) with

F ⊆ M contains a club.4

The following standard facts are very useful when working with countable ele-
mentary submodels.

Fact 5. If M is a countable elementary submodel of H(ℵ+
1 ) which contains some

element X, then X is countable iff X ⊆ M .

Fact 6. If M is a countable elementary submodel of H(ℵ+
1 ) which contains as an

element some subset A of ω1, then A is uncountable iff A ∩ M ∩ ω1 is unbounded
in M ∩ ω1.

Fact 7. If M is a countable elementary submodel of H(ℵ+
1 ), X is in H(ℵ+

1 ) and
X is definable from a logical formula with parameters in M , then X is in M .

Remark 3.1. The above facts remain true if ℵ+
1 is replaced with any uncountable

regular cardinal.

4. Oscillations on the lower trace

In this section I will prove the main combinatorial theorem of the paper. We
will take the following as our definition of the oscillation function.

Definition 4.1. Suppose that s and t are two functions defined on a common
finite set of ordinals F . Let Osc(s, t;F ) be the set of all ξ in F \ {minF} such that
s(ξ−) ≤ t(ξ−) and s(ξ) > t(ξ) where ξ− is the greatest element of F less than ξ.5

The following notation will be convenient.

Definition 4.2. If α < β < ω1, let Osc(α, β) denote

Osc
(
eα, eβ ;L(α, β)

)
and osc(α, β) denote the cardinality of Osc(α, β).

4A subset of ω1 is club if it is closed and unbounded.
5Actually, we will later see that we are really interested in counting oscillations between the

relations = and 6= (rather than the more conventional < and >). The above definition is a

compromise between the two.
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Theorem 4.3. For every A ⊆ [ω1]k and B ⊆ [ω1]l which are uncountable families
of pairwise disjoint sets and every n < ω, there are a in A and bm (m < n) in B
such that for all i < k, j < l, and m < n:

a < bm

osc
(
a(i), bm(j)

)
= osc

(
a(i), b0(j)

)
+ m.

Theorem 4.3 will be derived from the following lemma.

Lemma 4.4. Let A ⊆ [ω1]k and B ⊆ [ω1]l be uncountable and pairwise disjoint.
There is a closed and unbounded set of δ < ω1 such that if a is in A \ δ, b is in
B \ δ, and R is in {=, >}, then there are a+ in A \ δ, and b+ in B \ δ such that
for all i < k and j < l:6

(i) maxL
(
δ, b(j)

)
is less than both ∆

(
a(i), a+(i)

)
and ∆

(
b(j), b+(j)

)
.

(ii) L
(
δ, b(j)

)
is a proper initial part of L

(
δ, b+(j)

)
.

(iii) If ξ is in L+ = L
(
δ, b+(j)

)
\ L

(
δ, b(j)

)
, then ea+(i)(ξ) R eb+(j)(ξ).

Proof. Let M be a countable elementary submodel of H(ℵ+
1 ) which contains every-

thing relevant and let δ = M ∩ω1. By Fact 4, it suffices to show that δ satisfies the
conclusion of the theorem.

First suppose that R is =. Applying Fact 3, find a γ0 < δ satisfying the following
conditions:

(1) If j < l, then L
(
δ, b(j)

)
< γ0.

(2) If i < k, j < l, and γ0 < ξ < δ, then ea(i)(ξ) = eb(j)(ξ).
Applying Fact 2, pick a γ < δ such that if γ < ξ < δ, then γ0 < L(ξ, δ). Consider
the set D ⊆ ω1 consisting of all δ+ such that for some a+ in A \ δ+ and b+ in
B \ δ+ the following conditions are satisfied:

(3) ea+(i) � γ0 = ea(i) � γ0 and eb+(j) � γ0 = eb(j) � γ0 for all i < k and j < l.
(4) L

(
δ+, b+(j)

)
= L

(
δ, b(j)

)
for all j < l.

(5) If γ < ξ < δ+, then γ0 < L(ξ, δ+).
(6) If γ0 < ξ < δ+, i < k, and j < l, then ea+(i)(ξ) = eb+(j)(ξ).

Observe that for all β ≥ γ0, eβ � γ0 is in M since by Fact 3 it differs from eγ0 on
a finite set. Hence D is definable from the parameters γ0, γ, ea(i) � γ0, etc. which
are all elements of M . Therefore D is in M by Fact 7. Since D has δ as a member,
it is uncountable by Fact 5. Hence there is a δ+ > δ in D. Let a+ ∈ A \ δ+ and
b+ ∈ B \ δ+ witness that δ+ is in D.

Now let i < k and j < l be arbitrary. First observe that

γ0 ≤ ∆
(
a(i), a+(i)

)
,

γ0 ≤ ∆
(
b(j), b+(j)

)
.

Put L+ = L(δ, δ+). Notice that L
(
δ, b(j)

)
= L

(
δ+, b+(j)

)
< L+ and hence

L
(
δ, b+(j)

)
= L

(
δ+, b+(j)

)
∪ L+ = L

(
δ, b(j)

)
∪ L+

holds by Fact 1. Since δ < δ+, L+ is non-empty. If ξ is in L+, then γ0 < ξ < δ+

and so
ea+(i)(ξ) R eb+(j)(ξ).

