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Abstract

This paper discusses the problem of identifying differentially ex-
pressed groups of genes from a microarray experiment. The groups
of genes are externally defined, for example, sets of gene pathways
derived from biological databases. Our starting point is the interest-
ing Gene Set Enrichment Analysis (GSEA) procedure of Subramanian
et al. (2005). We study the problem in some generality and propose
two potential improvements to GSEA: the mazrmean statistic for sum-
marizing gene-sets, and restandardization for more accurate inferences.
We discuss a variety of examples and extensions, including the use of
gene-set scores for class predictions. We also describe a new R lan-
guage package GSA that implements our ideas.

1 Introduction

We discuss the problem of identifying differentially expressed groups of genes
from a set of microarray experiments. In the usual situation we have N genes
measured on n microarrays, under two different experimental conditions, such
as control and treatment. The number of genes N is usually large, say at
least a few thousand, while the number samples n is smaller, say a hundred
or fewer. This problem is an example of multiple hypothesis testing with
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a large number of tests, one that often arises in genomic and proteomic
applications, and also in signal processing. We focus mostly on the gene
expression problem, but our proposed methods are more widely applicable.

Most approaches start by computing a two-sample t-statistic z; for each
gene. Genes having t-statistics larger than a pre-defined cutoff (in absolute
value) are declared significant, and then the family-wise error rate or false
discovery rate of the resulting gene list is assessed by comparing the tail area
from a null distribution of the statistic. This null distribution is derived from
data permutations, or from asymptotic theory.

In an interesting and useful paper, Subramanian et al. (2005) proposed
a method called Gene Set Enrichment Analysis (GSEA) for assessing the
significance of pre-defined gene-sets, rather than individual genes. The gene-
sets can be derived from different sources, for example the sets of genes
representing biological pathways in the cell, or sets of genes whose DNA
sequences are close to together on the cell’s chromosomes. The idea is that
these gene-sets are closely related and hence will have similar expression
patterns. By borrowing strength across the gene-set, there is potential for
increased statistical power. In addition, in comparing study results on the
same disease from different labs, one might get more reproducibility from
gene-sets than from individual genes, because of biological and technical
variability.

The GSEA methods works roughly as follows. We begin with a pre-
defined collection of gene-sets &1, 8o, ... Sk, We compute t-statistic z; for all
N genes in our data. Let z; = (21, 22, ...2,) be the gene scores for the m
genes in gene-set Sg. In GSEA we then compute a gene-set score Si(zy) for
each gene-set S, equal to essentially a signed version of the Kolmogorov-
Smirnov statistic between the values {z;,7 € Sy} and their complement
{zj,7 ¢ Si}; the sign taken positive or negative depending on the direction
of shift. The idea is that if some or all of the gene-set S; have higher (or
lower) values of z; than expected, their summary score S, should be large. A
absolute cutoff value is defined, and values of Sy above (or below) the cutoff
are declared significant. The GSEA method then does many permutations of
the sample labels and recomputes the statistic on each the permuted dataset.
This information is then used to estimate the false discovery rate of the list
of significant gene-sets. The Bioconductor package limma offers an analysis
option similar to GSEA, but uses instead the simple average of the scores zy:
see (Smyth 2004). Other related ideas may be found in (Pavlidis et al. 2002)



and (Rahnenfhrer et al. 2004).

In studying the GSEA work, we have found some shortcomings and ways
it could be improved. The GSEA’s dependence on Kolmogorov-Smirnov
statistics is a reasonable choice, but not a necessary one. This paper puts
the GSEA procedure in a more general framework that allows us to investi-
gate questions of efficiency for gene-set inference; a new procedure based on
the “maxmean” statistic is suggested that has superior power characteristics
versus familiar location/scale alternatives.

Here are two simulated data examples that illustrate some of the main
issues, and allow us to introduce our proposed solution. We generated data on
1000 genes and 50 samples, with each consecutive non-overlapping block of 20
genes considered to be a gene-set. The first 25 samples are the control group,
and the second 25 samples are the treatment group. First we generated each
data value as i.i.d. N(0,1). Then the constant 2.5 was added to the first 10
genes in the treatment group. Thus half of the first gene-set (first block of
20 genes) has a higher average expression in the treatment group, while all
other gene-sets have no average difference in the two groups.

The left panel of Figure 1 shows a histogram (black lines) of the GSEA
scores for the 50 gene-sets. The first gene-set clearly stands out, with a
value of about 0.9. We did 200 permutations of the control-treatment labels,
producing the dashed (green) histogram in the top left panel of Figure 1. The
first gene-set stands out on the right side of the histogram. So the GSEA
method has performed reasonably well in this example.

