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We consider decision problems on finite sets of hypotheses represented by pairwise
different shift-invariant states on a quantum spin chain. The decision in favor of
one of the hypotheses is based on outcomes of generalized measurements per-
formed on local states on blocks of finite size. We assume the existence of the mean
quantum Chernoff distances of any pair of states from the given set and refer to the
minimum of them as the mean generalized quantum Chernoff distance. We estab-
lish that this minimum specifies an asymptotic bound on the exponential rate of
decay of the averaged probability of rejecting the true state in increasing block size,
if the mean quantum Chernoff distance of any pair of the hypothetic states is
achievable as an asymptotic error exponent in the corresponding binary problem.
This assumption is, in particular, fulfilled by shift-invariant product states �inde-
pendent and identically distributed states�. Further, we provide a constructive proof
for the existence of a sequence of quantum tests in increasing block length with an
error exponent which equals, up to a factor, the mean generalized quantum Cher-
noff distance. The factor depends on the configuration of the hypothetic states with
respect to the binary quantum Chernoff distances. It can be arbitrary close to 1 and
is never less than 1 /m for m being the number of different pairs of states.
© 2010 American Institute of Physics. �doi:10.1063/1.3451110�

I. INTRODUCTION

In the series of papers20,1,2 the decision problem between two density operators associated
with quantum states of a finite quantum system has been solved in the setting of asymptotic
quantum hypothesis testing; for some earlier useful results obtained in this context see also Refs.
18 and 22. There decisions in favor of one of the two hypothetic states appearing with an a priori
probability strictly larger than zero are based on outcomes of generalized measurements performed
on a finite number of copies of the quantum system, where the corresponding quantum state is
associated with a tensor product of one of the two hypothetic density operators. The limit of a
large number of copies corresponds to a shift-invariant product state on a quantum spin chain.
According to Refs. 20, 1, and 2, it turns out that there is a quantum version of the Chernoff
distance defined for pairs of hypothetic density operators, which specifies the best asymptotic
exponential rate of decay of the averaged probability of rejecting the true quantum state. This is in
analogy to results from classical asymptotic hypothesis testing.

A canonical extension of the binary decision problem refers to a finite number of hypotheses.
In the setting of classical asymptotic multiple hypothesis testing, where the hypotheses are repre-
sented by probability distributions, the best asymptotic error exponent is equal to the generalized
Chernoff distance, see Ref. 24. In our recent work,21 in analogy to the classical definition given in
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Ref. 24, we have introduced the generalized quantum Chernoff distance of a finite set of density
operators as the minimum of the binary quantum Chernoff distances over all possible pairs of
different hypothetic density operators. We could identify this minimum as an upper bound on the
error exponents in corresponding multiple quantum hypothesis testing and establish that it is
achievable in the special case where the hypotheses are represented by pure quantum states. For
completeness we mention that there is a wide literature treating the related problem of optimal
multiple state discrimination in a finite, i.e., non asymptotic setting, cf. Refs. 26, 16, 17, 19, 25, 3,
and 15. The optimal discrimination between exactly two density operators has been completely
solved by Helstrom and Holevo, see Refs. 8 and 14.

In the presence of correlations among the single quantum systems of a spin chain the hypo-
thetic states are represented by �in an appropriate sense� compatible sequences, in an increasing
block size, of density operators in respective local algebras of observables. Several special cases of
hypotheses represented by correlated quantum states on a spin chain have been investigated by
Hiai et al.9–11 in a series of papers. There the quantum Chernoff distance of two density operators
has been replaced by the mean quantum Chernoff distance of two shift-invariant states on a spin
chain, which, roughly speaking, is defined as the asymptotic rate of quantum Chernoff distances of
the pairs of local quantum states, if the corresponding limits exist. This is in line with other
well-established extensions of entropic quantities to the case of shift-invariant correlated states on
a spin chain; compare the concepts of mean quantum relative entropy12 and mean quantum
entropy/quantum entropy rate.4 From our point of view the most relevant result among Refs. 9–11
is given in Ref. 9. It identifies a class of shift-invariant states on a quantum spin chain, which is
characterized by a factorization property, as a domain where the mean binary Chernoff distances
exist and specify the best asymptotically achievable error exponents in corresponding binary
decision problems. Note that similar classes of correlated states with appropriate factorization
property have been shown to permit �classical and quantum� Sanov-type theorems, which resolve
some related asymmetric decision problems, cf. Ref. 5.