6It will be convenient to let A \ δ denote the set of all a in A such that δ ≤ a whenever A is
a collection of finite subsets of ω1 and δ < ω1.
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Now suppose that R is >. Put E equal to the set of all limit ν < ω1 such that
for all a0 in A \ ν, all ν0 < ν, ε < ω1, n < ω, and finite L+ ⊆ ω1 \ ν there is an a1

in A \ ε with
ν0 ≤ ∆

(
a0(i), a1(i)

)
,

ea1(i)(ξ) > n

whenever i < k and ξ is in L+. By Fact 7, E is an element of M .

Claim 4.5. δ is in E. In particular, E is uncountable by Fact 5.

Proof. Let a0, ν0, ε, n, and L+ be given as in the definition of E for ν = δ. By
Fact 3 we may assume without loss of generality that ν0 is an upper bound for all
ξ < δ such that ea0(i)(ξ) ≤ n for some i < k. Now, applying elementarity of M ,
there is a δ+ above ε, δ, and maxL+ and an a1 in A \ δ+ such that the following
conditions are satisfied:

(7) For all i < k, ea0(i) � ν0 = ea1(i) � ν0.
(8) If ν0 < ξ < δ+ and i < k, then ea1(i)(ξ) > n.

Since L+ ⊆ δ+ \ δ, this completes the proof of the claim. �

Applying elementarity of M and uncountability of E, find an element γ0 of E
such that L

(
δ, b(j)

)
< γ0 < δ for all j < l. Applying Fact 2, find a γ < δ such

that if γ < ξ < δ, then γ0 < L(ξ, δ). Again using elementarity of M , select a limit
δ+ > δ and a b+ in B \ δ+ so that the following conditions are satisfied:

(9) eb+(j) � γ0 = eb(j) � γ0 for all j < l.
(10) L

(
δ+, b+(j)

)
= L

(
δ, b(j)

)
for all j < l.

(11) If γ < ξ < δ+, then γ0 < L(ξ, δ+).
Put L+ = L(δ, δ+). Applying the definition of E, find an a+ in A \ δ such that for
all i < k, j < l, and ξ in L+

L
(
δ, b(j)

)
< ∆

(
a(i), a+(i)

)
ea+(i)(ξ) > eb+(j)(ξ).

The rest of the verification is as in the previous case. This completes the proof of
Lemma 4.4. �

Now we are ready to prove Theorem 4.3

Proof. Let A and B be given and select a countable elementary submodel M of
H(ℵ+

1 ) containing everything relevant, setting δ = M ∩ ω1. Since M contains A
and B, the closed and unbounded set provided by Lemma 4.4 is in M and therefore
δ is in this closed and unbounded set. Using Lemma 4.4, it is possible to select am

(m < ω) in A \ δ, bm (m < ω) in B \ δ, and ξm (m < ω) in δ so that for all m < ω
the following conditions are satisfied whenever i < k and j < l:

(12) L
(
δ, bm(j)

)
is a proper initial part of L

(
δ, bm+1(j)

)
.

(13) L
(
δ, bm+1(j)

)
\ L

(
δ, bm(j)

)
does not depend on j and contains ξm as an

element.
(14) Osc

(
am+1(i), bm+1(j);L(δ, bm+1(j))

)
is formed by adding ξm to

Osc
(
am(i), bm(j);L(δ, bm(j))

)
.

(15) If m′ < m, then ξm′ is strictly less than both ∆
(
am(i), am+1(i)

)
and

∆
(
bm(j), bm+1(j)

)
.

(16) eam(i)

(
max L(δ, bm(j))

)
> ebm(j)

(
max L(δ, bm(j))

)
.
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Notice that, once am and bm have been selected, Lemma 4.4 is applied twice in
order to obtain am+1 and bm+1 — first with R being = and then with R being >.
The ordinal ξm is the minimum of what might be described as

L
(
δ, bm+1(j)

)
\ L

(
δ, bm+1/2(j)

)
.

Now let n be given. Pick a γ0 < δ which is an upper bound for each L
(
δ, bn(j)

)
for j < l and all ξ < δ such that for some m,m′ ≤ n and j, j′ < l

ebm(j)(ξ) 6= ebm′ (j′)(ξ)

(the latter set is finite by Fact 3). Using elementarity of M and Fact 2, select an a
in A such that a < δ and for all i < k and j < l

L
(
δ, bn(j)

)
< ∆

(
a(i), an(i)

)
,

γ0 < L(a(i), δ).
Now let i < k, j < l, and m < n be fixed. It follows from Fact 1 that

L
(
a(i), bm(j)

)
= L

(
a(i), δ

)
∪ L

(
δ, bm(j)

)
.

Finally, ebm(j) � L(a(i), δ) does not depend on m and therefore

Osc
(
a(i), b0(j);L(a(i), δ)

)
= Osc

(
a(i), bm(j);L(a(i), δ)

)
.