In the paper we study alternative summary statistics for gene-sets. Our
favorite is something we call the “maxmean statistic”: we compute the aver-
age of the positive parts of each z; in §, and the also the negative parts, and
choose the one that is larger in absolute value. The results for maxmean in
this example are shown in right panel of Figure 1. The first gene-set stands
out much more clearly than it does in the left panel. In this paper, we show
by both analytic calculations and simulations that the maxmean statistics is
generally more powerful than GSEA.

Now consider a different problem. We generated data exactly as before,
except that the first 10 genes in every gene-set are 2.5 units higher in the
treatment group. The top left panel of Figure 2 shows a histogram of the
maxmean scores for the 50 gene-sets, and a histogram of the scores from 200
permutations of the sample labels (dashed, green). All of the scores look
significantly large compared to the permutation values. But given the way
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Figure 1: FEzample 1: left panel shows histograms of GSEA scores for original
data (black) and from 200 permutations of the sample labels (dashed, green). The
first gene-set stands our fairly clearly with a score of about 0.7. The right panel
shows the results using instead the “maxmean” statistic. The first gene-set stands
out much more clearly than in the left panel.



that the data were generated, there seems to be nothing special about any
one gene-set. To quantify this, we “row randomized” the 1000 genes, leaving
the sample labels as is. The first 20 genes in the scrambled set became the
first gene-set, the second 20 genes became the second gene-set, etc. We did
this many 200 times, recomputing the maxmean statistic on each scrambled
set. The results are shown in the bottom left panel of Figure 2. None of
the original 50 gene-sets are notable, when compared to gene-sets formed by
randomly sampling from the full set of genes.

The point is that any method for assessing gene-sets should compare a
given gene-set score not only to scores from permutations of the sample labels,
but also take into account scores from sets formed by random selections of
genes.

The bottom right panel of Figure 2 puts all of these ideas together. It
uses the restandardized version of the maxmean statistic, in which we center
and scale the maxmean statistic by its mean and standard deviation under
the row randomizations, like those in the bottom left panel. This standard-
ized maxmean statistic is then computed both on the original data (light
histogram) and one each of the permuted datasets (dark histogram). As
we would expect, we see no significant gene-sets. This restandardization is
potentially important for any gene summary statistic: it turns out that the
GSEA statistic, incorporates a form of what we are calling restandardization.

The two ideas illustrated above— alternative summary statistics for gene-
sets, and restandardization based on row randomization— are two of the
main proposals in this paper. In Section 2 we describe the randomization
and permutation methods for estimating an appropriate null distributions.
Section 3 studies the choice of summary statistic for gene-sets, and introduces
the mazmean statistic. In Section 4 we summarize our proposal for Gene Set
Analysis and discuss computational issues. A simulation study is carried out
in Section 5, comparing the power of the maxmean statistic to the GSEA
statistic and other competitors. Finally in Section 6 we give a number of
examples of the method, including applications to a kidney cancer dataset,
a generalization to the class prediction problem, and comparison of different
gene-set collections over the the same expression dataset.
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Figure 2: Example 2: top left panel shows a histogram of the maxmean scores.
In the top right panel a histogram of marmean scores from 200 permutations of
the sample labels has been added (dashed, green): all of the gene-sets look to be
significant. In the bottom right panel a histogram of the maxmean scores is shown
along with mazxmean scores from 200 “row randomizations”- gene-sets chosen from
the full collection of genes at random (bashed, green). Finally, in the bottom right
panel, histograms of the restandardized scores from the original data (black) and
from 200 permutations of the sample labels (dashed, green) are shown. (Note that
the horizontal axis has changed, since the values has been centered and scaled).
None of the gene-sets looks significant, which is reasonable, given the way the data
were generated.



2 Randomization and Permutation

A straightforward approach to gene-set analysis begins with some enrich-
ment score S and computes its significance by comparison with permutation
values S*. Here we argue that a second kind of comparison operation, “row
randomization”, is also needed to avoid bias in the determination of signifi-
cance. We begin with a simplified statement of the gene-set problem, leading

later to a more realistic analysis.

Let X indicate an N by n matrix of expression values, N genes and n
microarrays, with the first n; columns of X representing Class 1 and the
last ny Class 2, n; + no = n. In the p53 example example of Subramanian
et al. (2005) there are N = 10100 genes and n = 50 arrays, relating to cell
lines with normal or mutated states for the p53 factor, ny = 17 normal and
ny = 33 mutated.

The ith row of X, that is the data for gene i, yields a two-sample ¢-
statistic “t;” comparing the classes. In this section it will be convenient
to transform the t; values to z-values “z;”, theoretically having a standard
normal distribution,

theoretical null : z; ~ N(0,1), (2.1)

under the null hypothesis of no difference between the two treatments. (The
transformation is z; = ®~1(F,_5(t;)), where ® is the standard normal cu-
mulative distribution function (cdf) while F,,_5 is the cdf for a ¢ distribution
having n — 2 degrees of freedom.) The methods here apply outside the realm
of genes, microarrays, and t-tests, but that is the main application we have
in mind.