In this paper we define the mean generalized quantum Chernoff distance of finite sets of
pairwise different shift-invariant quantum states on a spin chain as the minimum of the mean
quantum Chernoff distances of all the possible quantum state pairs. Notice that the minimum is
well defined on the set of shift-invariant quantum states where all the binary quantum Chernoff
distances exist, i.e., in particular, on both the set of shift-invariant product states and the strictly
larger set of shift-invariant states fulfilling the factorization assumption as specified in Ref. 9. We
point out that in the case of shift-invariant product states the mean generalized quantum Chernoff
distance coincides with the generalized quantum Chernoff distance of the corresponding density
operators associated with the local states on the blocks of size 1.

Extending the result presented in Theorem 1 of our previous paper,21 we show that the mean
generalized quantum Chernoff distance, if it exists for a given finite set of shift-invariant states,
specifies a bound on the exponential rate of decay of the averaged error probability in correspond-
ing multiple state discrimination. Here, again, we assume that each of the hypothetic states appears
with an a priori probability strictly larger than zero. As our main contribution we establish that an
exponential decay, i.e., a strictly positive asymptotic error exponent, is indeed achievable in
multiple state discrimination. To the best of our knowledge this has not been shown so far apart
from the case of two hypotheses, cf. Refs. 2 and 9, and the special case of multiple pure �inde-
pendent and identically distributed� state discrimination, cf. Ref. 21. More precisely, we construct
a sequence of quantum tests for the set of hypothetic local states, such that the exponential decay
of the averaged error probability in increasing block size is equal to the mean generalized quantum
Chernoff distance up to a factor, which depends on the configuration of the states. The factor can
be arbitrary close to 1. In the worst case, where all the involved binary mean Chernoff distances
are equal, it is equal to 1 / � r

2
� , where r is the number of different hypothetic states. Our construc-

tion represents an appropriate blockwise combination of the optimal quantum tests of the associ-
ated asymptotic binary decision problems.

The outline of our paper is as follows.

• In Sec. II we introduce our notations, explain shortly the mathematical framework of a
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quantum spin chain and its state space, present the definitions of the here relevant Chernoff-
type distances, and finally we are in the position to state precisely our main results in
Theorems 1 and 2.

• The proof of Theorem 1, which adopts the idea of the proof of Theorem 1 from our previous
paper,21 is given in Sec. III.

• Section IV contains a construction of quantum tests for multiple states on a quantum spin
chain, which—subject to the assumptions of Theorem 2—achieves an asymptotic error ex-
ponent equal to the mean generalized quantum Chernoff distance up to a factor depending on
the set of states itself. This proves our main Theorem 2.

II. NOTATIONS AND MAIN RESULTS

Let H be a complex Hilbert space with dim H=d�� and A be a unital C�-subalgebra of
linear operators on H. For each finite subset ��Z denote by A� the tensor product � i��A,
which is a C�-subalgebra of linear operators on � i��H. The construction of quasilocal
C�-algebras A� formalizes the limit of A�, as � tends to be Z, compare Ref. 23 or Ref. 6.

The state space S�A�� of A� consists of positive linear functionals � :A�→C fulfilling the
normalization condition ��1�=1, where 1 denotes the identity in A�. Each ��S�A�� corresponds
one to one to a family of local states ��, ��Z with �����, being restrictions of � onto A�,
respectively. We are primarily interested in the convex subset T�A�� of shift-invariant states on
A�. Note that the shift invariance implies that for any intervals �1 ,�2�Z of equal size, i.e., with
��1�= ��2�, we can identify the corresponding restrictions ��1

and ��2
of ��T�A��. It follows

that a shift-invariant state � is determined by a sequence of local states ��n�, n�N, on A�n�

ªA�1,n�, respectively. For each n�N the associated density operator ��n��A�n� satisfies ��n��a�
=tr ��n�a for all a�A�n�.