By (16), Osc
(
a(i), bm(j)

)
is the union

Osc
(
a(i), bm(j);L(a(i), δ)

)
∪Osc

(
a(i), bm(j);L(δ, bm(j))

)
(i.e. no new oscillation occurs at the “seam”). Hence, by (14),

Osc
(
a(i), bm(j)

)
= Osc

(
a(i), b0(j)

)
∪ {ξm′ : m′ < m}.

This completes the proof of Theorem 4.3. �

5. A negative partition relation and the coloring o

We will now consider the following function.

Definition 5.1. If α < β, define

o(α, β) = zosc(α,β)+1
α .

This definition is motivated by the following theorem — commonly known as
Kronecker’s Theorem — discovered independently by Kronecker and Tchebychef
(see, e.g., [1]).

Kronecker’s Theorem. [8] [17] Suppose that zi (i < k) are elements of T which
are rationally independent. For every ε > 0 there is a natural number nε such that
if u, v are in Tk, there is an m < nε such that for all i < k

|uiz
m
i − vi| < ε.

Remark 5.2. The usual formulation of this theorem is that nε depends on u and
v. The uniformity of nε as u and v vary follows from a standard compactness
argument.

For the remainder of the paper, fix a sequence 〈zα : α < ω1〉 of elements of
T which are rationally independent. This is possible since, given any countable
rationally independent subset I of T, there are only countably many z for which
I ∪ {z} is rationally dependent.

The following function will also be useful.
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Definition 5.3. The function ∗ : T → ω is defined by letting ∗(z) = n iff there is
a θ in ( 2π

n+2 , 2π
n+1 ] such that z = eiθ. If f is a function taking values in T, then f∗

will denote the composition of f followed by ∗.

The point is that ∗ takes all values on every dense subset of T. The notation for
∗ is chosen to mimic its usage in [24]. We will shortly see that o∗ defines a partition
of [ω1]2 with strong properties.

In [18], Todorcevic considered two variations of ω1 → (ω1;ω1)22 which are closely
related to (S) and (L) respectively:

ω1 →
(
ω1, (ω1; fin ω1)

)2
,

ω1 →
(
ω1, (fin ω1;ω1)

)2
.

The statement ω1 →
(
ω1, (ω1; fin ω1)

)2 asserts that if c : [ω1]2 → 2, then either

(A) there is an uncountable X ⊆ ω1 such that c is constantly 0 on [X]2 or
(B) there are uncountable A ⊆ ω1 and uncountable pairwise disjoint B ⊆

[ω1]<ℵ0 such that for all α in A and b in B with α < b, there is a β in b
with c(α, β) = 1.

The statement ω1 →
(
ω1, (fin ω1;ω1)

)2 is similarly defined by replacing A ⊆ ω1

by a pairwise disjoint A ⊆ [ω1]<ℵ0 and B by B ⊆ ω1. These imply (S) and (L)
respectively (see [18]) and are each immediate consequences of ω1 → (ω1; (ω1;ω1))22.

In [18], Todorcevic showed that ω1 →
(
ω1, (ω1; fin ω1)

)2 was relatively consistent
with ZFC and in fact follows from PFA. We will now see that o∗ witnesses a strong
failure of ω1 →

(
ω1, (fin ω1;ω1)

)2.

Theorem 5.4. Let A ⊆ [ω1]k and B ⊆ [ω1]l be uncountable families of pairwise
disjoint sets. For every χ : k → ω and φ : k → l there are a in A and b in B such
that a < b and for all i < k,

o∗
(
a(i), b(φ(i))

)
= χ(i).

By a “stretching” argument which can be found at the beginning of Section 4 of
[19], Theorem 5.4 yields the following corollary.

Corollary 5.5. ω1 6→ [ω1;ω1]2ω1
.

Theorem 5.4 is an immediate consequence of the following theorem.

Theorem 5.6. Let A ⊆ [ω1]k and B ⊆ [ω1]l be uncountable families of pairwise
disjoint sets. For every sequence Ui (i < k) of open neighborhoods in T and every
φ : k → l there are a in A and b in B such that a < b and for all i < k,

o
(
a(i), b(φ(i))

)
∈ Ui.

Proof. Without loss of generality, we may assume that each Ui is an ε-ball about a
point vi for some fixed ε > 0. By refining A if necessary, we may assume that the
nε be given by Kronecker’s theorem for the sequence za(i) (i < k) is uniform for a
in A . Let a in A and bm (m < nε) in B be such that for all i < k, j < l, and
m < nε

a < bm

osc
(
a(i), bm(j)

)
= osc

(
a(i), b0(j)

)
+ m.
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For each i < k, put ui = o
(
a(i), b0(φ(i))

)
. By choice of nε, there is an m < nε such

that for all i < k

|uiz
m
a(i) − vi| < ε

or, equivalently, o
(
a(i), bm(φ(i))

)
is in Ui. This finishes the proof. �

Question 5.7. (PFA7) If c : [ω1]2 → 2, are there A ⊆ ω1 and B ⊆ [ω1]2 which are
uncountable with B being pairwise disjoint and χ : 2 → 2 such that for all α ∈ A
and b ∈ B with α < b there is an i < 2 such that c(α, b(i)) 6= χ(i)?

6. A family of binary relations on ω1

In this section we will consider the family of binary relations on ω1 with the
Tukey order.