To begin with suppose that a single gene-set “S”, comprising m genes, is
under consideration, and we wish to test the hypothesis that S is enriched,
meaning that its m z-values are unusually large, positively or negatively, in
a sense to be defined. The scientific idea underlying enrichment, as nicely
stated in Subramanian et al. (2005), is that a biologically related set of genes,
perhaps representing a genetic pathway, could reveal its importance through
a general effect on its constituent z-values, whether or not the individual z;’s
were significantly non-zero.

Let zs indicate the set of m z-values in & and

S = S(ZS) (2.2)
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define an enrichment test statistic, with larger value of S indicating greater
enrichment. The GSEA algorithm uses a Kolmogorov-Smirnov type function
for S(zs). A simpler approach starts with a function “s” of the individual
z-values,

si = s(zi). (2.3)

and takes the gene-set score S to be the average of s; in S,

S=>"s(z)/m. (2.4)

The choice s(z) = |z| will be discussed later. Limma, (Smyth 2004), a
microarray analysis program available in the Bioconductor R package, im-
plements (2.4) with s(z) = z, so S is simply Zs, the average z-score in S,
(actually using S = |Zs| for two-sided inference.) Section 3 develops a third
choice, the “maxmean” statistic.

Testing S for enrichment requires a null hypothesis distribution for S,
and that is where difficulties begin; there are two quite different models for
what “null” might mean. We discuss these next.

Randomization Model The null hypothesis H,..q is that S has been
chosen by random selection of m genes from the full set of IV genes. In this
case the null density of S, say grana(S) can be obtained by row randomization:
sets ST of m rows of the expression matrix X are drawn at random, giving
randomized versions ST of (2.4), a large number of which are generated and
used to estimate grana(S). Equivalently, random subsets ZL of size m are
drawn from all N z;’s, giving ST = S(z}).

Permutation Model Let Xs be the m by n submatrix of X corre-
sponding to §. The null hypothesis Hpem, is that the n columns of Xs are
independent and identically distributed m-vectors (i.i.d.). The null density
of S, gperm(9S), is obtained by column permutations, leading to an estimate
of gperm (S) in the usual way.

The randomization model has the appealing feature of operating condi-
tionally on the set z of all N z-values: given z, it tests the null hypothesis
that the observed S is no bigger than what might be obtained by a random
selection of S.



Its defect concerns correlation between the genes. Suppose the scores s;
in (2.3) have empirical mean and standard deviation

s ~ (meany, stdevy) (2.5)

for the ensemble of all N genes. Because row randomization destroys gene-
wide correlations, the Randomized version of (2.4) will have mean and stan-
dard deviation

ST~ (o) (2.6)

with
p' =mean, and of = stdev,/v/m. (2.7)

However of will underestimate the variability of S if there is positive corre-
lation among the z-values in S, which seems likely if & was chosen on the
basis of biological similarities. The p-value in the Limma package compares
S = Zs with the row randomization distribution of ST, ignoring, perhaps
dangerously, correlation effects.

Permutation methods deal nicely with the correlation problem. Let Rg
indicate the correlation matrix of the i.i.d. columns of Xs in the Permutation
Model. Because column-wise permutations maintain the integrity of column
vectors, it turns out, under some regularity conditions, that z%, the permuta-
tion vector of z-values in &, will have correlation matrix approximating Rg,
as will zg itself. In other words, for a prechosen gene-set S, the permutation
correlation matrix of zs will be approximately correct.

Figure 3 concerns correlation effects in the p53 example of Subramanian
et al. (2005); the authors provide a catalog of 522 gene sets, of which 395
have m > 10 members. Taking s(z) = z yields

(mean,, stdev,) = (0.00,1.13) (2.8)

as in (2.5), this being the mean and standard deviation of all those z;’s
involved in the 395 gene-sets. 400 permutation values of S* = z%, the average
2! values in &, were generated for each of the 395 gene-sets S, and the
permutation standard deviation o computed.

Figure 3 plots o5 versus ajg = 1.13/,/ms, the randomization standard de-

viation (2.7); 0%/ UL has median 1.08 (light line), but the ratio is considerably
greater for large m, with median 1.50 for m > 50.
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Figure 3: Permutation standard deviation compared to randomization stan-
dard deviation for S = Zs, 395 gene-sets for p53 data, Subramanian et al.
(2005). Permutation values exceed randomization values, especially for gene-
sets with large m at left, reflecting positive correlations within gene-sets
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The Permutation Model has a serious weakness of its own: it does not take
into account the overall statistics (meang, stdevy), (2.5), as demonstrated
next. Figure 4 concerns the “BRCA data”, Efron (2004, 2006), a microar-
ray experiment comparing two classes of breast cancer patients, N = 3226
genes, n = 15 microarrays, n = 7 for class 1, ny = 8 for class 2. A two-
sample t-statistic ¢; was computed for each gene and converted to z-value
z; = ®7Y(F13(t;)). The N z-values have mean and standard deviation

2 ~ (—0.026,1.43). (2.9)

In this case (2.1), the theoretical N (0, 1) null, substantially underestimates
the z-values’ variability, their histogram looking like an overdispersed but
somewhat short-tailed normal.