Let � be a finite set of states �i�T�A��, i=1, . . . ,r, representing the hypotheses Hi, respec-
tively. We can identify � with the sequence ��n�, n�N, of sets of associated density operators �i

�n�,
i=1, . . . ,r, in A�n�, respectively. For each n�N let E�n�= �Ei

�n��i=1
r be a positive operator valued

measure �POVM� in A�n�, i.e., each Ei
�n�, i=1, . . . ,r, is a self-adjoint element of A�n� with Ei

�n�

�0 and 	i=1
r Ei

�n�=1. The POVMs E�n� determine generalized measurements. By identifying the
measurement outcome corresponding to Ei

�n�, i=1, . . . ,r, with the hypothesis Hi
�i
�n�, respec-

tively, they describe quantum tests for discrimination between the quantum states associated with
density operators from ��n�, or simply quantum tests for ��n�. If �i happens to be the true state then
the corresponding individual success probability is given by

Succi�E�n�� ª tr��i
�n�Ei

�n�� , �1�

and consequently the individual error probability is

Erri�E�n�� ª tr��i
�n��1 − Ei

�n��� . �2�

It refers to the situation when Hi is rejected. Assuming 0� pi�1, i=1, . . . ,r, with 	i=1
r pi=1 to be

the prior distribution on the given set of r hypotheses, the averaged error probability is given by

Err�E�n�� = 	
i=1

r

pi tr��i
�n��1 − Ei

�n��� . �3�

If the limit limn→�− �1 /n�log Err�E�n�� exists, we refer to it as the asymptotic error exponent.
Otherwise we have to consider the corresponding lim sup and lim inf expressions.

For two density operators �1 and �2 the quantum Chernoff distance is defined by
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	QCB��1,�2� ª − log inf
0
s
1

tr ��1
1−s�2

s� . �4�

It specifies the optimal achievable asymptotic error exponent in discriminating between �1 and �2,
compare Refs. 20, 1, and 2. Quantum tests with minimal averaged error probability for a pair of
density operators �1 and �2 on the same Hilbert space H are well known to be given by the
respective Holevo–Helstrom projectors,

�1 ª supp��1 − �2�+, �5�

�2 ª supp��2 − �1�+ = 1 − �1, �6�

where supp a denotes the support projector of a self-adjoint operator a, while a+ means its positive
part, i.e., a+= ��a�+a� /2 for �a�ª �a�a�1/2, see Refs. 14 and 8. The Holevo–Helstrom projectors
generalize the maximum likelihood tests for two probability distributions. This can be verified by
letting �1 and �2 be two commuting density matrices.

For a set �= ��i�i=1
r of density operators in A, where r�2, we have introduced in Ref. 20 the

generalized quantum Chernoff distance,

	QCB��� ª min�	QCB��i,� j�:1 
 i � j 
 r� . �7�

This is in full analogy to the classical case where the hypotheses are represented by probability
distribution Pi, i=1, . . . ,r, on a finite sample space 
, see Ref. 24.

In Ref. 9 the mean quantum Chernoff distance between two states �1 and �2 in T�A��, each
of them corresponding one to one to the respective sequences ��i

�n��n�N, i=1,2, of density opera-
tors in corresponding local algebras A�n�, has been defined by

	̄QCB��1,�2� ª sup
0
s
1

	̄QCB
�s� ��1,�2� �8�

if the limits

	̄QCB
�s� ��1,�2� ª lim

n→�
−

1

n
log tr���1

�n��1−s��2
�n��s� , �9�

exist for 0
s
1. Note that in the special case where both �1 and �2 are shift-invariant product

states, i.e., �i
�n�=�i

�n for all n�N, we have the relation 	̄QCB��1 ,�2�=	QCB��1 ,�2�, i.e., the mean
quantum Chernoff distance coincides with the quantum Chernoff distance of the associated density
operators �1 and �2 in A�1�.

Finally, for a set �= ��i�i=1
r of states on A� where the mean quantum Chernoff distances

	̄QCB��i ,� j� exist for all pairs ��i ,� j� with i� j, we introduce the mean generalized quantum
Chernoff distance,

	̄QCB��� ª min�	̄QCB��i,� j�:1 
 i � j 
 r� . �10�

In Ref. 21, see Theorem 1 therein, we have shown that in the case of multiple shift-invariant
product states on A� the generalized quantum Chernoff distance of the associated set of local
states on A�1� provides a bound on the asymptotically achievable error exponent in the correspond-
ing multiple quantum hypothesis testing. Here we extend the statement to the case of hypotheses
being represented by elements from a class of shift-invariant correlated quantum states on A�. The
bound is then given by the corresponding mean generalized quantum Chernoff distance.