Definition 6.1. [25] (Tukey order) If R and S are binary relations, then we write
R ≤ S iff there are functions f : dom(R) → dom(S) and g : ran(S) → ran(R) such
that

f(x) S y implies x R g(y).

This order was first considered by Tukey in the class of transitive relations [25].
It makes sense, however, to consider this order in the more general setting of the
class of binary relations (see [26]).

Our focus will be on binary relations on ω1. Two fundamental examples are the
well order ω1 and the family [ω1]<ℵ0 of finite subsets of ω1 ordered by inclusion.
We will also need a few standard operations on relations. If R and S are relations,
then R⊕S is the relation which is the disjoint union of R and S. If m is a cardinal
and R is a relation, then we will let m · R will denote the direct sum of m copies
of R. If R and S are two binary relations, then R ∧ S and R ∨ S are the relations
with domains dom(R)× dom(S) and ranges ran(R)× ran(S) such that

(a, b) R ∧ S (c, d) iff a R c or b S d,

(a, b) R ∨ S (c, d) iff a R c and b S d.

The “join” R ∨ S is often denoted R × S. It is easily verified that ∧ and ∨ give
lower and upper bounds respectively.8

It was observed that the binary relations on ω1 which one knew how to construct
in ZFC were either below ℵ0 · ω1 or above [ω1]<ℵ0 in the Tukey order.

Example 6.2. Suppose that rα (α < ω1) is a sequence of distinct reals. Define
αRβ iff α < β and rα < rβ .

The relation R is essentially Sierpiński’s partition which witnesses ω1 6→ (ω1)22.
In this case R ≤ ℵ0 · ω1 by the following Tukey maps:

f(α) = (min{n : rα < qn}, α)

g(α, n) = min{β : α < β ∧ qn < rβ}
where {qn}n<ω is an enumeration the rationals. On the other hand, the following
example shows that with an additional hypothesis such as ♦ one can construct
more complex relations.

7Or any appropriate hypothesis; the same comment applies to Conjecture 4 below.
8In general these need not be optimal — they are in the class of directed relations.
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Example 6.3. Let R be a tree order on a set T . If R ≤ ℵ0 ·ω1, then T is the union
of countably many R-chains. If [ω1]<ℵ0 ≤ R, then T contains an uncountable R-
antichain. In particular, if (T,R) is a Suslin tree, then R 6≤ ℵ0 ·ω1 and [ω1]<ℵ0 6≤ R.

Observations such as these led Todorcevic to make the following conjecture.

Conjecture. (PFA) If R is a binary relation, then either R ≤ ℵ0 · ω1 or else
[ω1]<ℵ0 ≤ R.

This can be considered a basis conjecture in the following sense. Let R denote
the class of all binary relations R on ω1 such that R is not reducible to ℵ0 · ω1.
Then the above conjecture is just the assertion that R has a single element basis
consisting of [ω1]<ℵ0 . This conjecture was given further plausibility by the following
theorem which implies that it is true for transitive relations.

Theorem 6.4. [22] (PFA) Every transitive relation on ω1 is Tukey equivalent to
one of the following for some nonnegative integers ni (i < 5):

(i) n0 · 1⊕ n1 · ω ⊕ n2 · ω1 ⊕ n3 · ω × ω1 ⊕ n4 · [ω1]<ℵ0 .
(ii) ℵ0 · 1⊕ n2 · ω1 ⊕ n3 · ω × ω1 ⊕ n4 · [ω1]<ℵ0 .
(iii) ℵ0 · ω1 ⊕ n4 · [ω1]<ℵ0 .
(iv) ℵ0 · [ω1]<ℵ0 .
(v) =.

We will now see, however, that this conjecture is provably false.

Definition 6.5. Let R denote the relation with domain and range ω1 defined by
letting αRβ iff α = β or α < β and o∗(α, β) > 0. If X is an uncountable subset of
ω1, let RX denote the relation with domain X and range ω1 which is the restriction
of R to X × ω1.

It is easily verified that the enumeration map ε : ω1 → X and the identity map
on ω1 witness ω1 ≤ RX for every uncountable X. If X ⊆ Y , then the inclusion and
identity maps witness RX ≤ RY . The following shows that none of these relations
are above [ω1]<ℵ0 in the Tukey order.

Theorem 6.6. [ω1]<ℵ0 6≤ R.

Proof. Suppose that f : [ω1]<ℵ0 → ω1 and g : ω1 → [ω1]<ℵ0 are functions. It
suffices to show that they are not Tukey reductions.

Applying the pressing down lemma, find a stationary B ⊆ ω1 and a finite x0 ⊆ ω1

such that g(β) ∩ β = x0 for all β in B. Let X = {x ∈ [ω1]<ℵ0 : x 6⊆ x0} and
A = {f(x) : x ∈ X }. By refining B if necessary, we may assume that if α is in A
and β is in B with α < β, then there is an x in X such that f(x) = α and x ⊆ β.

If A is countable, then we can find a α in A such that

{x ∈ X : f(x) = α}

is uncountable. It is then easy to find an x in X such that x is not contained in
g(α) but f(x) = α and hence f(x) R β, witnessing that f, g are not Tukey maps.

