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ABSTRACT: 
 
Resource stratification for ground-based and remotely-sensed methods of rangeland assessment is essential for locating appropriate 
sampling sites. This is particularly the case when site comparisons are required, as in the case of grazing gradient analysis, wherein the 
objective is to limit the number of environmental variables. This study compared stratified units derived from supervised, unsupervised 
and object-based classification with pre-defined sites from visual interpretation of satellite imagery and discusses the advantages and 
disadvantages of these technologies for stratification as pre-consideration in ground-based and remotely-sensed studies. Landsat Thematic 
Mapper (TM) images have been used for this study. Derived strata were controlled by the collected data prior to image interpretation from 
30 systematic sampling sites (5 paddocks and 6 distances from water points) at Middleback Field Center in South Australia. Allocated 
time for pixel- and object-based stratification is very low compared with the manual interpretation. Overall accuracy and Kappa statistics 
for pixel-based classification was very low (<33%). Overall, the object-oriented method provided results with more accuracy (50%) in 
comparison with pixel-based classification, indicating that object-oriented image analysis has more potential for stratification of arid 
rangelands. However, results from an ecological perspective need further investigation using high spatial resolution imagery and with 
more samples for ground-truthing. This may create more reliable and robust results.  
 
 

1. INTRODUCTION 
 
Natural ecosystems are complex and dynamic, and interact with 
each other. For monitoring these ecosystems, decisions about 
where to measure (Friedel, 1991; Wright et al., 2003) to 
overcome the difficulty of patchy distribution of vascular plant 
and soil components are important (Brook et al., 2001; Edwards 
et al., 2005). These ecosystems/communities do not have discrete 
boundaries, and they usually have an ecoton zone where the 
magnitude depends on ecological factors. These ecosystems can 
range from intact or natural systems through to those heavily 
modified by human activity, such as high grazing pressure 
(Bastin et al., 1993; Pickup & Chewings, 1994). Human activities 
can influence character and the delineation of some types of 
ecosystem characteristics. In some situations human activities 
have historically been persistent, considerably influencing the 
ecological processes and character of a landscape. The permanent 
influence of grazing pressure around watering points is one of 
these well defined significant characteristics in rangelands of 
Australia (Bastin et al., 1993; Pickup & Chewings, 1994). 
Ideally, the boundaries reflect factors that control landscape 
distribution at various scales, such that they can be recognized, 
compared and applied according to the human activities and other 
natural disturbances. For example, the boundary between the 
shrubland and the adjacent woodland dominated eco-district may 
be due primarily to the lack of vegetation caused by exposure to 
extreme soil texture conditions and grazing pressure, particularly 
in the early stages of regeneration of woodland components. 
Landform pattern with its geologic substrate, surface shape and 
relief are also important criteria for establishing boundaries. The 
challenge is to depict the complexity of ecosystems through 
appropriate map units in the process of stratification. 
Stratification is a way of identifying and classifying heterogeneity 
according to the objectives, tools and financial limitations. A 
number of studies have emphasized that stratification can 
improve precision and accuracy of spatial sample collection in 

ground-based and remotely-sensed methods (Bastin et al., 1998; 
Brook et al., 2001; Wright et al., 2003; Edwards et al., 2005). 
Spatial data collection can contribute up to 80% of the cost of 
deploying a monitoring system (Wright et al., 2003). 
Stratification ensures that the relative contribution of a particular 
vegetation community or soil/geomorphology type to a study area 
is (is not) taken into consideration when the total area is 
measured. In ground-based methods air-photo or satellite imagery 
is visually interpreted and stratified as pre-typing of rangeland 
ecosystem for sampling different objectives (Poulton, 1975). 
Bastin et al. (1998), when using a remotely-sensed-based grazing 
gradient method, concluded that large paddocks generally contain 
several landscape types which vary in the palatability of forage 
available to livestock, and these must be identified and mapped 
before using a grazing gradient method. Brook et al. (2001) 
concluded that stratification is essential for obtaining meaningful 
results using the grazing gradient method. Overall in ground-
based and remotely-sensed approaches to site comparison there is 
a need to undertake stratification regardless of the type of 
indicator being utilized. This project was a part of a major project 
with the aim of stratifying the study area to define shrubland 
dominant communities for Biological Soil Crusts (BSC/ small 
soil surface organisms such as lichens and mosses) monitoring 
under grazing pressure in the framework of grazing gradient 
using site comparison in different distances of water points by 
avoiding woodland dominant communities, sandy soils, and 
water course and crest land forms. For that purpose pre-field 
visits, visual interpretation of Landsat 5 TM imagery and post 
field checks were considered. Visual interpretation and digitizing 
point by point, regardless of its reliability and robustness is a 
difficult task, time consuming and cost ineffective, particularly 
for a rangeland ecosystem with low economic value. Thus, a case 
study with the aim of examining and comparing pixel-based 
(supervised and unsupervised) classification, and object-based 
classification for defining sample locations for later use in 
ground-based and remotely-sensed ecological studies such as 



