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Abstract— A data compression scheme is defined to tenooth the Hamming distance between two vecters:’. Then, one
if its image (the codeword) depends gracefully on the source has||F(x) — F(z')||o > 1 even ifz andz’ differ only in one

(the data). Smoothness is a desirable property in many prattal o ition. In order to eliminate this problem, we will reqeir
contexts, and widely used source coding schemes lack of it.
the source code to be smooth.

We introduce a family of smooth source codes based on sparse
graph constructions, and prove them to achieve the (informtaon Definition I.1. Given a constanf, > 0 source COdE{F,E) is

theoretic) optimal compression rate for a dense set of iid soces. . . . .
As a byproduct, we show how Gallager bound on sparsity can _Sa'd to beL-smoothif F has Lipschitz norm smaller thah,

be overcome using non-linear function nodes. i.e. if, for anyz, 2’ € A"

|. INTRODUCTION |IF(z) — F(2")|lo < L[z — 2'[|o - 1)

Data compression schemes that achieve optimal compresmy other words, the source code s smooth if, whenever
sion rate often present an Inconvenient. Their image (t@@e entry of the data changes, their image changes in at most
stored codeword) dependbaoticallyon the source (the data): J, nositions. Smoothness is a desirable property, but clearly
Changing a single source symbol may lead to an U”boun%ﬁstrams the code choice. In this paper we want to undetsta
change in stored data. This paper presents a construc&n oy much we have to pay (in terms of compression rate) in

overcomes this problem for many (but not all) iid sources. grger to get it. The above definition naturally suggests d dua
The rest of this Section provides a more formal definitiogpe:

of the problem, its motivation, and discusses related tiseme

Sections Il and IIl present our main results and their proofd>€finition I.2. Given a constant > 0, the source codgF, F)
is said to beL-robustif F has Lipschitz norm smaller thah,

A. Smoothness i.e. if, for anyz, 2’ € Y™

Let x = (1,...,z,) be a string of symbols taking values El(2) — (N < Llls — 2 2
in a finite alphabet¥ > z;. If such symbols are iid random IIF(z) ()llo = Lllz = #lo- @)

variables, we can encode them in a shorter string of symbols;the origin of the name, as well as the practical interest of

say z = (z1,...,2m), @nd incur a vanishing (a8 — o) this notion are easily explained. If a source is compressed
error probability as long asn > nH(X;) + o(n). Several ysing a robust code, transmitted through a channel, and
source-coding schemes achieve this goal [1]. uncompressed, a small channel noise translates into a mild

Imagine now that the data change because of somejjstortion of the data. While in this paper we focus on
external cause. This might be becauselepends on a datasmoothnesssimilar techniques apply teobustnessand will
stream, or it is an image tracked by a camera, or a vector |9 the object of a forthcoming publication. Let us however
temperatures recorded by a sensor network. In particular, @mphasize that optimal (with respect to compression rate)
work was motivated by the the approach to internet traffigmooth codes are typically not robust and vice-versa.
measurement proposed in [2], [3]. In such applications,
changes very rapidly over time, but each time it does chang®, Sparse graphs and Gallager bound
the new vector is close to the old one in an appropriate metric

There is a simple way to enforce smoothness: have each
We want to keep in memory only a compressed version of

coordinate of the input affect a bounded number of coorémat
the current vector z, and minimize the required memory. In

"ot the output. Formally, lefr,, for a € [m], be thea-th
most data compression schemes, this requires to recomput
component of the encoding function, and assume it depends

the whole coded vector eaach timer changes. This requires
on x only through the vectory, = {x; : ¢ € da} for some

at least©(n) operations, which is way too much. .

The problem can be ascribed to the ‘chaotic’ behavior € [n]. Viceversa, fori € [n], we etd be the set of output

P %oordmates that depend 6ndi = {a € [m] : i € da}.

most information-theoretic optimal source coding schemes R
Formally, we describe such a scheme as a couple ccQEplé Definition 1.3. Given a constané > 0, a source cod€F, F)
of encoding/decoding magps: X" — Y™, andF : Y™ — X™ s said to bed-sparséaf |0i| < d for anyi € [n]. In particular,
(its rate beingkR = m/n.) We further denote by|z — 2'||, such a code igl-smooth.