If A is uncountable, apply Theorem 5.4 to obtain an α in A and a β in B such
that α < β and o∗(α, β) > 0. Now pick an x in X such that f(x) = α and x ⊆ β
and observe that x is not contained in g(β) and yet f(x) R β. �
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Theorem 6.7. For all finite sets F of uncountable subsets of ω1,∧
X∈F

RX 6≤ ℵ0 · ω1.

Proof. By replacing F with a disjoint refinement if necessary, we may assume with-
out loss of generality that F consists of pairwise disjoint sets. It suffices to show
that if

f :
∏

X∈F

X → ω × ω1 and g : ω × ω1 →
∏

X∈F

ω1,

then f and g are not Tukey maps. For convenience, we will identify elements of∏
X∈F X with their range. Let S denote the relation on ω × ω1 given by ℵ0 · ω1.

Find uncountable pairwise disjoint A ⊆ [ω1]|F | and an n such that:
(17) For each element a of A , a ∩X is a singleton for all X in F .
(18) f � A is an injection into {n} × ω1.
(19) The ordering on F which is induced by an element a of A — X is the

ith-least element of F if a(X) is the ith-least coordinate of a — does not
depend on a.

This is possible since if
∏

X∈F X is partitioned into countably many pieces, then
one piece must contain an uncountable pairwise disjoint family. If the g-image of
{n} × ω1 is countable, then it is not possible for f and g to be Tukey maps; this
is a consequence of the following argument in which B̃ is replaced by the trivial
∆-system with a single element.

Hence we may select an uncountable B̃ contained in the image of {n}×ω1 under
g such that the collection of sets of coordinates of elements of B̃ forms a ∆-system
with root r. Let B be the elements of this ∆-system with r removed and let k
denote the uniform cardinality of the members of B. By refining B̃ if necessary,
we may further assume that there is a function φ : |F | → k ∪ {−1} such that if X

is the ith element in the induced enumeration of F and b̃ is in B̃, then b̃(X) is the
φ(i)th-least element of ran(b̃) \ r if b̃(X) is not in r and φ(i) = −1 otherwise. Let
χ be constantly 0 on the subset of |F | on which φ is non-negative.

Applying Theorem 5.4, it is possible to find an a in A , a b̃ in B̃, and a ζ with
g(n, ζ) = b̃ such that r < a < min(b \ r), f(a) is S-related to (n, ζ), and for all X

in F for which b̃(X) is not in r

o∗(a(X), b̃(X)) = 0

where b denotes the set of coordinates of b̃.
If X is in F , then either b̃(X) is in r in which case b̃(X) < a(X) or else b̃(X)

is not in r and c(a(X), b̃(X)) = 0. In either case a(X) is not RX -related to b̃(X).
Since this is true for arbitrary X, a is not

∧
X∈F RX -related to g(x) and yet f(a)Sx.

Consequently f and g are not Tukey maps. �

The next theorem shows that the relations RX (X ⊆ ω1) are typically incompa-
rable.

Theorem 6.8. If X \ Y is uncountable, then RX 6≤ RY .

Proof. Suppose for contradiction that f : X → Y and g : ω1 → ω1 are Tukey maps.
To obtain a contradiction, it suffices to find an α in X and a β in ω1 such that
f(α) < β, α < g(β), o∗

(
f(α), β

)
= 1, and o∗

(
α, g(β)

)
= 0. Since f and g are
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Tukey reductions it is possible to find a uncountable X0 ⊆ X \ Y and uncountable
Z0 ⊆ ω1 such that f � X0 and g � Z0 are injections, the f -image of X0 is disjoint
from X0, the g-image of Z0 is disjoint from Z0 unless g is eventually equal to the
identity, and the inequalities α < f(α), β = g(β), β < g(β) are uniformly true or
false as α ranges over X0 and β ranges over Z0. Put

A = {{α, f(α)} : α ∈ X0}, B = {{β, g(β)} : β ∈ Z0}
and notice that these families are uncountable and consist of pairwise disjoint sets of
uniform cardinality which, in the case of A , is two. By our uniformity assumption
on the relations < and =, it is possible to find a functions φ : 2 → 2 and χ : 2 → 2
such that:

(20) {a(i), b(φ(i))} (i < 2) lists the pairs {α, g(β)} and {f(α), β}.
(21) χ(i) = 1 if {a(i), b(φ(i))} = {f(α), β} and χ(i) = 0 otherwise.

Applying Theorem 5.4 to A , B, φ, and χ, there are a in A and b in B such that
a < b and

o∗
(
a(i), b(φ(i))

)
= χ(i).

Translating the outcome, it is easily checked that α ∈ a∩X0 and β ∈ b∩Z0 are as
desired. �

I will close this section with two questions.

Question 6.9. For which families F ⊆ [ω1]ℵ1 is there an S such that S 6≤ ℵ0 · ω1

and S ≤ RX for all X in F?

Question 6.10. Is the collection of all S with S 6≤ ℵ0 · ω1 downwards-directed in
the Tukey order?

