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Abstract— A data compression scheme is defined to besmooth
if its image (the codeword) depends gracefully on the source
(the data). Smoothness is a desirable property in many practical
contexts, and widely used source coding schemes lack of it.

We introduce a family of smooth source codes based on sparse
graph constructions, and prove them to achieve the (information
theoretic) optimal compression rate for a dense set of iid sources.
As a byproduct, we show how Gallager bound on sparsity can
be overcome using non-linear function nodes.

I. I NTRODUCTION

Data compression schemes that achieve optimal compres-
sion rate often present an inconvenient. Their image (the
stored codeword) dependschaoticallyon the source (the data):
Changing a single source symbol may lead to an unbounded
change in stored data. This paper presents a construction that
overcomes this problem for many (but not all) iid sources.

The rest of this Section provides a more formal definition
of the problem, its motivation, and discusses related themes.
Sections II and III present our main results and their proofs.

A. Smoothness

Let x = (x1, . . . , xn) be a string of symbols taking values
in a finite alphabetX ∋ xi. If such symbols are iid random
variables, we can encode them in a shorter string of symbols,
say z = (z1, . . . , zm), and incur a vanishing (asn → ∞)
error probability as long asm ≥ nH(Xi) + o(n). Several
source-coding schemes achieve this goal [1].

Imagine now that the datax change because of some
external cause. This might be becausex depends on a data
stream, or it is an image tracked by a camera, or a vector of
temperatures recorded by a sensor network. In particular, our
work was motivated by the the approach to internet traffic
measurement proposed in [2], [3]. In such applications,x
changes very rapidly over time, but each time it does change,
the new vector is close to the old one in an appropriate metric.
We want to keep in memory only a compressed version of
the current vector x, and minimize the required memory. In
most data compression schemes, this requires to recompute
the whole coded vectorz eaach timex changes. This requires
at leastΘ(n) operations, which is way too much.

The problem can be ascribed to the ‘chaotic’ behavior of
most information-theoretic optimal source coding schemes.
Formally, we describe such a scheme as a couple couple(F, F̂)
of encoding/decoding mapsF : Xn → Ym, andF̂ : Ym → Xn

(its rate beingR ≡ m/n.) We further denote by||z − z′||0

the Hamming distance between two vectorsz, z′. Then, one
has||F(x) − F(x′)||0 ≫ 1 even if x andx′ differ only in one
position. In order to eliminate this problem, we will require
the source code to be smooth.

Definition I.1. Given a constantL ≥ 0 source code(F, F̂) is
said to beL-smoothif F has Lipschitz norm smaller thanL,
i.e. if, for anyx, x′ ∈ Xn

||F(x) − F(x′)||0 ≤ L||x − x′||0 . (1)

In other words, the source code isL smooth if, whenever
one entry of the data changes, their image changes in at most
L positions. Smoothness is a desirable property, but clearly
constrains the code choice. In this paper we want to understand
how much we have to pay (in terms of compression rate) in
order to get it. The above definition naturally suggests a dual
one:

Definition I.2. Given a constantL ≥ 0, the source code(F, F̂)
is said to beL-robustif F̂ has Lipschitz norm smaller thanL,
i.e. if, for anyz, z′ ∈ Ym

||F̂(z) − F̂(z′)||0 ≤ L||z − z′||0 . (2)

The origin of the name, as well as the practical interest of
this notion are easily explained. If a source is compressed
using a robust code, transmitted through a channel, and
uncompressed, a small channel noise translates into a mild
distortion of the data. While in this paper we focus on
smoothness, similar techniques apply torobustnessand will
be the object of a forthcoming publication. Let us however
emphasize that optimal (with respect to compression rate)
smooth codes are typically not robust and vice-versa.