For this example 129 gene-sets S of size m = 25 each were constructed
by random selection from the N genes. Enrichment was tested with S =
> s lzil/m, that is by using (2.3), (2.4) with s(z) = |2|. Figure 2 shows
that the permutation distribution S* greatly underestimates the actual 129
S values. A standard Benjamini-Hochberg (1995) FDR analysis based on
permutation p-values, carried out at rejection level ¢ = 0.10, labels 113 of
the 129 generate as “enriched”, even though we know that all of them were
constructed randomly.

It is easy to spot the trouble here: the permutation z-values are much less
dispersed than the actual z’s, with marginal mean and standard deviation,
for all NV of them,

2" ~(0.022,1.014) (2.10)

compared to (2.9). (This is a dependable feature of the permutation t-test,
which tends to yield zf ~ N(0,1), the theoretical null, under a wide variety
of circumstances.)

The individual scores s = s(z}) are correspondingly reduced. Letting
(mean*, stdev”) indicate the mean and standard deviation of s* over all N
genes and a large number of permutations,

*

s* ~ (mean”, stdev®), (2.11)
we computed (mean*, stdev®) = (0.82,0.60) compared to (mean,, stdevy) =

(1.17,0.82) for the actual scores (2.5). This translates into S* statistics that
are much smaller than the actual S values.

11
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2.1 Restandardization

We combine the randomization and permutation ideas into a method that
we call “Restandardization”. This can be thought of as a method of
correcting permutation values S* to take account of the overall distribution
of the individual scores s;. For a gene-set score S = ¢ s(%)/m as in (2.3),
(2.4), the restandardized permutation value is defined to be

stdev,

S** = mean, +
® stdev™

(S* — mean”), (2.12)

with (meang, stdevy) and (mean®, stdev®) the overall means and standard
deviations defined at (2.5), (2.11).

A restandardized p-value for testing the enrichment of gene-set S is ob-
tained by comparing its actual enrichment score S to a large number “B” of
S** simulations,

ps = #{S™ values exceeding S}/B. (2.13)

Figure 4 shows the restandardized value S** giving much better agreement
than S* with the actual S values, though the S** distribution is moderately
overdispersed.

Here is another equivalent way to express the restandardization proce-
dure: we first standardize the statistic S with respect to its randomization
mean and standard deviation, and then compute the permutation distribu-
tion of the standardized statistic. This gives the p-value

S* — mean* . S — mean;
ps = #¢ —————— exceeding ——
stdev

}/B. (2.14)

stdevg

It is this form of restandardization that we use in our software package GSA,
described in section 4.

Restandardization can also be applied to more complicated gene-set statis-
tics S, not simple averages as in (2.4), via

S* = pul + — (S* — ). (2.15)

o*

Here (u',0') are the mean and standard deviation of ST for a randomly
selected gene-set of size m, as in (2.5), while (u*, 0*) are the corresponding

13



quantities based on a permuted data matrix; computing (u*,0*) requires a
nested simulation.

The GSEA enrichment test incorporates a form of restandardization: it
compares the empirical cdf of the z-values in & with the cdf of all other z-
values; the latter cdf brings to bear information from the overall distribution
of z, much like meang and stdev, do in (2.14). This same approach could
be used in context (2.4) by replacing s(z;) in (2.3) with t(z;) = (s(z;) —
meany ) /stdev,, leading to

T = Z t(z;)/m = (S — meany) /stdev, (2.16)
S

as the enrichment statistic for S. Then (2.14) reduces to
ps = #{1" > T}/B, (2.17)

so that the restandardized p-value equals the usual permutation p-value.

Restandardization can be shown to yield improved inferences in a variety
of situations:

o If S was selected randomly, as in the Randomization Model.

e If the theoretical null (2.1), z ~ N(0,1), agrees with the empirical
distribution of the N z-values.

e If the z;’s are uncorrelated.

The method is not perfect, as examples can be constructed to show. Neither
the Randomization nor Permutation Models perfectly describe how gene-sets
S come under consideration in the catalog examples of Subramanian et al.
(2005), making some sort of compromise formula a necessity.