A sparse code is conveniently representeddayor graphG  bound) and the statement of our main result. Although our
over vertex set$n| (‘variable nodes’) andgm] (‘factor nodes’) approach can be generalized to arbitrary (finite) input and
and and including an edgé&,a) (for i € [n], @ € [m]) output alphabetst, ), to simplify the presentation we will
wheneveri € 9a. The code isd-sparse if and only if the assume throughogf = X and|X| = ¢ to be a prime number.
variable nodes degree is boundeddy We will often identify X' with the field of integers modulg.

Sparse graphs were first used for source coding in [@ntropies will be measured in bage
where the encoding functiofr was chosen to be linear As a running example, we shall use a binary soufte=
(thus computing the syndrome of a low-density parity chedl0, 1}, with p(0) =1 — p(1) = e < 1/2.
code.) For this construction, a classic result by Gallagér [
implies that optimal compression rate cannot be achieved fo
bounded degreé. Therefore, in the linear setting, there is aPefinition I1.1. Let p be a probability distribution over the
unavoidable trade-off between smoothness and rate. finite alphabetY. Therate-Lipschitz constant paif%z, L) is

Below we will generalize Gallager bound to non-lineagaid to beachievable forp if there exists a sequence &f
functionsF, and show how it can be bypassed. This allow&nooth source codés,,,F,), F,, : X" — X%, F, . " —
to constructd-sparse source codes that achieve optimal cor¥”" such that
pression rate for iid sources. . = _

Sparse-graph constructions were applied to lossy source nlinéo P{Fn(Fa(X)) # X} =0. )
coding in [9]. In particular Ref. [10] advocates the use ofino Analogously, therate-degree paifR, d) is achievable forp

linear nodes, albeit in a different scheme and with objestivif the above holds for a sequence @&parse source codes
different from ours. (Fp,Fp).

Definitions

C. Geometry, embeddings and finitary codes Obviously, if (R, L) is achievable fop and R’ > R, L' >

The above definitions have a suggestive geometrical intdr- then (&', L) is achievable as well. The set of achievable
pretation. Consider the s@lp, (p) of iid sequences: € X" pairs is thus characterized by the@schitz entropyfunction
that aretypical with respect to some single letter distribution A T . ; ;
{p(z) : € X}. Formally, we will defineTyp,, (p) as the set Huip(p; L) = inf{ R = (R, L) s achievable fop }. (4)
of sequences: whose typed, satisfie$ ||0, — p|lw < n~* Similarly we define thebounded degreeentropy function
for somea € (0,1/2), saya = 0.1. The volume of this set Hqeg(p; d) by replacing the paifR, L) with the rate-degree
|Typ,,(n)| = 2"H(?) is about the same as the one of an Hanpair (R, d).
ming hypercube{0,1}™, of dimensionm = nH (p) + o(n). By the above remarkd{y,,(p; L) and Haeg (p; d) are non-
Suppose now that ab-smooth source code: X™ — {0,1}™ increasing function ofL, with Hges(p; L) > Huip(p; L) >
exists with rateR ~ H(p). This means thaflyp, (p) can H(p) for any L.
be embedded i{0, 1} without ‘folding’ it onto itself, and
without ‘too much stretching.’ If the code is both-smooth
and L-robust, theriTyp, (p) is roughly isometric to{0, 1}". For smallL is not hard to derive a lower bound d#(p; L)
Low-distortion embeddingsf finite metric spaces in Banachfrom geometrical considerations.
spaces have been intensiyely studied in theore'ticallccnnp%roposition 1. Letr(p) = 1 — EmEXp(x)Q’ Hy(z) =
science [11]. They are a rich source of approxmahon allgt_)_-x log, (x/(q — 1)) — (1 — x)log, (1 — z) denote theg-ary
rlthms. Here we propose |n§tead to study embeddings of f'ngﬁtropy function and, () = M, (min(z, 1 — 1/q)). Then
metric spaces in finite metric spaces.
Finitary coding [12] (in ergodic theory) is another topic Huyip(p; LYHy(Lr(p)/Hyip(p; L)) > H(p) . (5)
related to the theme of this paper. Given two ‘Bernoulli whif
X = {X;}tiez and Z = {Z;}icz (i.€. two sequences of iid : T
rando{m vzriable endowéd \}Nith translations), with the samTé(p"(p) an(_j let 20 = F(xo.)' Notice that most of the
entropy rate, there exists a deterministic invertible niagF  >Ca-€NCces iyp,,(p) have distance at mostr(p) + o(n)