B. Sparse graphs and Gallager bound

There is a simple way to enforce smoothness: have each
coordinate of the input affect a bounded number of coordinates
of the output. Formally, letFa, for a ∈ [m], be the a-th
component of the encoding function, and assume it depends
on x only through the vectorx∂a = {xi : i ∈ ∂a} for some
∂a ⊆ [n]. Viceversa, fori ∈ [n], we let∂i be the set of output
coordinates that depend oni: ∂i ≡ {a ∈ [m] : i ∈ ∂a}.

Definition I.3. Given a constantd ≥ 0, a source code(F, F̂)
is said to bed-sparseif |∂i| ≤ d for any i ∈ [n]. In particular,
such a code isd-smooth.



A sparse code is conveniently represented byfactor graphG
over vertex sets[n] (‘variable nodes’) and[m] (‘factor nodes’)
and and including an edge(i, a) (for i ∈ [n], a ∈ [m])
wheneveri ∈ ∂a. The code isd-sparse if and only if the
variable nodes degree is bounded byd.

Sparse graphs were first used for source coding in [6],
where the encoding functionF was chosen to be linear
(thus computing the syndrome of a low-density parity check
code.) For this construction, a classic result by Gallager [4]
implies that optimal compression rate cannot be achieved for
bounded degreed. Therefore, in the linear setting, there is an
unavoidable trade-off between smoothness and rate.

Below we will generalize Gallager bound to non-linear
functionsF, and show how it can be bypassed. This allows
to constructd-sparse source codes that achieve optimal com-
pression rate for iid sources.

Sparse-graph constructions were applied to lossy source
coding in [9]. In particular Ref. [10] advocates the use of non-
linear nodes, albeit in a different scheme and with objectives
different from ours.

C. Geometry, embeddings and finitary codes

The above definitions have a suggestive geometrical inter-
pretation. Consider the setTypn(p) of iid sequencesx ∈ Xn

that aretypical with respect to some single letter distribution
{p(x) : x ∈ X}. Formally, we will defineTypn(p) as the set
of sequencesx whose typeθx satisfies1 ||θx − p||TV ≤ n−α

for someα ∈ (0, 1/2), sayα = 0.1. The volume of this set
|Typn(n)| .

= 2nH(p) is about the same as the one of an Ham-
ming hypercube{0, 1}m, of dimensionm = nH(p) + o(n).
Suppose now that anL-smooth source codeF : Xn → {0, 1}m

exists with rateR ≈ H(p). This means thatTypn(p) can
be embedded in{0, 1}m without ‘folding’ it onto itself, and
without ‘too much stretching.’ If the code is bothL-smooth
andL-robust, thenTypn(p) is roughly isometric to{0, 1}m.

Low-distortion embeddingsof finite metric spaces in Banach
spaces have been intensively studied in theoretical computer
science [11]. They are a rich source of approximation algo-
rithms. Here we propose instead to study embeddings of finite
metric spaces in finite metric spaces.

Finitary coding [12] (in ergodic theory) is another topic
related to the theme of this paper. Given two ‘Bernoulli shifts’
X = {Xi}i∈Z and Z = {Zi}i∈Z (i.e. two sequences of iid
random variable endowed with translations), with the same
entropy rate, there exists a deterministic invertible mapping F

such that:(a) F(X) is distributed asZ, (b) Each coordinate
of F(X) depends onfinitely manyof the Xi’s.

The problem treated in this paper is in some regards a finite-
blocklength version of finitary coding.

II. M AIN RESULTS

This section provides formal definitions, some simple non-
achievability results (including a generalization of Gallager

1For s ∈ X , θx(s) is the fraction of indexesi ∈ [n] such thatxi = s.
For two distributionsq1, q2, we let ||q1 − q2||TV ≡ 1

2

P

x
|q1(x) − q2(x)|

be their total variation distance.

bound) and the statement of our main result. Although our
approach can be generalized to arbitrary (finite) input and
output alphabetsX , Y, to simplify the presentation we will
assume throughoutY = X and|X | = q to be a prime number.
We will often identifyX with the field of integers moduloq.
Entropies will be measured in baseq.