3 Efficient Tests for Enrichment

The randomization and Permutation Models specify null hypotheses for the
selection of a gene-set S. Notions of efficient testing, however, require us to
specify alternatives to null selection. This section begins with an exponential
family selection model, considers some specific test statistics, and goes on to
propose the “maxmean” statistic, which leads to enrichment tests with good
power characteristics.
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The Poisson Selection Model starts with independent Poisson variates

L% Po(v;), vi = ae’® Ty (3.1)
fori=1,2,..., N, where s; = s(z;), for s(-) a given J-dimensional function,

[ an unknown .J-dimensional parameter vector,
Ty =) e, (3.2)

and a = )] v; an unknown scalar parameters. In what follows, the v; will
be small and the I; almost all zeros or ones, mostly zeros. For convenient
exposition we assume that all the I; are zeros or ones, though this is not
essential.
We define the selected gene-set S as composed of those genes having
I =1,
S={i: I, =1}, (3.3)

so S has
m= Z I; (3.4)

members. It is easy to calculate the probability g, (S) of selecting my
particular gene-set S,

m

e« 'se_lo
9a,8(S) = < oy )(m!emw 58 1gTﬁ]) (3.5)

where

Ss=) si/m. (3.6)
S

This is a product of two exponential family likelihoods, yielding maximum
likelihood estimates @ = m and 3 defined by

N N
Z sie”% / Zeﬁsi = Ss. (3.7)
i=1 i=1
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Parameter § = 0 corresponds to the Randomization Model null hypothe-
sis that § has been selected at random. Given gene-set size m, the sufficient
statistic for testing Hy : f = 0 is Sg, called “S” at (2.4). An efficient test
rejects Hy if 55 is far from its null expectation 5 = Ziv si/N. If ss is one-
dimensional, as in Section 2, we reject for extreme values of s, either positive
or negative.

Under Hy : § =0, all gene-sets S of size m are equally likely. Nonzero /3
“tilts” the selection toward gene-sets having larger values of (3’55, as seen in
(3.5) where

95(S|m) = m/! eml¥ss—loeT] (3.8)

Efficient choice of a gene-set enrichment test statistic S = Zg depends on
the individual scoring function s; = s(z;) in (3.3). Consider two choices.

sW(z) =2 and s@(2) =|z|, (3.9)

both of which are univariate and have (§ a scalar, J = 1. The first of these,
the Limma choice, uses S = Zg; enriched gene-sets S will tend to have Zg far
away from z = Ziv z;/N. This is fine if enrichment manifests itself as a shift
of location in z-values. The second choice s (z) = |z| has power against
scale alternatives.

For general use one would like an enrichment test statistics having power
against both shift and scale alternatives. To this end, define the two-dimensional
scoring function

(+) —
5(2) = (s (), s (2)), 5 () = max (2.0) (3.10)
s7)(2) = —min (z,0),
and the mazmean test statistic
Smax = max{§g+), §(_)}. (3.11)

Smax 18 designed to detect unusually large z-values in either or both directions.
Note that S, is not the same as the largest absolute value of the mean of
the positive or negative z values in the gene-set: it divides by the total
number of genes m. If for example a gene-set of 100 genes had 99 scores of
-0.5 and one score of 10, the average of the positive scores would be 10, and
the average of the negative scores equal to -0.5, so the mean with largest
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absolute value would be 10. But the maxmean statistic is the maximum of
10/100 = 0.1 and —99(—0.5)/100 = 0.495, and the negative scores would
win. The maxmean statistic is robust by design, not allowing a few large
positive or negative gene score to dominate.

Figure 5 compares the power of Sy, with the limma test that rejects
the null hypothesis of no enrichment for large values of the absolute mean
statistic |Zs|. Here S consists of m = 25 independent normal z-values,

% NN, g?) i=1,2,...,m =25 (3.12)

Contours of equal power are shown, for testing Hy : (b,g) = (0,1) versus
alternatives (b > 0,9 > 1), (or equivalently (b < 0,¢g > 1)) at level 0.95;
better power is reflected by contours nearer the null hypothesis point (b, g) =
(0,1).

As expected, the absolute mean test has good power for shift alternatives
b # 0, but no power for scale alternatives g > 1, as shown by its nearly
vertical contour lines. The maxmean test shows reasonable power in both
directions. Comparing the 0.5 power contours for instance, shows maxmean
almost dominating |Zs|. Also shown is “KS” the 0.5 power contour for a test
based on absolute Kolmogorov-Smirnov distance between the empirical cdf
of the 25 z-values and a N(0,1) cdf. (The GSEA test is based on an im-
proved variant of the Kolmogorov-Smirnov statistic.) In this case, maxmean
dominates ks, its contour being everywhere closer to (b,g) = (0,1). Finally,
we show the resultsfor the test based on the mean absolute value: this has
the best power for pure scale alternatives but is not very sensitive to location
shifts.