Theorem 1: Let r�N and �= ��i�i=1
r be a set of states on A� with respective prior probability

0� pi�1. If for every �i , j�, 1
 i� j
r, the mean quantum Chernoff distance 	QCB��i ,� j� exists
and specifies the optimal asymptotic error exponent in the corresponding binary quantum hypoth-
esis testing, then it holds for any sequence E�n�, n�N of POVMs for ��n�, respectively,
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lim sup
n→�

−
1

n
log Err�E�n�� 
 	̄QCB��� , �11�

where 	̄QCB��� denotes the mean generalized quantum Chernoff distance defined by (10).
As already mentioned, the assumption of Theorem 1 above is, in particular, satisfied on the set

of shift-invariant product states on A�, cf. Ref. 2. Moreover, it has been shown in Ref. 9 that it is
also fulfilled on a subset of shift-invariant correlated states with certain lower and upper factor-
ization properties. More precisely, for a corresponding shift-invariant state ��T�A�� there exist
constants � ,��0 and an m0�Nm such that for all m�m0 and k�N it holds

��1,km� � �k−1��1,m�
�k , ��1,km� 
 �k−1��1,m�

�k ,

where ��1,m� denotes the restriction of � onto the local subalgebra A�1,m��A� associated with the
finite block �1,m� of the lattice Z, which underlies the quantum spin chain. For more details on the
factorization property and nontrivial examples such as Gibbs states of translation-invariant finite-
range interactions and finitely correlated states, see Ref. 9.

According to Theorem 2 in Ref. 21, in the special case of a finite set of pure states on A�1� the
corresponding generalized quantum Chernoff distance indeed is achievable as an exponential rate
of decay of the minimal averaged error probability in discrimination between the associated
shift-invariant product states on A�. The following theorem states that in the general case of
arbitrary �i.e., possibly mixed� density operators in A�1� an exponential rate of decay is achievable.
We exhibit an exponent which equals the generalized quantum Chernoff distance up to a factor,
where the factor depends on the set of states considered. Moreover, a similar result holds in the
case of shift-invariant correlated states on A� fulfilling the assumptions of Theorem 1. Here we
find an exponent which equals the mean generalized quantum Chernoff distance up to a factor,
where again the factor depends on �.

Theorem 2: Let � be a finite set consisting of hypotheses �i�T�A��, i=1, . . . ,r, such that the

mean quantum Chernoff distances 	̄QCB��i ,� j�, 1
 i� j
r, exist, are greater than zero, and
represent achievable asymptotic error exponents in the corresponding binary hypothesis testing
problems. Then there exists a sequence of quantum tests �E�n��n�N for ��n�, respectively, such that
the corresponding averaged error probabilities satisfy

lim inf
n→�

−
1

n
log Err�E�n�� � 	̄QCB������� , �12�

where

���� ª � 	
1
j�i
r

	̄QCB���

	̄QCB��i,� j�
�−1

. �13�

The factor ���� satisfies

1

�r

2
� =

1

	
1
j�i
r

1

 ���� 


1

	̄QCB���

	̄QCB���

= 1.

As a result, we can claim that the mean quantum Chernoff bound 	̄QCB��� is attainable up to a
factor ����. This factor is close to 1, as shown by the following result.

Corollary 3: For every ��0 and every r�2, there is a set of pairwise different shift-invariant
product states �= ��i�i=1

r fulfilling

���� � 1 − � . �14�

Proof: Consider a set of r−1 states �i, i=1, . . . ,r−1 of independent and identically distributed
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type, such that all density operators �i
�n�, i=1, . . . ,r−1 are of the form �i

�n�=�i
�n, where �i are fixed

density operators in A�1�. In this case

	̄QCB��i,� j� = 	QCB��i,� j�, 1 
 j � i 
 r − 1.