As a running example, we shall use a binary source:X =
{0, 1}, with p(0) = 1 − p(1) = ǫ < 1/2.

A. Definitions

Definition II.1. Let p be a probability distribution over the
finite alphabetX . The rate-Lipschitz constant pair(R, L) is
said to beachievable forp if there exists a sequence ofL-
smooth source codes(Fn, F̂n), Fn : Xn → XnR, F̂n : XnR →
Xn such that

lim
n→∞

P{F̂n(Fn(X)) 6= X} = 0 . (3)

Analogously, therate-degree pair(R, d) is achievable forp
if the above holds for a sequence ofd-sparse source codes
(Fn, F̂n).

Obviously, if (R, L) is achievable forp andR′ ≥ R, L′ ≥
L, then (R′, L′) is achievable as well. The set of achievable
pairs is thus characterized by theLipschitz entropyfunction

HLip(p; L) = inf{R : (R, L) is achievable forp } . (4)

Similarly we define thebounded degreeentropy function
Hdeg(p; d) by replacing the pair(R, L) with the rate-degree
pair (R, d).

By the above remarks,HLip(p; L) andHdeg(p; d) are non-
increasing function ofL, with Hdeg(p; L) ≥ HLip(p; L) ≥
H(p) for any L.

B. Lower bounds (non-achievability)

For smallL is not hard to derive a lower bound onH(p; L)
from geometrical considerations.

Proposition II.1. Let r(p) ≡ 1 − ∑
x∈X p(x)2, Hq(x) ≡

−x logq(x/(q − 1)) − (1 − x) logq(1 − x) denote theq-ary
entropy function andHq(x) ≡ Hq(min(x, 1 − 1/q)). Then

HLip(p; L)Hq(Lr(p)/HLip(p; L)) ≥ H(p) . (5)

Proof. Fix a typical source sequencex0 = (x0
1, . . . , x

0
n) ∈

Typn(p) and let z0 = F(x0). Notice that most of the
sequences inTypn(p) have distance at mostnr(p) + o(n)
from x0. ThereforeF(Typn(p)) must lie within a ball of
radius nr(p)L + o(n) from z0. The volume of this ball is
qmH(nr(p)L/m)+o(n) Since |Typn(p)| .

= qnH(p), we must
havemH(nr(p)L/m) ≥ nH(p) + o(n) which concludes the
proof.

Using HLip(p; L) ≥ H(p), this result implies that the
Lipschitz entropy is bounded away from the Shannon entropy
wheneverL ≤ L∗(p) ≡ (q − 1)H(p)/qr(p). For our running
example, we getL∗(ǫ) = H2(ǫ)/4ǫ(1−ǫ) = 4 log(1/ǫ)+O(ǫ).

A better result is obtained for bounded degree entropy by
generalizing Gallager bound.
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Fig. 1. Generalized Gallager bound for compression rate using non-linear
d-sparse codes (from Eq. (6) withρ = 0.9.) Here we plot the lower bound
on the relative overhead∆(ǫ; d) due to sparsity for iid Bernoulli(ǫ).

Proposition II.2 (Generalized Gallager bound). Let d ≥ 1 be
an integer andA(p, d) be the supremum value ofh ∈ [0, 1]
such that there exists a functionf : X d → {0, 1} satisfying
H(f(X1, . . . , Xd)) = h, for X1, . . .Xd iid with distributionp.
Then, for anyρ ∈ (0, 1)

Hdeg(p; d) ≥ H(p)

1 − ρ + ρ A(p, ⌊d/ρH(p)⌋) . (6)

It is easily observed that for alld, almost all distributions
p satisfyA(p, d) < 1.