Using a similar setup, the left panel of Figure 6 compares the power of the
maxmean statistic to that of the individual gene scores z;. We see that the
maxmean statistic has a strong power advantage. In the right panel we have
changed the setup slightly, with half of the genes in the gene-set generated
as N(b, %), and the other half as N(—b, g%). The increase in power enjoyed
by the maxmean statistic is slightly less than in the left panel, but it is still
substantial.

We applied the maxmean statistic was applied to the p53 data with the
catalog of 522 gene-sets in Subramanian et al. (2005). Restandardization,
(2.12), noticeably improved results, though the effect was much less dramatic
than in Figure 4. Applying the FDR algorithm to the restandardized p-value
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Figure 5: Contours of equal power for absolute mean, enrichment statistic
|Zs| (jagged vertical line), mean of absolute value (curving broken line), and
mazmean statistic (heavy curving lines); for testing Hy : z; w N(0,1) wvs
N(b,g?), i = 1,2,...,m = 25, at level 0.95; “ks” is 0.5 power contour
for Kolmogorov-Smirnov test, dominated by mazmean test with 0.5 contour
everywhere closer to null point (0,1). Using mean absolute value, average
over S of |z|, has very little power versus shift alternatives, curved dashed
line.
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pb3 Up*

hsp27 pathway*

ngf pathway

SA G1 and S phases

1. pb3 hypoxia*
2. pb53 pathway*
3. radiation sensitivity”*
4. ras pathway*

X N

Table 1: Significant gene-sets, FDR cutoff 0.10, for p53 data, Subramanian
et al. (2005); maxmean statistic restandardized. *Asterisks indicate signifi-
cant gene-sets listed in Subramanian et al. (2005), Table 2. They list the ngf
pathway as almost significant.

(2.13), cutoff level ¢ = 0.10, yielded 8 significant gene-sets, Table 1, in close
agreement with Table 2 of Subramanian et al. (2005).

Significance is defined in a two-sided testing sense here, but we can use
Egr) and 559_) in (3.11) separately. Gene-sets 4 and 7 in Table 1 have 559_)
predominating, indicating positive enrichment in the mutant class, while the
other six gene-sets had bigger z-values overall in the normal class.

Note Restandardization formula (2.12) was applied separately to 5?’ and
s in (3.11), and then combined to give

S** = max{s5""" 547} (3.13)

Figure 7 displays the top eight pathways, showing the individual gene
scores z; in each pathway. The inset at the top shows the estimated FDR
for an individual gene analysis. We see that the cutoff for an FDR of 0.10
is about -4.7 for negative scores, while the FDR for positive scores never
gets down to 0.10. Hence an analysis of individual genes would report as
significant the top few genes in the negative gene-sets, and none of the genes
in the positive gene-sets. Note that location shift alternatives look quite
reasonable here.

The values of (meany, stdevy) and (mean*, stdev®) used in (2.12) were based
on the catalog of 15,059 genes listed (with multiple occurrences) in the 522
gene-sets, rather than the 10,100 genes in the original p53 data set. Table 2
shows considerable differences between the two choices for (meang, stdevy),
though not for (mean*, stdev*), with s = s(¥)(2), the comparison for s7(2)
being similar. When a catalog of gene-sets S is simultaneously under con-
sideration for enrichment, the catalog choice of (meany, stdev,) is preferable
from the row randomization viewpoint.
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Figure 7: p53 data: the top eight pathways, showing the individual gene scores
z; in each pathway. The inset at the top shows the estimated FDR for an individual
gene analysis.
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stdev™)
589)
587)

mean; (stdevy) mean®  (
original 10,100 genes: .451 (.628) 406 (
catalog 15,059 genes: .456 (.671) 404 (

Table 2:  Comparison of (mean, stdev) values for s = sF)(2), (3.10); for
original list of 10,100 genes in p53 data, versus 15,059 genes listed with
multiple occurrences, in catalog of 522 gene-sets. Latter is preferred choice
for restandardization formula (2.12).

The Poisson Selection Model (3.1), (3.2) follows the Randomization Model
of Section 2 in that the set z of N original z-values is treated as a fixed an-
cillary, with only the selection process for S considered random. We could
instead, think of z-values selected for inclusion in § as coming from a different
underlying distribution, for example.

fa(z) = eﬁls(z)_logTﬁfo(z), (3.14)

where fy(2) is the baseline density for non-enriched z-values, # and s(z) are
as in (3.1), and T = [> e#*() fy(2)dz. If the members of S are selected

(&
—00

independently according to (3.14), then the most powerful test for null hy-
pothesis § = 0 is based on 55 = ) ¢ s(z)/m, just as in (3.6).