0 i ithi
such that:(a) F(X) is distributed asZ, (b) Each coordinate from e ThereforeF(Typn(pg) must lie within a ball O.f
of F(X) depends orfinitely manyof the X;'s. radius nr(p)L + o(n) from z°. The volume of this ball is

B. Lower bounds (non-achievability)

Proof. Fix a typical source sequencé = (z9,...,20) €

mH(nr(p)L/m)+o(n) i = ,nH(p)
The problem treated in this paper is in some regards a finife- . Since [Typ,,(p)| = ¢""’, we must
blocklength version of finitary coding. avemH(nr(p)L/m) = nH(p) + o(n) which concludes the
proof. O

Il MAIN RESULTS Using Hyip(p; L) > H(p), this result implies that the

This section provides formal definitions, some simple nomnipschitz entropy is bounded away from the Shannon entropy
achievability results (including a generalization of @glr \whenever < L, (p) = (¢ — 1)H(p)/qr(p). For our running
_ _ _ , example, we geL..(¢) = Ha(e)/4e(1—€) = 41log(1/€)+O(e).
IFor s € X, 6,(s) is the fraction of indexes € [n] such thatz; = s. ; X
For two distributionsqs, g2, we let[|g1 — galvv = 3 3, a1 (x) — g2 (x)] A bet_te_r result is obtained for bounded degree entropy by
be their total variation distance. generalizing Gallager bound.



and d sufficiently large (but bounded)? Concretely: is there
] a bounded/ and a sequence af-sparse codes that achieve
information theoretically optimal compression rate?

C. Upper bounds and code construction

j Let us review the compression rate achieved by linear codes.

Proposition 11.3. For any distributionp over X, there exist
A(p) € (0,1) and C > 0 such that

Haeg(p;d) < H(p) + C A(p)? . ()

0.0 0.1 02 . 03 0.4 05 Proof. The elements of oft’ are identified with the group of

Zig. 1 Gegera(lifzed (éallezg)er l_)uc;]undofgr) c|_c|)mpressio|ntr?r:aglmbn-lgleard integers moduldX'| = g. One then takeB(z) = Hx mod ¢

-sparse codes (from Eqg. (6) wiih= 0.9.) Here we plot the lower boun : . .

on the relative overhead (¢; d) due to sparsity for iid Bernoulli). whereH! is the parity check matrix of a ra_ndom LDPC code.
The upper bound follows from the analysis of Ref. [8].(0

Proposition 11.2 (Generalized Gallager bound)etd > 1 be Theorem Il.1. If p € D (X) then there existd..(p) bounded
an integer andA(p, d) be the supremum value &f e [0,1] such that, for anyl > d.(p), Haeg(p; d) = H(p).

such that there exists a functign: X¢ — {0, 1} satisfying
H(f(X1,...,X4)) = h, for Xy, ... X, iid with distribution p.
Then, for anyp € (0, 1)

The proof of this statement is deferred no the next Section.
Here we limit ourselves to describing the construction that
achieves compression rate equal to the source enttbipy.

Haoa(pid) > H(p) () The encoding map is obtained by summing two functions
P S T 0 A, [/ H®)]) L:&m — X" andN: X" — X
It is easily observed that for all, almost all distributions F(z) = L(z) @ N(z), (8)

p satisfy A(p,d) < 1. whered denotes component-wise sum moduld he function

Proof. Consider the factor graph associated-toThe average L is linear:
d.e.gree of the factor node sideﬁd/rn < d/H(p). Therefore, L(z) =Hz mod g, 9)
fixing p € (0,1), at least a fractiop of these node have degree _ _ _
d/pH (p) or smaller. The entropy of the corresponding entrie&ith H the parity check matrix of agtary) LDPC code with
of the compressed vectdi (Z;) < A(p, |d/pH(p)]). Since blocklengthn. In order to define the non-linear component,
we always haveH (Z;) < 1, we get: we fix § : X* — {0,1} such that, ifXy,..., X} are iid with
m distributionp, f(X7, ..., Xy) is uniformly random inX’. Then,
for eacha € [m] we fix r, ordered subsets(1),...,a(r,) C
H(Z) < H(Z;) <m(1— A(p, |d/pH . . . . )
(2) < ; (Zi) < m(1 = p) +mp Alp, |/ pH(p)]) [n] of the variable indexes, with common size(s)| = k.