Proof. Consider the factor graph associated toF. The average
degree of the factor node side isnd/m ≤ d/H(p). Therefore,
fixing ρ ∈ (0, 1), at least a fractionρ of these node have degree
d/ρH(p) or smaller. The entropy of the corresponding entries
of the compressed vectorH(Zi) ≤ A(p, ⌊d/ρH(p)⌋). Since
we always haveH(Zi) ≤ 1, we get:

H(Z) ≤
m∑

i=1

H(Zi) ≤ m(1 − ρ) + mρ A(p, ⌊d/ρH(p)⌋) .

By Fano inequality, the error probability cannot vanish unless
H(Z) ≥ H(X) − o(n) which implies the thesis.

We can define the relative overhead∆(p; d) due to sparsity
by letting Hdeg(p; d) ≡ H(p)[1 + ∆(p; d)]. In Fig. 1 we plot
the lower bound on the relative overhead that is implied by the
last Proposition. As suggested by this plot, the lower bound
vanishes on a (countable) set of ‘special values’ ofǫ, that
increases ind.

This is in fact a general (and intrinsic) phenomenon. For any
alphabetX and any integerk ≥ 1, let Dk(X ) denote the set
of probability distributionsp over X such that there exists a
functionf : X k → X for which the following holds. IfX1,. . . ,
Xk are iid with distributionp, thenf(X1, . . . , Xk) is uniform
in X . For instance(1− ǫ, ǫ) ∈ D2({0, 1}) for ǫ = 1/

√
2 since

f(X1, X2) = X1 AND X2 is unbiased whenX1 and X2 are
iid Bernoulli(ǫ). ClearlyDk(X ) is finite and increasing ink,
andD(X ) ≡ ∪kDk(X ) is dense in the(|X | − 1)-dimensional
simplex of probability distributions overX .

If p ∈ Dk(X ) then, ford ≥ k H(p), the lower bound (6)
reduces to the trivial oneHdeg(p; d) ≥ H(p). This raises
a natural question: IsHdeg(p; d) = H(p) for p ∈ D(X )

and d sufficiently large (but bounded)? Concretely: is there
a boundedd and a sequence ofd-sparse codes that achieve
information theoretically optimal compression rate?

C. Upper bounds and code construction

Let us review the compression rate achieved by linear codes.

Proposition II.3. For any distributionp over X , there exist
λ(p) ∈ (0, 1) and C > 0 such that

Hdeg(p; d) ≤ H(p) + C λ(p)d . (7)

Proof. The elements of ofX are identified with the group of
integers modulo|X | ≡ q. One then takesF(x) = Hx mod q
whereH is the parity check matrix of a random LDPC code.
The upper bound follows from the analysis of Ref. [8].

Theorem II.1. If p ∈ Dk(X ) then there existsd∗(p) bounded
such that, for anyd ≥ d∗(p), Hdeg(p; d) = H(p).

The proof of this statement is deferred no the next Section.
Here we limit ourselves to describing the construction that
achieves compression rate equal to the source entropyH(p).

The encoding map is obtained by summing two functions
L : Xn → Xm andN : Xn → Xm:

F(x) = L(x) ⊕ N(x) , (8)

where⊕ denotes component-wise sum moduloq. The function
L is linear:

L(x) = Hx mod q , (9)

with H the parity check matrix of a (q-ary) LDPC code with
blocklengthn. In order to define the non-linear component,
we fix f : X k → {0, 1} such that, ifX1, . . . , Xk are iid with
distributionp, f(X1, . . . , Xk) is uniformly random inX . Then,
for eacha ∈ [m] we fix ra ordered subsetsa(1), . . . , a(ra) ⊆
[n] of the variable indexes, with common size|a(s)| = k.
Denoting byxa(s) = {xi : i ∈ a(s)}, we let

Na(x) = f(xa(1)) ⊕ · · · ⊕ f(xa(r)) . (10)

In order to complete the definition, we need to specify the
sparse matrixH as well as the indexes setsa(s). We will
consider a random construction and prove that the condition
(3) holds in expectation over the ensemble. More precisely,
we use forH a standard irregular LDPC ensemble, which
corresponds to drawing the graph uniformly given the node
degrees. A simple choice consists in having regular variable
nodes of degreev, and irregular check nodes with two consec-
utive degreesc andc + 1 in such a way to match the number
of edges on the two sides.