This point of view is more congenial to the Permutation Model of Section
2, but there is really not much practical difference from (3.1). Let Fy denote
the empirical distribution

Fola,b] = #{z in [a,b]}/B, (3.15)
and 135 the tilted distribution
R N
Fsla,b] = z:{,uZ for z; in [a, b]}/Z:,uZ (3.16)
1
Then (3.1), (3.2) gives
A~ b 12 o~
Fsla,b] :/ P EdFy(2). (3.17)

just as in (3.14).
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More elaborate probability models can be constructed to make, say, the
Kolmogorov-Smirnov distance the optimal test statistic. The strongpoint
of the maxmean enrichment statistic is its good performance against simple
location and scale alternatives, as seen in Figure 5.

4 Computational issues and software

The developments in the previous two sections lead to our Gene Set Analysis
procedure, which we summarize here:

1. Compute a summary statistic z; for each gene, for example the two-
sample t-statistic for two-class data. Let zg be the vector of z; values
for genes in a gene-set S.

2. For each gene-set S, choose a summary statistic S = s(z): choices
include the average of z; or |z;]| for genes in S, the GSEA statistic, or
our recommended choice, the mazmean statistic (3.11).

3. Standardize S by its randomization mean and standard deviation as in
(2.14): 8" = (S — meany)/stdev,. For summary statistics such as the
mean, mean absolute value or maxmean, (but not GSEA) this can be
computed from the genewise means and standard deviations, without
having to draw random sets of genes. Note formula (3.13) for the
maxmean statistic.

4. Compute permutations of the outcome values (eg. the class labels in the
two-class case) and recompute S’ on each permuted dataset, yielding
permutation values S, §*2 ... S5

We use these permutation values to estimate p-values for each gene-set score
S’, and false discovery rates applied to these p-values for the collection of
gene-set scores.

It would be convenient computationally to pool the permutation values
for different gene-sets: this often done in the analysis of individual genes (e.g
in the SAM package (Tusher et al. 2001)) and also in the GSEA software.
Such pooling can reduces the number of permutations needed to obtain suf-
ficient accurate results. However we have found that in gene-set analysis,
the permutation distribution for each gene-set depends heavily on both the
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number of genes in the gene-set and their average pairwise correlation (nei-
ther of which applies to individual-gene analysis.) Hence we do not pool the
permutation values, and so we must carry out at least 1000 permutations to
get accurate results. However with a careful implementation this need not
be a obstacle for practical use.

We have written an R language package GSA (“gene-set analysis”) for
carrying out these computations. This will be freely available along with
collections of gene-sets for use with the package.

5 Simulation comparison of different gene-set
summaries

In this study we simulated 1000 genes, and 50 samples in each of 2 classes,
control and treatment. The genes were assigned to with 50 gene-sets, each
with 20 genes. All measurements were generated as N(0, 1) before the treat-
ment effect was added. There were five different scenarios:

1. all 20 genes of gene-set 1 are 0.2 units higher in class 2

2. the 1st 15 genes of gene-set 1 are 0.3 units higher in class 2
3. the 1st 10 genes of gene-set 1 are 0.4 units higher in class 2
4. the 1st 5 genes are 0.6 units higher in class 2

5. the 1st 10 genes of gene-set 1 are 0.4 units higher in class 2, and 2nd
10 genes of gene-set 1 are 0.4 units lower in class 2

In every one of these scenarios, only the first gene-set is of potential
interest. For each scenario we carried out 200 permutations and report the
estimated tail probability Prob(S™ > S7), with small values being good.
Here S’ is the restandardized version of a summary statistic, and the quantity
Prob(S™ > S}) is the observed p-value for the first gene-set.

We compared five different summary statistics: the mean of z;, the mean
of |z;|, maxmean, GSEA, and GSEA applied to |z;|. Everything was repeated
20 times, and the mean and standard error of the tail probability over the 20
simulations is reported in Table 3. While the maxmean can be beaten by a
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mean mean.abs maxmean GSEA GSEA.abs

(1)

mean 0.014 0.133 0.012 0.032 0.192
se 0.008 0.038 0.005 0.017 0.060
@)

mean 0.005 0.035 0.002 0.016 0.074
se 0.003 0.014 0.001  0.008 0.034
@)

mean 0.014 0.032 0.002 0.031 0.057
se 0.008 0.015 0.001  0.018 0.032
@

mean 0.074 0.081 0.014 0.069 0.037
se 0.032 0.050 0.007  0.038 0.014
5)

mean 0.587 5e-04 0.018 0.233 0.011
se 0.106 4e-04 0.008  0.063 0.009

Table 3: Results of simulation study: P-values for the first gene-set, for
five different summary statistics (columns) and five different scenarios (rows,
described in the text). The first four scenarios are one-sided shifts, while the
last one is two-sided. We see that the maxmean statistic is the only one with
consistently low p-values in all five scenarios.

small margin by the mean or the mean of the absolute values in the one-sided
or two-sided scenarios, respectively, it is the only method with consistently
low p-values in all five scenarios.