 

BSC monitoring was undertaken to test the capability of these 
technologies to separate shrubland communities from other strata 
as a substitute for traditional visual image interpretation. Visual 
interpretation and ground truthing were used as reference source 
data for accuracy assessment.  
 

2. METHODS 
 
2.1 The Study Area 
 
The study was conducted at Middleback Field Center (MFC), in 
the pastoral region of the South Australian chenopod shrublands, 
approximately 400 km north-west of Adelaide and 15 km north-
west of Whyalla (Figure 1). Much of the structural geology of the 
study area has been characterized by fluvial and aeolian deposits 
of late Tertiary and Quaternary origin (Laut et al., 1977). The 
soils which are derived from these parent materials were  mainly 
brown calcareous earths with calcium carbonate accumulated at 
variable depths, usually within the first 50 cm (Laut et al., 1977). 
The topography of the study area is low and gently undulating 
(Figure 2), and is characterized by a recurring system of inter 
fluvial slopes, plains, washes and basins (Laut et al., 1977). The 
vascular plants are predominantly chenopod shrubland consisting 
of bushes and woodlands (Wilson & Graetz, 1979). The annual 
plant community is relatively diverse from year to year. Finally, 
lichen and moss components are distributed on the interspace of 
woody plants (Rogers & Lange, 1971). This study was conducted 
in five replicate paddocks with one watering point including 
Balah, Billabong, Purpound and Railway paddocks from 
Roopena lease and Corio from Kutanga lease (Figure1).   
 

 
 

Figure 1 The study area, MFC and study paddocks, 20 km north-
west of Whyalla, South Australia 

 
2.2 Existing Stratified Resources at the Study Area 
 
The study area is situated on one land system and  three land 
units (Figure 3) including: 4.2, gently undulating calcrete plains 
with occasional quartzite or granite hills, low open woodland and 
mallee scrub; 4.6, calcrete plain with occasional conglomerate 
hills and tidal flats with low open woodlands; 4.7, conglomerate 
hills with long dissected foot-slopes, low open woodlands and 
chenopod understorey (Laut et al., 1977). As can be seen from 
the map (Figure 3), the extent of the study paddocks in 
comparison with existing land units are very small with high 

variation in both vascular plant and soil attributes within each 
paddock, and some previous studies used land system and land 
units with these heterogeneities as the base for their sample 
collection and site comparison because of the lack of a suitable 
map and difficulty of producing a new stratified map for grazing 
gradient analysis using visual interpretation (Cameron & Lewis, 
1996). Therefore stratification within paddocks for BSC 
monitoring using a suitable method is essential. 

 

 
 

Figure 2. Digital elevation model of the study area 
 

 
 

Figure 3. The existing stratified map in comparison with the 
study paddocks 

 
2.3 Spatial Data 
 
A 60 × 60 km © Landsat 5 TM image Copyright (2004) for the 
study area was acquired on 22 August 2003 providing 6 bands: 
three in the visible and three in the near infrared, mid and short 
infrared. Geometric correction of the imagery was undertaken 
using © ERDAS Imagine v8.7 Copyright (Leica Geosystems GIS 
& Mapping LLC, 2003) subseted for the study area and placed 
into a map coordinate system which is the same, that being the 
Australian Geodetic Datum 1994 (AGD94). Spatial layers such as 
land unit’s map (Laut et al., 1977) (scanned and digitized / Figure 
3) and Digital Elevation Model (DEM) (Figure 2), were created 



 

using © ArcGIS Copyright (ESRI, 2004). DEM was constructed 
using © contours and associated spot heights Copyright 
(DEHAA, 2004). Drainage enforcement was applied but streams 
were not used as an input due to their poor definitions and lack of 
continuity, with attempts to use streams leading to spurious 
results. In the final stage stream lines were used to check the 
visual accuracy of the produced DEM. 
 