7. An L space and the non-existence of a small basis for the regular
Hausdorff spaces.

In this section I will give an example of an L space — a regular Hausdorff
space which is hereditarily Lindelöf but not hereditarily separable. The question of
the existence of such spaces was first asked explicitly in [5], though arguably this
question can be traced to Sierpinski’s [14] where he constructed Hausdorff examples
distinguishing HS and HL and to Suslin’s [15] where he posed his famous hypothesis.
For instance, an immediate consequence of Kurepa’s [11] is that a Suslin line is an
example of an L space. From the 1960s until the 1980s, there was a concerted effort
to understand both L spaces and their “dual,” the S space. I refer the reader to
Juhasz’s [7] and M. E. Rudin’s [13] as well as Roitman’s more recent [12] for more
discussion on these developments. I have selected a few to mention here.

First, Zenor showed that there was a relationship between the existence of certain
S and L spaces.

Theorem 7.1. [27] There is a strong S space iff there is a strong L space.9

Hence the difference in the existence of S and L spaces lies in the properties of
their finite powers. This gives some explanation as to why the existence of S and
L spaces seem to be such similar hypotheses at first.

There are a number of results under MAℵ1 which limit the existence of S and L
spaces.

9Here a space is a strong S (L) space iff all of its finite powers are S (L) spaces.
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Theorem 7.2. [9] (MAℵ1) There are no strong S or L spaces.

Theorem 7.3. [16] (MAℵ1) There are no first countable L spaces.

Theorem 7.4. [2] (MAℵ1) If K is a compact space which contains an L space,
then K maps continuously onto [0, 1]ℵ1 .

Finally, Todorcevic proved that S spaces do not exist assuming PFA.

Theorem 7.5. [18] (PFA) If a regular Hausdorff space is hereditarily separable,
then it is hereditarily Lindelöf.

He also demonstrated that the existence of S and L spaces are different consid-
erations.

Theorem 7.6. [21] It is consistent with MAℵ1 that there are no S spaces and yet
that there is an L space.

Until now, however, it remained unclear whether Todorcevic’s methods could be
used to prove that PFA implies there are no L spaces. I will now show that this is
not the case — that there is an L space which can be constructed without appealing
to additional axioms of set theory.

Definition 7.7. For each β < ω1, define wβ : ω1 → T by wβ(ξ) = o(ξ, η) if ξ < β
and wβ(ξ) = 1 otherwise. Let L be the collection {wβ : β < ω1} viewed as a
subspace of Tω1 .

The “+1” in the exponent of o(ξ, β) is present so that wβ(ξ) = 1 iff ξ ≥ β. This
will simplify the discussion at certain points. Notice that L is non-separable.

If X ⊆ ω1, then let LX be {wβ � X : β ∈ X} viewed as a subspace of TX . Since
the map wβ 7→ wβ � X defined on {wβ : β ∈ X} is a bijection, we will write wβ for
wβ � X when referring to elements of LX . It should be emphasized, however, that
while the above bijection is continuous, its inverse may not be. Hence, even with
this identification, LX should not be viewed as a subspace of L .

We will now see that LX is Fréchet. Let U be the collection of open arcs in T
whose endpoints are roots of 1 and which do not contain 1 as an element. Let F
be the collection of all sets of the form {w ∈ L : w(α) ∈ U} where U is an element
of U and α is in X. Notice that F is point countable and that the topology on
LX is the smallest in which every element of F is clopen. The following theorem
shows that LX is always Fréchet.

Theorem 7.8. If X is a set and F is a point countable point, separating family
of subsets of X, then the topology on X defined by declaring elements of F to be
clopen is countably tight and has every countable subspace metrizable. In particular
the topology is Fréchet.

Remark 7.9. I attribute this result to Zoltan Balogh. He once told me that “If
there is an L space, then there is a countably tight one.” While I never saw his
proof, I think it is reasonable to assume this he may have proceeded along these
lines.

Proof. That countable subspaces are metrizable follows from the assumptions and
the well known fact that regular Hausdorff second countable spaces are metrizable.
To see that the space is countably tight, let A ⊆ X have an accumulation point
x in X. Let M be a countable elementary submodel of H(θ) for θ regular and
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large enough so that X, F , x, and A are all in M . It suffices to show that x is an
accumulation point of A ∩M .

Suppose this is not the case and let Ui (i < k) and Vi (i < l) be elements of F
such that

W =
⋂
i<k

Ui \
⋃
j<l

Vj

contains x and is disjoint from A ∩M . Without loss of generality, we may assume
that the empty set is not in F . The important observation is this: if V is in F , then
V ∩M is non-empty iff V is in M . This is because {V ∈ F : y ∈ V } is countable
for all y in X and therefore a subset of M whenever y is in M (by Facts 5 and 7).
Hence each Ui must be in M since x is in Ui and x is in M . Moreover, since we are
only interested in having W be disjoint from A ∩M , we may assume without loss
of generality that each Vj is in M . But then W must be in M and, by elementarity
of M , there must be an element of W ∩A which is in M , a contradiction. �

As mentioned above, if X is uncountable, then LX can be shown to be an L
space using Theorem 5.6 and the methods of [5]. I will prove the following theorem
of independent interest and then derive this as a consequence.