6 Examples

6.1 Survival with kidney cancer

In this example we apply the gene-set methodology to a dataset with censored
survival outcome. Zhao et al. (2005) collected gene expression data on 14, 814
genes from 177 kidney patients. Survival times were also measured for each
patient. The data were split into 88 samples to form the training set and the
remaining 89 formed the test set.

25



We computed the Cox partial likelihood score statistic z; for each gene,
and used this as the basis for gene-set analysis using the maxmean statistics
Sk. Since there are separate training and test sets, we examined the con-
cordance between the scores S for a given gene-set, between the training
and test sets. Denote the training and test set scores by S and Sif. We
measured the concordance by setting a cutpoint ¢ and defining a test set
value with |S}| > ¢ to be a “true positive”; otherwise it is called a “true
negative”. Then we applied the same cutpoint to the training set scores Si"
and then computed the false positive and false negative rates. We applied
this same idea both to scores for the individual genes, and also to gene-set
enrichment analysis, based on the Cox scores. The cutpoint ¢ was varied to
generate the curves of false positive and false negative rates in Figure 8. We
see that both the maxmean statistic and GSEA statistics have considerably
lower false positive rates, for a given false negative rate, than the individual
gene analysis. The maxmean statistic also enjoys an advantage over GSEA,
which is not surprising given the results from our power studies. In this case
it seems that a list of significant gene-sets based on the maxmean statistic will
tend be more reproducible than a list of significant genes from an individual
gene analysis.

6.2 Class prediction from gene-sets

Here we explore the use of gene-set analysis to a different problem, that of
class prediction from gene expression profiles. We consider the p53 mutation
data discussed earlier, with 10,101 genes and 50 samples falling into two
classes- wildtype or mutant. As a baseline competitor, we applied the nearest
shrunken centroid classifier of (Tibshirani et al. 2001). The 50 samples were
divided at random into a training set of size 30 and a test set of size 20, and
the classifier was trained on the training set and the misclassification error
was evaluated on the test set. This random splitting was done 50 times and
the results were averaged.

Here we want to apply the nearest shrunken centroid classifier to the gene-
sets rather than individual genes. For this purpose we need a summary of
each gene-set for each sample, in contrast to the maxmean statistic which is a
summary of the gene-set for all samples. First we standardized the expression
values for each gene by dividing by its within class standard deviation. Then
if the maxmean statistic Sy was positive for a given gene-set Sy, we computed
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Figure 8: Kidney cancer microarray data: false positive and false negative rates
for three methods, using the test set values for each method to define the “true

positive” and “true negative” for genes or gene-sets.
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wy; to be the average of the features z;; for genes 7 € S, with positive scores
z;, and similarly if S, was negative. We then applied the nearest shrunken
centroid classifier using the features wy;. The results are shown in Figure
9. The nearest shrunken centroid classifier has a threshold parameter which
controls number of features used: this number on indicated on the horizontal
axis of the plot. We see that the classifier based on gene-set summaries
has about 5% lower error rates at its minimum, compared to the individual
gene-based classifier. The error rates for the separating linear support vector
classifier are also indicated on the plot: the gene-set features yield only a
small improvement in performance,

6.3 Comparisons of different gene-set collections

The gene-sets used in the examples of this paper are the collection of 522
gene pathways developed by Subramanian et al. (2005). This is the C2
“functional” collection in in their Molecular Signature Database. The same
authors provide three additional collections: C1 (chromosomal location, 24
sets), C3 (motif-based, 319 sets ) and C4 (chromosomal location, 427 sets).
The Stanford Microarray Database has at least two more collections in their
“synethetic gene” database that are potentially useful for this purpose: tissue
types (80 sets) and cellular processes (22 sets). We applied our gene-set
analysis technique using the mazmean statistic, to both the p53 and kidney
cancer datasets, using each of these six collections of gene-sets. The results
are shown in Figure 10. In both cases the FDR results in the left tail are
shown, for gene-sets with negative maxmean statistics. The FDRs for the
right tail were high for both datasets. We see that different collections exhibit
the lowest FDRs in the two studies: chromosomes for the p53 data and tissues
for the kidney cancer data. This suggests that for a given expression dataset,
systematic “mining” of different gene-set collections could be a useful exercise
for discovering potentially interested gene-sets for further investigation.
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implementation of the GSEA procedure. We would also like to thank Trevor
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Figure 9: p53 mutation data: average test error rates(d+ se) for for nearest
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of individual genes or genesets, in the different approaches. Similarly, use of the
“maxmean features” reduces the error rates for the separating linear support vector
machine from about 0.33 to 0.31 (not shown).
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