For density operators � ,��A�1� define the trace norm distance T and the expression Q by

T��,�� ª 
� − �
1/2, Q��,�� ª inf
0
s
1

tr��1−s�s� .

Recall that 	QCB�� ,��=−log Q�� ,��. The inequalities

1 − T 
 Q 
 �1 − T2 �15�

are well known �cf. relation �31� in Ref. 2�. Let �� �0,1�, let S� be a �-neighborhood of density
operators near �r−1, with respect to the metric T, and let �→0. Select �r to be any element of S�;
then by �15� Q��r ,�r−1�→1 as �→0, hence 	QCB��r ,�r−1�→0. Furthermore, by the metric prop-
erty of T, we have T��r ,� j�→T��r−1 ,� j��0 for j=1, . . . ,r−2, and hence by �15�

lim sup�→0 Q��r,� j� � 1, j = 1, . . . ,r − 2.

As a result lim inf�→0 	QCB��r ,� j��0, j=1, . . . ,r−2, and for � small enough 	QCB���
=	QCB��r ,�r−1�. Thus,

���� = � 	
1
j�i
r

	QCB��r,�r−1�
	QCB��i,� j�

�−1

= �1 + o�1��−1, as � → 0,

which establishes the claim. �

Moreover, suppose that r-tuples of shift-invariant product states � j are identified with r-tuples
of their basic density operators � j �A�1� and the set of such r-tuples is endowed with the product
topology derived from the metric T. A slight extension of Corollary 3 shows that the set of r-tuples
fulfilling �14� for given � has nonempty interior. That means that these r-tuples are not a lower-
dimensional manifold and thus have no special properties such as being commuting or pure states.
They are only characterized by the fact that the distance 	QCB�· , ·� of the closest pair is sufficiently
small compared to that of all other pairs. In other words, ���� is close to 1 if the least favorable
�closest� pair sufficiently “stands out” with regard to its estimation difficulty. However, if the other
extreme holds, i.e., all 	QCB��i ,� j� are equal, then ���� is equal to its lower bound 1 /m=1 / � r

2
�.

III. A CHERNOFF-TYPE BOUND IN MULTIPLE STATE DISCRIMINATION

In this section we show that the generalized mean quantum Chernoff distance provides a
bound on the asymptotically achievable error exponent in multiple quantum hypotheses testing,
where the hypotheses are represented by states on A�, such that for any pair of them the �binary�
mean Chernoff distance exists, is greater than zero, and specifies the asymptotically optimal error
exponent in the corresponding binary hypothesis testing problem.

Proof: �Theorem 1� Denote by Erri�E�n�� the individual error probability pertaining to the case
that the true hypothesis Hi corresponding to the n-block density operator �i

�n��A�n� is rejected on
the base of outcomes of the quantum test E�n� for �. Fix any two indices 1
 i� j
r. For n�N let
A�n� ,B�n��A�n� be two positive operators, such that A�n�+B�n�=1−Ei

�n�−Ej
�n�. Then the positive

operators Ẽi
�n�
ªEi

�n�+A�n� and Ẽj
�n�
ªEj

�n�+B�n� represent a POVM Ẽ�n� in A�n�, which we regard as
a quantum test for the pair ��i

�n� ,� j
�n��. We obtain for the modified individual error probabilities,

Erri�Ẽ�n�� = tr��i
�n��1 − Ẽi

�n��� 
 tr��i
�n��1 − Ei

�n��� = Erri�E�n�� ,

and similarly Errj�Ẽ�n��
Errj�E�n��. It follows a lower bound on the average error probability with
respect to the original tests �Ei

�n��i=1
r ,
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Err�E�n�� =
1

r
	
k=1

r

Errk�E�n�� �
1

r
�Erri�E�n�� + Errj�E�n��� �

1

r
�Erri�Ẽ�n�� + Errj�Ẽ�n��� ,

which implies

lim sup
n→�

−
1

n
log Err�E�n�� 
 lim sup

n→�

1

n
log r + lim sup

n→�
−

1

n
log�Erri�Ẽ�n�� + Errj�Ẽ�n���

= lim sup
n→�

−
1

n
log

1

2
�Erri�Ẽ�n�� + Errj�Ẽ�n��� 
 	QCB��i,� j� .