. . . ) Denoting byz, oy = {z; : i € , we let
By Fano inequality, the error probability cannot vanishassl g byza(s) = {zi: i € als)}

H(Z) > H(X) — o(n) which implies the thesis. O No(z) = f(2a1)) ® -+ & f(Tar)) - (10)

We can define the relative overheadp:; d) due to sparsity I order to complete the definition, we need to specify the
by letting Hqes (p; d) = H(p)[1 + A(p;d)]. In Fig. 1 we plot SParse matrixtl as well as the indexes setgs). We will N
the lower bound on the relative overhead that is implied &y tigonsider a random construction and prove that the condition
last Proposition. As suggested by this plot, the lower bourd) holds in expectation over the ensemble. More precisely,
vanishes on a (countable) set of ‘special values'epthat We use forH a standard irregular LDPC ensemble, which
increases in. corresponds to drawing the graph uniformly given the node

This is in fact a general (and intrinsic) phenomenon. For af{gdrees. A simple choice consists in having regular vagiabl
alphabetY and any integek: > 1, let Dy (X') denote the set nqdes of degree, and |rr(_agular check nodes with two consec-
of probability distributionsp over X' such that there exists autive degrees andc+ 1 in such a way to match the number
functionf : X* — X for which the following holds. IfX,,..., ©f €dges on the two sides.

X, are iid with distributionp, thenf(X1,. .., X)) is uniform ~ We proceed analogously for the subsefs). We draw a

in X. For instance 1 —e, €) € Do({0,1}) for e = 1/4/2 since andom factor graph on the same vertices sets, with regular
f(X1,X5) = X1 AND X, is unbiased whenX; and X, are variable nodes of degreg and irregular check nodes with
iid Bernoulli(e). Clearly D () is finite and increasing i, WO degreeskr and k(r + 1) such to maich the number of
andD(X) = Uy, Dy (X) is dense in thé|X'| — 1)-dimensional €dges. Then, for any € [m] we leta(1) be the set of the
simplex of probability distributions ovet. first? k variable nodes it is connected to(2) the following

If p € Dy(X) then, ford > k H(p), the lower bound (6) ¥ nodes, and so on (thug =7 or r +1).
reduces to the trivial onédaes(p;d) > H(p). This raises

) = 2According to the standard definition of LDPC ensembles, sdges
a natural question: I94c,(p;d) = H(p) for p € D(X) labeled.



In the next Section we will show that, for any rate above the joint type ofr, y, ad using standard bounds for binomial
H(p), we can choose, ¢, [, bounded uniformly in the rate, coefficients, we get

in such a way to achieve vanishing error probability. " _
y g p y ZP{N(x) =N(y)} < nqgs%p g"HO—HO)] pg)
[1l. PROOF OF THE MAIN THEOREM yeA €D

In order to prove our main theorem, we need to upper bouME claim thatP (9) < n® ¢~ 1(?), where, ford close topxp,
the probability of a ‘collision’, i.e. the probability thafor a £(¢) = 1+ O(]|0 —p x p||). Before proving the claim, let us
random source vectar, there exists a different vectgr ¢ ~Show thatitimplies the thesis. First we write the supremsm a
Typ, (p) with F(z) = F(y). The basic idea is that the linear® Supremum over distributiorgson ¥, such that|¢ — p|l.v <
component of the code will resist collisions among atyfjcal™ ~ and then ovef € D, . such thaty_ 6(s,t) = £(t). The
close sources;, y, while the non-linear part will take care of@00ve is therefore bounded by*“q~"/ where, for some

x, y at typical distance. constants”, D

— 3
Lemma II11. LetL : X" — X™, N : X" — X™ be two J—S;E{H(@ — H(02) — R+ D0 — p x p||’}
independent random functions (non necessary linear, or non ’ . 9 3
linear), andF = L®N (the sum being modulp) Then, for any SR+ b;lf {H() = Cll0 = 6, x &[* + DI —p < plIP}

@ € Typ, (p) and any partition{A, B} of Ty, (p) \{z} =% \here thesup is taken under the constraints mentioned above.