We proceed analogously for the subsetsa(s). We draw a
random factor graph on the same vertices sets, with regular
variable nodes of degreel, and irregular check nodes with
two degreeskr and k(r + 1) such to match the number of
edges. Then, for anya ∈ [m] we let a(1) be the set of the
first2 k variable nodes it is connected to,a(2) the following
k nodes, and so on (thusra = r or r + 1).

2According to the standard definition of LDPC ensembles, edges are
labeled.



In the next Section we will show that, for any rate above
H(p), we can choosev, c, l, r bounded uniformly in the rate,
in such a way to achieve vanishing error probability.

III. PROOF OF THE MAIN THEOREM

In order to prove our main theorem, we need to upper bound
the probability of a ‘collision’, i.e. the probability that, for a
random source vectorx, there exists a different vectory ∈
Typn(p) with F(x) = F(y). The basic idea is that the linear
component of the code will resist collisions among atypically
close sourcesx, y, while the non-linear part will take care of
x, y at typical distance.

Lemma III.1. Let L : Xn → Xm, N : Xn → Xm be two
independent random functions (non necessary linear, or non-
linear), andF ≡ L⊕N (the sum being moduloq.) Then, for any
x ∈ Typn(p) and any partition{A, B} of Typn(p)\{x} ≡ T :

∑

y∈T

P{F(y) = F(x)} ≤
∑

y∈A

sup
u∈Xm

P{L(y) = L(x) ⊕ u}

+
∑

y∈B

sup
u∈Xm

P{N(x) = N(y) ⊕ u} .

Proof. Clearly the sum to be bounded is equal to
∑

y∈A

P{F(y) = F(x)} +
∑

y∈B

P{F(y) = F(x)} .

For y ∈ A, we write P{F(y) = F(x)} = P{L(y) = L(x) ⊕ u}
whereu = N(x)⊖N(y), whence the sum overA can be upper
bounded as in the statement. The sum overy ∈ B is bounded
analogously.

For any two source vectorsx, y ∈ Xn, we letθx, θy denote
their type, andθxy their joint type(thusθxy(s, t) is the number
of entries such thatxi = s and yi = t.) Finally, given two
distributionsq1, q2 on X , we denote byq1 × q2 the product
distribution onX × X whose marginals areq1 andq2.

Proposition III.1. For all x ∈ Typn(p), ǫ > 0, define

Ax,ǫ = {y ∈ Typn(p) : ||θxy − p × p||TV < ǫ}. (11)

Then there existǫ, and for anyR ≥ H(p), l, r uniformly
bounded, such that

lim
n→∞

∑

y∈Ax,y

sup
u∈Xm

P{N(x) = N(y) ⊕ u} = 0 . (12)

Proof. By the definition ofN, P{N(x) = N(y) ⊕ u} only
depends onx, y through their joint typeθx,y and onu through
its type. To simplify our presentation, we shall first estimate
this probability foru = 0, and then explain the differences or
a generalu. Further, we will assume that the graph that defines
N( · ) is regular. Although this is typically not true, the proof in
the irregular case only requires a slightly lenghtier calculation.

Let P(θx,y) ≡ P{N(x) = N(y)}, and defineDx,ǫ to be
the set of probability distributionsθ over X × X such that∑

t θ(s, t) = θx(s) ||∑s θ(s, · ) − p( · )||TV ≤ n−α, and ||θ −
p× p||TV ≤ nǫ. Then, by reordering the sum overy according

to the joint type ofx, y, ad using standard bounds for binomial
coefficients, we get
∑

y∈A

P{N(x) = N(y)} ≤ nq sup
θ∈Dx,ǫ

qn[H(θ)−H(θx)] P(θ) .