Here the last inequality holds by assumption of the validity of the quantum Chernoff theorem for
binary hypothesis testing. Since the pair of indices �i , j� was chosen arbitrarily, the statement of
the theorem follows. �

IV. EXPONENTIAL DECAY OF THE AVERAGED ERROR PROBABILITY

The main idea of the proof of Theorem 2 is a blockwise application of the optimal quantum
test for pairs of quantum states from the given set �. More in detail, the construction of our
quantum test can be described as follows. Consider all pairs of states �i ,� j, i� j, and divide the
n-block density operator into blocks of unequal size. Each block will be used for testing between
a particular pair, and the size of the blocks is chosen in such a way that pairs of states which are
more difficult to discriminate are assigned longer blocks �more sample size�. Within each block a
quantum measurement is performed conforming to the pair of states, creating a decision random
variable with values in �i , j� �a “vote” for either i or j�. When the random variables for all blocks
are realized, a final decision is made in favor of hypothesis Hi
�i if this hypothesis has the most
number of votes. Ties can be broken in any way, for instance, as follows: If the maximal number
of votes is attained by more than one hypothesis, decision is in favor of Hi with the smallest i.

For the following discussion we assume equiprobable hypotheses: pi=1 /r. It is easy to see
that in the commuting case, where for each n-block the corresponding hypothetic density operators
commute, this method is related to maximum likelihood, although it does not coincide. In the
commuting case, there is no need for blocking and a direct maximum likelihood decision is better.
In the quantum �noncommuting� case, the tests satisfying the optimality conditions of Holevo13

and Yuen et al.26 �YKL tests for short� are the appropriate generalization of maximum likelihood.
A more recent and improved exposition can be found in Ref. 7. These tests have minimum error
probability for any n, and it is a conjecture that the risk asymptotics is described by the general-
ized �multiple� quantum Chernoff distance. Our construction by blocking yields a feasible quan-
tum test which can be near optimal for certain configurations of states, in terms of the �mean�
generalized quantum Chernoff distance. In these cases it provides an upper bound, close to the
Chernoff bound, on the corresponding error exponent of the YKL tests.

Proof: �Theorem 2� Let mª
� r

2
�. This equals the number of different pairs of states in �. Since

we are interested in the asymptotic behavior in n there is no loss of generality assuming n�m.
The main idea is to divide the discrete interval �1,n�¬I�n� into disjoint subblocks Ik

�n�, k
=1, . . . ,m, of length nk each, each of them being associated with one of the m different density
operator pairs ��i

�nk� ,� j
�nk��, i� j. In order to make the correspondence between �Ik

�n��k=1
m and the set

of unordered pairs ���i
�nk� ,� j

�nk��� one to one, we define the mapping,

�1, . . . ,m� � k � �k1,k2� � �1, . . . ,r�2, �16�

which to each k� �1, . . . ,m� assigns an ordered pair of indices �i , j� in their lexicographic order for
1
 i
r−1 and i� j
r. Now, that the one-to-one mapping k↔ �i , j� , i� j is specified, we write
n�i , j�ªnk for the length of the subblock associated with the pair �i , j�, and for ease of notation,
we also set n�i , j�ªn�j , i� for j� i. The lengths nk which satisfy 	s=1

m nk=n will be left unspecified
for now; we will determine them later.

In this construction, each subblock Ik
�n� is now associated with a pair of density operators,
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Ik
�n� � ��k1

�n�i,j��,�k2

�n�i,j���, k = 1, . . . ,m .

We intend to construct the quantum test E�n� for ��n� as a composition of quantum tests of minimal
averaged error probability for the different pairs ��i

�nk� ,� j
�nk��, 1
 i� j
r. Optimal binary quantum

tests for any block size n are known to be given by the Holevo–Helstrom tests �Pi,j
�n� , Pj,i

�n��, where

Pi,j
�n�

ª supp��i
�n� − � j

�n��+

is the orthogonal projector associated with the density operator �i
�n�, while Pj,i

�n�
ª1− Pi,j

�n� is asso-
ciated with � j

�n�. We will apply these for any pair �i , j� in the corresponding block of given size
n�i , j�. More precisely, our construction of E�n� works as follows. Let �0 and �1 be permutations
given by

�0�i, j� ª �i, j� and �1�i, j� ª �j,i�

for �i , j��N�N, and define for any vector b� �0,1�m an m-fold tensor product projector in A�n�,

Pb
�n�

ª �
k=1

m

P�bk
�k1,k2�

�nk� , �17�

where bk� �0,1� denotes the kth coordinate of b. Observe that the orthogonal projectors Pb
�n�, b

� �0,1�m, define a decomposition of the identity 1n in A�n�, i.e.,

	
b��0,1�m

Pb
�n� = 1n, �18�

and in this sense they represent a POVM Ẽ�n� in A�n� with 2m elements.