— E(r _ By triangular inequality the right hand side is upper bouhde
P{F =Fx)} < sup P{L =L(z)Du
Z {Fw) (@)} Z e)?m (L) (@) ; by —R+ H(p) +O(n=%) +sup; o{-Cl|0 —p x p||2+ D||0 —

ver ved p % p||>}. Now, for e small enough (but uniformly ir?!), the
+2_ sup PIN(@) =N@) @ u}. s realized ab = p x p. The left hand side of Eq. (12) is
veB ™ therefore bounded by "E-H(®)+0(n")] _,
Proof. Clearly the sum to be bounded is equal to We now pass to proving the claii(fd) < n¢ ¢ 210
with 7(0) = 1+0(]|0 —p x p||?). Let K = kr. To each factor
> P{F(y) =F(z)} + > _ P{F(y) = F(2)}. node in the graph defininlj, we can associate the an element
yEA yeB §= (x1,...,25,%,---,yx) € X2K listing the values of

Fory € A, we writt P{F(y) = F(z)} = P{L(y) = L(z) & u} the adjacent variables in the two vectarg;. Denote byw(s)

whereu = N(z) & N(y), whence the sum ovet can be upper the typg of_ the_ vectofsy, S Sm)- The probat_)il_ity (over the
bounded as in the statement. The sum aver B is bounded 9raph distribution) of seeing a typewhen the joint type ok
analogously. O andyis 6, is given by a standard combinatorial calculation

For any two source vectors y € X, we letd,, 6, denote ' ; H (nlO(s,t))! < (13)
theirtype andd,.,, theirjoint type(thusé.., (s, t) is the number (! TTsean (mw(3))! (s,1)EX2

1 m!

of entries such that; = s andy; = t.) Finally, given two < nC qm[H(w)—k:H(G)]
distributionsq, g2 on X, we denote by; x ¢» the product - '_
distribution onX’ x X whose marginals arg, and ¢,. For & = (z1,...,2x) € XX, let (%) denote the function

that is computed at factor nodes by the encoder. Explicitly

N N ; 1 o) = (w1, 20) - B (@115 > Thr) - (14)
T, € {y € ypn(p) . || zy — P X p||TV < 6}' ( ) ThenP(@) < anfnRI(G)' where

Then there exist, and for anyR > H(p), {,r uniformly 1(0) = inf {kH(0) — Hw) : w € Q) (15)
bounded, such that ' '

Proposition 1ll.1. For all « € Typ,,(p), € > 0, define

Here the minimization domaif® is the set of all types such
Jim Y7 sup P{N(@@) =N@y)@u} =0.  (12) thatw(7,§) = 0 unlessp(#) = () andY s o w(Z,§) =
YEAL, "X 0(z;,y;) (here the sum excludes;, y;.) It is a minimization
Proof. By the definition ofN, P{N - N onl problem fqr a concave function on a convex domalln, and can
y {N() (y) © u} y be solved introducing Lagrange multipliers. The optimdias

depends om, y through their joint typd,. , and onu through the form

its type. To simplify our presentation, we shall first estina

this probability foru = 0, and then explain the differences or oL 1 & . .

a generab. Further, we will assume that the graph that defines  “(%%) = Z(p) Hp(xi,yi) He(@) = (@)}

N(-) is regular. Although this is typically not true, the proof in = o

the irregular case only requires a slightly lenghtier ciltian. Wherep(z,y) can be chosen as a probability distribution over
Let P(6,,) = P{N(z) = N(y)}, and defineD, . to be X x X. Denote byP, probab|llty.over_||d couplge‘(Xl,}fl),

the set of probability distribution§ over X x X such that (X2,Y2), .-, (Xk,Yk). The stationarity condition fop is

52, 00s,1) = 0a(5) 112,805, ) —p( )l <=, and |0 —  plaiy) _ Pofo(Xa. 2. Xi) = o(Yi...yi-.. Vi)

p X pllv < ne. Then, by reordering the sum ovgraccording  §(x;, y;) P{p(X1...Xk) = p(Y1...Ys)}




The exponential rate/(f) can be written in terms ofp The average error probability is then upper bounded by
satisfying this equation: B

ing this eq P{[Typ,(p) N FH(F(X))| £ L, X € Typ, (p)}
~kD(0]]p) —log,Ppip(X1... XK) = p(Y1...YK)} . +P{X ¢ Typ,(p)}.