2.4 Visual Interpretation of Landsat Data 
 
As mentioned the principle objective of the main project was 
BSC monitoring using ground-based and remotely-sensed 
methods on the chenopod shrublands. Chenopod shrubland 
bioregion is diverse and patchy (Wilson & Graetz, 1979) and 
BSC varying in small areas (Rogers & Lange, 1971). From 
reconnaissance field visit there was high relationship between 
BSC distribution and shrubland communities and negative 
relationship with woodland dominated communities. Moreover, 
there was negative relationship between BSC and some landform 
such as crest and water courses, and sandy soil texture. Thus 
stratification using visual interpretation aimed to separate this 
diversity and delineate shrubland community for sample locations 
(Poulton, 1975; Campbell, 2002) using ArcGIS and ground 
truthing (a 100 m line-intercept method used for ground data 
collection) by a systematically defined sampling sites in five 
paddocks and six distances with the priority of shrubland 
community for site selection. For this paper, pixel-based and 
object-based techniques were examined for their reliability and 
robustness for stratification as compared with visual 
interpretation. 
 
2.5 Pixel-based Classification 
 
The pixel-based standard supervised and unsupervised 
classifications (Campbell, 2002) were conducted using ERDAS 
Imagine. Supervised classification undertaken using the 
Maximum Likelihood algorithm (Campbell, 2002). The process 
involved the selection of training areas representative of the 
seven land cover classes including bare ground, patch-shrub-
woodlands, woodland, shrub-woodlands, wood-shrublands and 
water course as the major strata on the study area. A number of 
training areas were selected to represent each class. The signature 
of the training area was then used to determine to which class the 
pixels were assigned. 
 
2.6  Object-based classification 
 
The object-oriented classification undertaken using © eCognition 
v4 Copyright (2005). The process can be split into two steps: 
segmentation and classification. 
 
2.6.1  Multiresolution Segmentation 
 
The subset images were segmented into smaller regions (object 
primitives) or segments on 2 scale levels (Table 1 & Figure 4) to 
simplify thematically complex data content. The segmentation of 
the images into objects was influenced by three parameters: scale, 
colour/shape ratio and form/spatial properties (smoothness / 
compactness ratio) (Baatz et al., 2004). The scale parameter set 
by the operator is influenced by the heterogeneity of the pixels. 
The colour parameter is a balance between the homogeneity of a 
segment’s colour and the homogeneity of its shape. The form 
parameter balances the smoothness of an object’s border with its 
compactness (Whiteside & Ahmad, 2004). The homogeneity 

criterion for the objects was established in the weighting of these 
parameters. The image objects were based on parameters such as 
the spectral characteristics of pixels, the size and shape of the 
objects determined at each scale level. The homogeneity criterion 
for the objects is established in the weighting of these parameters. 
A visual inspection of the objects resulting from variations to 
parameter weighting was used to determine the overall values for 
the weighting of the parameters at each scale level.  
 
2.6.2  Classification 
 
Training sample objects were selected as representative of land 
cover classes from segmented components. A total of seven 
defined strata for the study paddocks were classified from visual 
interpretation and field checking based on the structural 
formation of the biophysical components. Objects were assigned 
class rules using spectral signatures, shape and contextual 
relationships. These rules were then used as a basis for 
classification of image data. The image was classified using 
fuzzy logic (Baatz et al., 2004). After classification image objects 
have degree of membership to several classes. The class with the 
highest membership value was assigned as the best class for each 
object (Baatz et al., 2004).  
 