Theorem 7.10. If X, Y ⊆ ω1 have countable intersection, then there is no contin-
uous injection from any uncountable subspace of LX into LY .

Proof. Suppose for contradiction that such an injection g does exist. Then g is
of the form wβ 7→ wf(β) where f : X0 → Y is an injection for some uncountable
X0 ⊆ X which is, without loss of generality, disjoint from Y . For each ξ < ω1, let
βξ and ζξ be elements of X0 and Y respectively such that f(βξ) > ζξ and if ξ < ξ′

then βξ < ζξ′ . Let Ξ ⊆ ω1 be uncountable such that for some open neighborhood
V in T, g(wβξ

)(ζξ) is not in the closure of V whenever ξ is in Ξ.
Applying continuity of g at wβξ

to

Wξ = {w ∈ LY : w(ζξ) 6∈ V̄ },
there is a basic open neighborhood Uξ of wβξ

such that Uξ ⊆ g−1Wξ. Applying the
∆-system lemma and the second countability of T, there is an uncountable Ξ′ ⊆ Ξ,
open neighborhoods Ui (i < k) in T, and aξ in [X]k such that for all ξ in Ξ′:

(1) {aξ : ξ ∈ Ξ′} is a ∆-system with root a.
(2) The set

{w ∈ LX : ∀i < k
(
w(aξ(i)) ∈ Ui

)
}

has wβξ
as an element and is a subset of Uξ.

(3) The inequality βξ < f(βξ) does not depend on ξ.
(4) |ζξ ∩ aξ| does not depend on ξ.

Let A be the collection of all aξ∪{ζξ}\a and B be the collection of all {βξ, f(βξ)}.
Applying Theorem 5.6, it is possible to find ξ < ξ′ in Ξ′ such that for all i < k

aξ ∪ {ζξ} < min(βξ′ , f(βξ′)),

wβξ′ (aξ(i)) = o(aξ(i), βξ′) ∈ Ui,

g(wβξ′ ) = wf(βξ′ )
(ζξ) = o(ζξ, f(βξ′)) ∈ V.

But now wβξ′ is an element of Uξ even though g(wβξ′ ) is not in Wξ, contradicting
our choice of Uξ. This finishes the proof. �

Corollary 7.11. For every X, LX is hereditarily Lindelöf.
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Proof. If not, then LX would contain an uncountable discrete subspace. It is then
possible to find disjoint Y,Z ⊆ X such that LY and LZ each contain uncountable
discrete subspaces. But any function from a discrete space to another discrete space
is continuous and we can then easily contradict Theorem 7.10. �

Kunen has shown, however, that under MAℵ1 every L space contains an un-
countable discrete subspace in one of its finite powers [9]. As might be expected,
this happens at the first possible instance in our example.

Theorem 7.12. For every uncountable X ⊆ ω1, LX
2 contains an uncountable

discrete subspace.

Proof. This essentially follows from the following observation which is of indepen-
dent interest.

Proposition 7.13. The tree

T (o) = {o(·, β) � α : α ≤ β < ω1}

is Aronszajn.

Proof. Theorem 5.6 implies that T (o) does not contain an uncountable branch. It
suffices to prove that all levels of T (o) are countable. For this, it is sufficient to
show that T (%1) and T (L) have countable levels. In the case of T (%1), this is the
content of Remark 2.8. In order to see that T (L) has countable levels, let α < ω1

be given. Let β < ω1 be greater than α. Using the compactness of α + 1 and Fact
2, select a finite set Fβ ⊆ α+1 containing 0 and α so that if γ0 < γ are consecutive
elements of Fβ , then L(γ, β) < L(ξ, γ) whenever γ0 < ξ < γ. It suffices to show
that if

L(·, β) � Fβ = L(·, β′) � Fβ′ ,

then
L(·, β) � α = L(·, β′) � α.

To see this, let ξ be an arbitrary element of α \ Fβ and pick γ0 < γ in Fβ so that
γ0 < ξ < γ. Applying Fact 1 we have

L(ξ, β) = L(ξ, γ) ∪ L(γ, β) = L(ξ, γ) ∪ L(γ, β′) = L(ξ, β′).

�

To finish the proof of Theorem 7.12, select a sequence (β0
ξ , β1

ξ ) indexed by an
uncountable set Ξ ⊆ ω1 such that for each ξ in Ξ the following conditions are
satisfied:

(22) β0
ξ < β1

ξ are both elements of X.
(23) There is a fixed ε > 0 such that

|wβ0
ξ
(β0

ξ )− wβ1
ξ
(β0

ξ )| = |1− wβ1
ξ
(β0

ξ )| ≥ ε.

(24) If η < ξ is in Ξ, then β0
η < ξ.

(25) wβ0
ξ

� ξ = wβ1
ξ

� ξ.