We want to modify Ẽ�n�, such that it represents a POVM consisting of fewer, namely, r
positive elements. Subsequently, by associating each of the newly defined r elements withy a
different density operator from ��n�, we obtain a quantum test for ��n�. For each i� �1, . . . ,r� we
introduce the function

ni:�0,1�m → �0, . . . ,r − 1� ,

b � ni�b� ª ��k:�bk

�1��k1,k2� = i�� , �19�

where �bk

�1��k1 ,k2� denotes the first coordinate of �bk
�k1 ,k2�. Further, we define for each 1
 i
r a

subset Bi� �0,1�m by

Bi ª �b:ni�b� � nj�b� for 1 
 j � i,ni�b� � nj�b� for i 
 j 
 r� . �20�

Finally, we set

Ei
�n�

ª 	
b�Bi

Pb
�n�. �21�

Note that Bi�Bj =�, for i� j, and �i=1
r Bi= �0,1�m, i.e., �Bi�i=1

r represents a �disjoint� decomposi-
tion of the set �0,1�m of binary sequences of length m. Hence �Ei

�n��i=1
r defines a POVM in A�n�,

and associating the measurement outcome corresponding with Ei
�n�, i=1, . . . ,r, to the density

operator �i
�n�, respectively, we obtain a proper quantum test for ��n�.

It remains to verify asymptotic behavior �12� for E�n�. To this end, we fix an i� �1, . . . ,r�,
define a corresponding index set,

Ki ª �k � �1, . . . ,m�:k1 = i or k2 = i� ,

and consider the individual error probability Erri�E�n��. We have
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Erri�E�n�� = tr��i
�n��1n − Ei

�n��� = tr��i
�n�	

j�i

Ej
�n�� = tr��i

�n� 	
b�Bi

Pb
�n�� 
 	

k�Ki

tr��i
�nk�Pik

�,i
�nk��

= 	
1
j
r,j�i

tr��i
�n�i,j��Pj,i

�n�i,j��� , �22�

where the first identity is by definition of individual error probability and the third one is according
to �21�. The index ik

� appearing on the right hand side of inequality �22� is such that the subblock
Ik

�n� corresponds to the pair of density operators �i
�nk� and �

ik
�

�nk�
. Inequality �22� follows from the

fact that at least one tensor factor of a projector Pb
�n� with b�Bi is equal to a Holevo–Helstrom

projector of the form Pj,i
�n�i,j��, where j� i, i.e., Pj,i

�n�i,j�� corresponds to decision in favor of � j
�n�i,j��

and against �i
�n�i,j��. More in detail, we deduce the inequality as follows. For any b�Bi there exists

an index k�Ki with �bk

�1��k1 ,k2�� i. Let kb be the smallest of such indices corresponding to b. We
denote by Bi

��k� the set consisting of all b�Bi with kb=k,

Bi
��k� ª �b � Bi:kb = k� .

Observe that �Bi
��k��k�Ki

represents a decomposition of Bi
�
ª �0,1�m \Bi into r−1 disjoint subsets.