(16) Since the second term vanishesras-» oo, it is sufficient to

—1
If we take § = p x p, then the above equation is solve&ihow t.h?lt’ for any: € T%E’?(p)’.P{JTyp"(p) th) (lzj(xo)lﬂ 7
by p p x p. Indeed this implies thato(X, ... Xx) is } vanishes as — oo. This is in turn upper bounded as

uniform in X and independent from(Y; ... Yk), and_hence P{3y € Typ, (p) \ {z} : Fy) = F(z)} <
P,{o(X:i...Xk)=p(Y1...Yk)} = 1/q. However, ifr >

2, P{pX1...0.. Xk)=o(Y1...y;...YK)} = 1/q for Z

any z;, y; as well (this follows from the definition of, cf. veTypa(p)\{=}

Eqg. (14)), and therefore = p x p solves the stationarity The proof is completed by partitioningyp,,(p) \ {«} into
condition. On this point we gef(6) = 1. A and B, . as described above, and ubber bounding it as
Consider nowd # p x p. For p close top x p one can show in Lemma Ill.1. Then we fixr > 4 ande in such a way

thatP, {p(X:... Xk) =(Y1...Yk)} =1/¢+O(||p—px for Proposition 111.1 to hold, which implies that the sum ove
plI") and P, {o(X1...2;... Xg)=0(Y1...y;i...Yk)} A, . vanishes. Finally:, v are chosen using Proposition II1.2,
1/q + O(llp — p x p||"~1). Applying perturbation theory in such a way that the sum ovét, . vanishes as well. O
to the stationarity condition, one obtaingz,y)/0(z,y) =
1+ O(]|6 — p x p||~—1). Substituting in Eq. (16) one obtains
I1(0) = 14 O(||0 — p x p||"~!) which proves our claim for ~We thank Yuval Peres and Martin Wainwright for stimu-
r> 4. lating discussions on the topic of this paper. A.M. is péistia
Let us finally comment on the changes in the last part §Pported by a Terman award and a Filo and Yang fellowship.
the proof for irregular ensembles and= 0. In these cases E-M. is partially supported by a Sloan fellowship in math-
]P{N(LC) — N(y) fan U} also depends on the type ofand on ematiCS, DOD ONR grant N0014'O7'1'05'06, NSF Career
the fraction of factor nodes of each degree (here we thifWward DMS 0548249, BSF grant 2004105 and NSF grant
that variable nodes are still regular.) The calculatiorspréed DMS 0528488. Part of this work was carried out during a

1(9)

<

B{F(y) = F(x)}.

ACKNOWLEDGMENT

for each value class of factor nodes, depending on theiregegr
and value of the vectou. Despite these changes, the mainl
steps, as long as the thesis remain true. o M

. _ [2]
Our last auxiliary result concerns the linear code.

Proposition I11.2. Givenz € Typ,,(p) ande > 0, defineA, .
as in Eq. (11) andB, . = Typ,,(p) \ Az, U {z}. Then there
exists degrees v uniformly bounded foRR > H(p), such that

>

YyEA\ Az y

(3]

(4]
(5]

6]
Proof. The proof is completely analogous to the one in Propo-
sition 11.3, and to the analysis gfary LDPC codes in [8]. We
omit details for lack of space and only stress a point for thé’]
reader who is familiar with this type of derivation. Excladi

the regionA, . from the sum in Eq. (17) is equivalent (in the [8]
channel coding interpretation) to exclude the dominantrerr
type for large degrees. This allows to achieve vanishingrerr g
probability at any rate abovéf(p) (in the channel coding
language, any rate below capacity), with bounded degree.

lim
n—oo

sup P{L(z) =L(y)®u} =0.
uex™

(17)

[10]

We are finally in position of proving our main result. [11]

Proof of Theorem Il.1First of all we need to specify the (2]
decoding map. For € X we let

{ if Typ,,(p) NF~(2) = {2},
if [Typ,(p) NF~1(2)| #1.

T

F(2) = error

(18)
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