This is possible since T (o) has countable levels. Now consider the open neighbor-
hoods

Uξ = {(u, v) ∈ LX : |wβ0
ξ
(β0

ξ )− u(β0
ξ )|+ |v(β0

ξ )− wβ1
ξ
(β0

ξ )| < ε}
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of (wβ0
ξ
, wβ1

ξ
) in LX

2 for ξ in Ξ. If η < ξ are in Ξ, then by (23) (wβ0
η
, wβ1

η
) is not

in Uξ since wβ1
η
(β0

ξ ) = 1. If ξ < η are in Ξ, then by (24) β0
ξ < η and by (25)

wβ0
η
(β0

ξ ) = wβ1
η
(β0

ξ ).

Consequently (wβ0
η
, wβ1

η
) being in Uξ would contradict (23) via the triangle inequal-

ity. Hence (wβ0
η
, wβ1

η
) is in Uξ iff η = ξ and therefore {(wβ0

ξ
, wβ1

ξ
) : ξ ∈ Ξ} is an

uncountable discrete subspace of LX
2 as desired. �

At this point, I will make the following conjecture.

Conjecture 4. (PFA) If X is a non-separable, regular Hausdorff space, then X2

contains an uncountable discrete subspace.

While L is 0-dimensional, its closure in Tω1 is very far from being 0-dimensional.

Theorem 7.14. If E ⊆ L is uncountable, then the closure of E in Tω1 contains a
set of the form {f ∈ Tω1 : f � α = τ} for some α < ω1 and τ in Tα. In particular,
cl(E) is not 0-dimensional.

Remark 7.15. This example may be informative in studying the following problem
of M. E. Rudin: Is it consistent that every locally connected perfect compact space
is metrizable? See [4].

Proof. Let E ⊆ L be uncountable and put T (E) be the set of all τ in T (o) such
that for uncountably many β in E, τ is a restriction of wβ . If τ is in T (E), put Eτ

to be the set of all wβ in E such that τ is a restriction of wβ .

Claim 7.16. For each τ in T (E) there is an ατ < ω1 such that the projection map
π : Tω1 → Tω1\ατ sends the closure of Eτ onto Tω1\ατ .

Proof. Suppose for contradiction that this is not the case. For each ξ < ω1, select a
basic open neighborhood Wξ ⊆ Tω1 such that Wξ∩Eτ is empty and membership to
Wξ depends only on coordinates greater than ξ. By refining the sequence Wξ (ξ <
ω1) it is possible to find open neighborhoods Ui (i < k) in T and an uncountable
pairwise disjoint A ⊆ [ω1]k such that if a is in A , then there is no wβ in Eτ with

wβ(a(i)) ∈ Ui

for all i < k. Pairing A with B = {{β} : wβ ∈ Eτ}, we have a contradiction to
Theorem 5.6. �

Let δ < ω1 be such that if τ is an element of T (E) of height less than δ, then
ατ < δ. Since T (o) has countable levels, such a δ exists. Since T (E) is uncountable
and downwards closed, there is a τ in T (E) of height δ. Put

F =
⋂
ξ<δ

cl(Eτ�ξ).

Notice that the projection of each cl(Eτ�ξ) onto the set of coordinates ω1 \ δ is
onto Tω1\δ. Since the fibers of this map are compact and since the intersection is
decreasing, F must project onto Tω1\δ. Since every element of F is an extension of
τ ,

F = {f ∈ Tω1 : f extends τ}
is the desired subset of cl(E). �
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The proof of Theorem 7.3 can be used to prove the following.

Theorem 7.17. For every X ⊆ ω1, no uncountable subspace of LX is first count-
able.

Proof. The proof of Theorem 7.3 actually shows that if an L space is first countable,
then there is a c.c.c. forcing which destroys it. It is easily checked that every
uncountable subspace of LX is an L space in every c.c.c. forcing extension. �

We also have the following consequence of Proposition 7.13.

Theorem 7.18. If f is a continuous function from a subspace of L into a metric
space, then the range of f is countable.

Proof. Since L ⊆ Tω1 is hereditarily Lindelöf and f is continuous, f depends only
on a countable set of coordinates. The conclusion of the theorem now follows from
Proposition 7.13. �

Theorem 7.19. Any basis for the uncountable regular Hausdorff spaces must have
cardinality greater than ℵ1.

Proof. The first conclusion follows from Theorem 7.10 and the observation that
there is an almost disjoint family of uncountable subsets of ω1 of cardinality ℵ2. �

I will close this paper by referring the reader to [4] where a number of open
problems related to this line of research are collected and discussed.
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Abstract. In this paper I will construct a non-separable hereditarily Lin-
delöf space (L space) without any additional axiomatic assumptions. The

constructed space L is a subspace of Tω1 where T is the unit circle. It is

shown to have a number of properties which may be of additional interest. For
instance it is shown that the closure in Tω1 of any uncountable subset of L
contains a canonical copy of Tω1 .

I will also show that there is a function f : [ω1]2 → ω1 such that if A, B ⊆ ω1

are uncountable and ξ < ω1, then there are α < β in A and B respectively

with f(α, β) = ξ. Previously it was unknown whether such a function existed
even if ω1 was replaced by 2. Finally, I will prove that there is no basis for the

uncountable regular Hausdorff spaces of cardinality ℵ1.

The results all stem from the analysis of oscillations of coherent sequences
〈eβ : β < ω1〉 of finite-to-one functions. I expect that the methods presented

will have other applications as well.
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