For each k�Ki we deduce the following upper bound on the sum of projectors Pb
�n��A�n� over

Bi
��k� in terms of the projector P

ik
�,i

�nk�
, which is understood here as an element in the local algebra

AI
k
�n� �AI�n� =A�n�:

	
b�Bi

��k�

Pb
�n� 
 Pik

�,i
�nk�

� 1I�n�\Ik
�n�. �23�

The index ik
� is again determined by k as explained below �22�, and 1I�n�\I

k
�n� denotes the identity

in the local algebra AI�n�\I
k
�n� �A�n� associated with the subset I�n� \Ik

�n� of I�n�. It follows the
estimate

	
b�Bi

Pb
�n� = 	

k�Ki

	
b�Bi

��k�

Pb
�n� 
 	

k�Ki

Pik
�,i

�nk�
� 1I�n�\Ik

�n�,

which, applying the shift invariance of �i, implies upper bound �22� on Erri�E�n��.
Assume now that all subblock lengths n�i , j�, i� j, are �asymptotically� proportional to n with

factor wij, i.e.,

n�i, j� = wijn�1 + o�1�� ,

	
1
j�i,1
i
r

wij = 1. �24�

Recall that for each pair �i , j� of indices the Pj,i
n�j,i� in �22� denote the Holevo–Helstrom projectors

corresponding to the two density operators �i
�n�i,j�� and � j

�n�i,j��, and hence they represent a sequence
of �asymptotically� optimal quantum tests for ��i ,� j� achieving the asymptotic error exponent

equal to the mean quantum Chernoff distance 	̄QCB��i ,� j�. Hence we obtain from �22� as n tends
to infinity

− lim inf
n→�

1

n
log Erri�E�n�� � min

i�j
wij	̄QCB��i,� j� . �25�

Note that the minimum on the right hand side appears due to the fact that asymptotically the
largest term in �22� dominates.

In order to get the best lower bound, i.e., to maximize the right hand side of �25� under
restriction �24�, we solve the problem
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max
wij

�min
i�j

wij	̄QCB��i,� j�: 	
1
j�i
r

wij = 1� .

The solution is obtained by making all wij	̄QCB��i ,� j� equal, that is, by setting

wij =
1

�	̄QCB��i,� j� 	
1
t�s
r

1

	̄QCB��s,�t�
� ,

whence

min
i�j

wij	̄QCB��i,� j� =
1

	
1
j�i
r

1

	̄QCB��i,� j�

.

The mean generalized quantum Chernoff bound of the set � was defined as 	̄QCB���
=mini�j 	̄QCB��i ,� j�, and we obtain

− lim inf
n→�

1

n
log Erri�E�n�� �

1

	
1
j�i
r

1

	̄QCB��i,� j�

= 	̄QCB · ���� , �26�

where the factor on the right hand side is given by �13�, i.e., ����
= �	1
j�i
r	̄QCB / 	̄QCB��i ,� j��−1. Since lower bound �26� on the individual error exponent does
not depend on the index i, i=1, . . . ,r, the statement of the Theorem 2, which refers to the
exponential rate of the averaged error probability, follows. �

V. CONCLUSIONS

We have considered a generalization of the basic problem of binary symmetric quantum
hypotheses testing to the case of multiple hypotheses represented by shift-invariant states on a
quantum spin chain. In contrast to the classical situation no algorithms are known to construct
multiple quantum tests from a set of binary tests such that the error exponent of the resulting
sequence of multiple tests is equal to the minimum of the binary error exponents. This lack is
mainly rooted in the generic noncommutativity of the POVMs pertaining to the different pairs of
hypothetic states. We proposed to overcome the difficulties of noncommutativity by introducing a
blocking method, which allows a consistent combination of the optimal binary tests. The main
idea is to divide a given large block of the spin chain into subblocks associated with the different
pairs of hypotheses and subsequently to perform the corresponding optimal binary quantum tests
on the subblocks.

Using subblocks of equal length results in multiple quantum tests achieving an error exponent
equal to the exponential rate of the slowest binary discrimination up to a factor 1 / � r

2
�, where r

denotes the number of hypotheses. Consequently, applying optimal binary quantum tests, that are
known to achieve the mean quantum Chernoff distance, yields an exponential error rate lower
bounded by the mean generalized quantum Chernoff distance up to 1 / � r

2
�. By an appropriate

optimization of the subblock lengths, we were able to substantially improve our blocking algo-
rithm: The associated error exponent may become arbitrarily close to the mean generalized quan-
tum Chernoff distance and is independent of the number of the given hypotheses. Indeed, the
corresponding factor becomes arbitrarily close to 1 solely depending on the configuration of the
hypotheses, which is determined by the ratios between the mean generalized quantum Chernoff
distance and the different mean binary quantum Chernoff distances.
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