We claim thatP(θ) ≤ nC q−nR I(θ), where, forθ close top×p,
I(θ) = 1 + O(||θ− p× p||3). Before proving the claim, let us
show that it implies the thesis. First we write the supremum as
a supremum over distributionsξ on X , such that||ξ − p||TV ≤
n−α and then overθ ∈ Dx,ǫ such that

∑
s θ(s, t) = ξ(t). The

above is therefore bounded bynq+Cq−nJ where, for some
constantsC, D

J = sup
ξ,θ

{
H(θ) − H(θx) − R + D||θ − p × p||3

}

≤ −R + sup
ξ,θ

{
H(ξ) − C||θ − θx × ξ||2 + D||θ − p × p||3

}
,

where thesup is taken under the constraints mentioned above.
By triangular inequality the right hand side is upper bounded
by −R+H(p)+O(n−α)+supξ,θ{−C||θ−p×p||2 +D||θ−
p× p||3}. Now, for ǫ small enough (but uniformly inR!), the
sup is realized atθ = p× p. The left hand side of Eq. (12) is
therefore bounded byq−n[R−H(p)+O(n−α)] → 0.

We now pass to proving the claimP(θ) ≤ nC q−nR I(θ)

with I(θ) = 1+O(||θ−p×p||3). Let K ≡ kr. To each factor
node in the graph definingN, we can associate the an element
~s = (x1, . . . , xK , y1, . . . , yK) ∈ X 2K listing the values of
the adjacent variables in the two vectorsx, y. Denote byω(~s)
the type of the vector(~s1, . . . , ~sm). The probability (over the
graph distribution) of seeing a typeω when the joint type ofx
andy is θxy, is given by a standard combinatorial calculation

1

(nl)!

m!∏
~s∈X 2K (mω(~s))!

∏

(s,t)∈X 2

(nlθ(s, t))! ≤ (13)

≤ nC′

qm[H(ω)−kH(θ)] .

For ~x = (x1, . . . , xK) ∈ XK , let ϕ(~x) denote the function
that is computed at factor nodes by the encoder. Explicitly

ϕ(~x) = f(x1, . . . , xk) ⊕ · · · ⊕ f(xk(r−1)+1, . . . , xkr) . (14)

ThenP(θ) ≤ nCq−nR I(θ), where

I(θ) = inf {kH(θ) − H(ω) : ω ∈ Ω} . (15)

Here the minimization domainΩ is the set of all types such
thatω(~x, ~y) = 0 unlessϕ(~x) = ϕ(~y) and

∑
~x(i),~y(i) ω(~x, ~y) =

θ(xi, yi) (here the sum excludesxi, yi.) It is a minimization
problem for a concave function on a convex domain, and can
be solved introducing Lagrange multipliers. The optimalω has
the form

ω(~x, ~y) =
1

Z(ρ)

K∏

i=1

ρ(xi, yi) I {ϕ(~x) = ϕ(~y)} ,

whereρ(x, y) can be chosen as a probability distribution over
X × X . Denote byPρ probability over iid couples(X1, Y1),
(X2, Y2), . . . , (XK , YK). The stationarity condition forρ is

ρ(xi, yi)

θ(xi, yi)
=

Pρ{ϕ(X1 . . . xi . . . Xk) = ϕ(Y1 . . . yi . . . Yk)}
Pρ{ϕ(X1 . . .Xk) = ϕ(Y1 . . . Yk)}



The exponential rateI(θ) can be written in terms ofρ
satisfying this equation:

I(θ) = −kD(θ||ρ) − logqPρ{ϕ(X1 . . .XK) = ϕ(Y1 . . . YK)} .