Scale 
level 

Scale 
parameter 

Shape 
factor 

Compactness Smoothness 

2 10 0.05 0.02 0.98 
1 5 0.05 0.02 0.98 

 
Table–1. Segmentation parameters 

 

 
 

Figure 4. Segmentation, a) Level 1 and b) Level 2 for Billabong 
and Railway paddocks (see Table 1 for segmentation parameters) 
 
2.7 Accuracy Assessment 
 
Accuracy assessments of both classifications were undertaken 
using confusion matrices and Kappa statistics (Congalton & 
Green, 1999). The accuracy of the classified image was assessed 
using field data collected in the study area over a two- year 
period and visual interpretation of Landsat 5 TM imagery. 
Producer and user accuracies for each class were calculated along 
with the overall accuracies and Kappa statistics. It should be 
noted that, because of the main project objective, which was to 
avoid bare ground, sandy soil, woodland community and water 
courses and crest land forms, accuracy assessment and ground 
truthing in mentioned communities and landforms was not 
considered, and ground truth data were not collected for those 
strata. See Table 2 for number of ground truth samples for each 
stratum. 



 

3. RESULTS 
 
3.1 Stratified Results from Visual Interpretation  
 
Results of visual stratification in five paddocks (Figures 5) 
showed that 44% of the selected sites were established on 
shrubland communities. A further 30%, 13%, 10% and 3% of 
total sites were established on shrub-woodland, patch-shrub-
woodlands, wood-shrubland and woodland communities 
respectively. Overall, 87% of the selected sites were established 
in communities with a dominance of shrub components. There 
were road accessibility and distances limitations to select all 
sample locations on shrubland communities. The accuracy of the 
selected sites by ground truthing was 100% as reference data. 
 
3.2  Stratified Resources from Pixel-based Classification 
  
3.2.1   Unsupervised Classification 
 
Raw results of unsupervised stratification in five paddocks 
(Figure 6) showed that 34% of the selected sites were established 
on shrubland communities and a further 13%, 13%, 13%, 10% 
and 3% of total sites were established on shrub-woodland, patch-
shrub-woodlands, wood-shrubland, woodland and water course 
communities respectively. Overall, accuracy of the selected sites 
is described in Section 3-4. 
 
3.2.2   Supervised Classification 
 
Raw results of supervised stratification in five paddocks (Figure 
7) showed that 60% of the selected sites were established on 
shrubland communities. A further 20%, 17% and 3% of total sites 
were established on shrub-patches, water course and woodland 
communities respectively. However, accuracy of the selected 
sites was much lower than the presented data for both supervised 
and unsupervised classifications. See Section 3-4 for accuracy 
assessment results. It should be noted that, although in advance 
sample locations were meant to be established on a homogeneous 
landscape, sample locations along a 100 m line-intercept did not 
exhibit a completely homogeneous pattern, and in some cases 
pixel values were different, so in these cases major land cover 
was considered as the representative of the sites in the accuracy 
assessment.  
 

 
 

Figure 5. The visual interpretation and stratification: an example 
Balah paddock 

 

 
 

Figure 6. Unsupervised classification: as an example Balah 
paddock 

 

 
 

Figure 7. Supervised classification as an example Balah paddock 
  

3.3 Stratified Recourses from Object-based Classification 
 
At scale level 2, a total of seven land cover classes were 
classified for the study area. These classes were based upon the 
vegetation characteristic and knowledge of the area from ground-
based studies for BSC monitoring. At scale level 1 also a total of 
seven land cover classes were classified based on the structural 
formation of the pre-defined land cover. Class rules for the 
objects were then developed using spectral signatures, shape, 
location and the contextual relationships of the objects. Selected 
image objects were then used as samples for each class to act as 
training areas for the classification process. The image resulting 
from the object-based classification is shown in Figure 9. The 
accuracy of classified strata is presented in Section 3-4. 
 
3.4 Results of Accuracy Assessment 
 
The results of the confusion matrix accuracy assessment are 
summarized in Table 2. Overall accuracy for pixel-based 
classification are very low (<33%) and for object-based 
classification was also low (50%). In object-based classification 



 

Producer’s accuracy particularly for shrubland and shrub-
woodland strata was low in comparison with user’s accuracy. 
Overall Kappa statistics for object-based classifications were very 
low and for object-based was also low (0.37). Overall Kappa for 
different strata was low, but in object-based classification for 
shrubland and shrub-woodlands strata, which was important from 
this study perspective were 0.57 and 0.37 respectively, and for 
woodland was high (1). 
 