(16)

If we take θ = p × p, then the above equation is solved
by ρ = p × p. Indeed this implies thatϕ(X1 . . . XK) is
uniform in X and independent fromϕ(Y1 . . . YK), and hence
Pρ {ϕ(X1 . . . XK) = ϕ(Y1 . . . YK)} = 1/q. However, if r ≥
2, Pρ {ϕ(X1 . . . xi . . . XK) = ϕ(Y1 . . . yi . . . YK)} = 1/q for
any xi, yi as well (this follows from the definition ofϕ, cf.
Eq. (14)), and thereforeρ = p × p solves the stationarity
condition. On this point we getI(θ) = 1.

Consider nowθ 6= p×p. For ρ close top×p one can show
thatPρ {ϕ(X1 . . .XK) = ϕ(Y1 . . . YK)} = 1/q +O(||ρ− p×
p||r) and Pρ {ϕ(X1 . . . xi . . . XK) = ϕ(Y1 . . . yi . . . YK)} =
1/q + O(||ρ − p × p||r−1). Applying perturbation theory
to the stationarity condition, one obtainsρ(x, y)/θ(x, y) =
1 + O(||θ − p × p||r−1). Substituting in Eq. (16) one obtains
I(θ) = 1 + O(||θ − p × p||r−1) which proves our claim for
r ≥ 4.

Let us finally comment on the changes in the last part of
the proof for irregular ensembles andu 6= 0. In these cases
P{N(x) = N(y) ⊕ u} also depends on the type ofu and on
the fraction of factor nodes of each degree (here we think
that variable nodes are still regular.) The calculation presented
above can be repeated provide a different typeω is introduced
for each value class of factor nodes, depending on their degree
and value of the vectoru. Despite these changes, the main
steps, as long as the thesis remain true.

Our last auxiliary result concerns the linear code.

Proposition III.2. Givenx ∈ Typn(p) and ǫ > 0, defineAx,ǫ

as in Eq. (11) andBx,ǫ ≡ Typn(p) \ Ax,ǫ ∪ {x}. Then there
exists degreesc, v uniformly bounded forR ≥ H(p), such that

lim
n→∞

∑

y∈A\Ax,y

sup
u∈Xm

P{L(x) = L(y) ⊕ u} = 0 . (17)

Proof. The proof is completely analogous to the one in Propo-
sition II.3, and to the analysis ofq-ary LDPC codes in [8]. We
omit details for lack of space and only stress a point for the
reader who is familiar with this type of derivation. Excluding
the regionAx,ǫ from the sum in Eq. (17) is equivalent (in the
channel coding interpretation) to exclude the dominant error
type for large degrees. This allows to achieve vanishing error
probability at any rate aboveH(p) (in the channel coding
language, any rate below capacity), with bounded degree.

We are finally in position of proving our main result.

Proof of Theorem II.1.First of all we need to specify the
decoding map. Forz ∈ Xm we let

F̂(z) =

{
x if Typn(p) ∩ F−1(z) = {x} ,
error if |Typn(p) ∩ F−1(z)| 6= 1 .

(18)

The average error probability is then upper bounded by

P{|Typn(p) ∩ F−1(F(X))| 6= 1, X ∈ Typn(p)}
+ P{X 6∈ Typn(p)} .

Since the second term vanishes asn → ∞, it is sufficient to
show that, for anyx ∈ Typn(p), P{|Typn(p) ∩ F−1(F(x))| 6=
1} vanishes asn → ∞. This is in turn upper bounded as

P{∃y ∈ Typn(p) \ {x} : F(y) = F(x)} ≤
≤

∑

y∈Typn(p)\{x}

P{F(y) = F(x)} .

The proof is completed by partitioningTypn(p) \ {x} into
Ax,ǫ and Bx,ǫ as described above, and ubber bounding it as
in Lemma III.1. Then we fixr ≥ 4 and ǫ in such a way
for Proposition III.1 to hold, which implies that the sum over
Ax,ǫ vanishes. Finallyc, v are chosen using Proposition III.2,
in such a way that the sum overBx,ǫ vanishes as well.
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