 
 

Figure 8. Object-based classification as an example Balah 
paddock 

 
4. DISCUSION ANS CONCLUSION 

4.1 Capability of Pixel and Object-based Stratification as a 
Surrogate for Visual Interpretation Method 

 
Resource stratification for ground-based and remotely-sensed 
methods of rangeland assessment is essential for locating 
appropriate sampling sites. This is particularly the case when site 
comparisons are required, as in the case of grazing gradient 
analysis, wherein the objective is to limit the number of 
environmental variables. Remote sensing offers an opportunity to 
provide a means by which stratification can be implemented, via 
the use of image classification. However, despite significant 
advances in remote sensing technologies over the last 15 years, 
rangeland stratification still is a problem and needs to be solved 
(Bastin et al., 1998; Brook et al., 2001). Indeed reliable 
stratification from imagery is still based on traditional visual 
interpretation and manual digitizing point by point. In spite of the 
high reliability and robustness of this method, it is time 
consuming and can outweigh the financial benefits of monitoring 
when extensive areas involved, especially where land 
management goals are primarily environmental  (Bastin et al., 
1998; Brook et al., 2001; Wright et al., 2003). Our results in 
support of Whiteside and Ahmad (2004) conclude that pixel-
based remote sensing has more limitations for stratification in 
ground-based and remotely-sensed studies. The object-based 
technique provided results with more accuracy than the pixel-
based classification. This suggests that object-oriented analysis 
has more potential for extracting strata information from satellite 
imagery captured over chenopod shrublands in South Australia. 
This will be the case particularly with the increasing application 
of higher resolution imagery such as IKONOS and the greater 
spatial information content it holds to undertake a further level of 

segmentation and to conduct a classification of a much larger 
area. The visual difference between the classifications is obvious. 
Pixel-based classifications do misclassify pixels, particularly in 
land covers that are spectrally heterogeneous, such as water 
course land forms and mixed vegetation communities such as 
shrub-woodlands or wood-shrublands. Object-based classification 
appears to overcome some of the problems encountered using 
pixel-based methods to classify strata, while there is evident that 
pixel-based classification is still quite successful in classifying 
land cover of a homogenous nature (i.e. closed black oak / 
woodland / Figure7). To improve the accuracies of the object-
based classification, further work refining the process should be 
continued. The use of multispectral and ancillary data, such as 
DEM layers, is being investigated. The precision of data used for 
DEM was 10 meter (vertical /horizontal). However, according to 
the topographic pattern of the study area the constructed DEM 
does not depict the landscape details such as crest landforms and 
water courses precisely required at the paddock level. Thus a 
topo-gird information at least with vertical precision of 1 to 2 m 
and horizontal precision of 5 to 10 m are required, particularly for 
strata characterization.  There is also to be further development of 
the contextual information to be applied to objects. While the 
accuracy of most classes was not reasonable or lower, the 
classification of some classes was satisfactory. Further research is 
required to refine the scale parameters used within the 
segmentation process. Although, our results showed better results 
for object-based classification in comparison with pixel-based 
classification, there are some difficulties and results are far 
behind an acceptable standard stratified units for ecological 
studies such as BSC monitoring. Because there is high possibility 
even using object-based classification to obtain bias results, 
particularly for the landforms such as water courses and mixed 
vascular plant structure. Time allocation in both pixel-based and 
object-based stratification is considerably low. However using 
both techniques for large areas with heterogeneity pattern create 
difficulties with classifying different land cover with similar 
spectra. Moreover, ground-truthing of pixel or object-based 
procedures for large geographical extents and low economic 
value rangeland ecosystems could still be of concern. The 
accuracy of stratification, depended on many issues, including the 
familiarity of the analyst with the pattern and distribution of 
different land cover components (e.g. woodland, shrubland, water 
courses), as well as familiarity with their spectral and spatial 
patterns on the remote sensing imagery. Additionally, further 
issues affecting accuracy of results included the selection of 
segmentation parameters such as those for scale and shape. In 
particular, the classification accuracies of the mixed woodland 
and shrubland classes were exceptionally low. In the accuracy 
assessment ground-truth data for bare ground and water course 
were not collected and for woodland, patch-shrub-woodlands and 
wood-shrublands were within the confusion matrix is partially 
attributed to the low number of points selected (only 1 to 4). 
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