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Abstract. We develop a new method to bound the hyperbolic
and spherical Fourier coefficients of Maass forms defined with re-
spect to arbitrary uniform lattices.

Let Σ be a compact hyperbolic surface, endowed with a metric of
constant negative curvature −1. Let f be a non-constant eigenfunction
of the Laplacian (∆ + λ)f = 0 on Σ, normalized so that ||f ||2 = 1.

Let C be a closed geodesic or a geodesic circle in Σ. (By a geodesic
circle we mean the set of points of fixed positive distance from a given
point. We require that this distance be less than the injectivity radius
of Σ.) Give C the uniform measure of total length 1.

One can expand f in its Fourier expansion along C against a fixed
orthonormal basis of characters {ψn}n∈Z of L2(C). Moreover, since f is
an eigenfunction for the Laplacian, a separation of variables argument
shows that

f(z) =
∑
n∈Z

cn(f)Wn,λ(z) (1)

for some coefficients cn(f), where Wn,λ is a properly normalized eigen-
function of ∆ on the universal cover H having eigenvalue λ, transform-
ing along C by ψn, and satisfying an (exponential) decay condition.
The complex numbers cn(f) = cn(f, C) are called the Fourier coeffi-
cients of f along C. They are hyperbolic or spherical according to
whether C is a closed geodesic or a geodesic circle. Under assumptions
of arithmeticity of Σ and f , they are related to L-functions via the
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work of Waldspurger. We shall be interested in their size as |n| gets
large.

A local argument shows that cn(f) = O(|n|1/2). If we relax the
condition that Σ be hyperbolic, this local bound is actually sharp,
as it is realized by the Fourier coefficients of spherical harmonics on
S2 along a great circle. In the hyperbolic setting of this paper, one
expects that cn(f) = Oε(|n|ε). By a non-trivial bound we mean one
which establishes cn(f) = O(|n|1/2−δ) for some δ > 0. The implied
constants here and throughout depend on λ and geometric invariants
of Σ. Our goal in this note is to present a new method to bound
the coefficients cn(f) non-trivially. Our main result is the following
theorem (see Section 1.5 for a more precise formulation).

Theorem 1. Let 0 ≤ τ1 < 1 be such that min(1
4
, λ1) = (1 − τ 2

1 )/4,
where λ1 is the smallest non-zero Laplacian eigenvalue on Σ. Then

cn(f) = O(|n|
1
2
−δ)

for any

0 < δ <
1− τ1

34− 2τ1

.

This result is not new: in fact it is (numerically) weaker than what
is already known from the work of Reznikov [11], where an exponent
of 1/3 is achieved, independently of the spectral gap of the lattice Γ.1

The novelty of the present paper is therefore in the technique, which,
in Reznikov’s argument, replaces microlocal analysis of f (or, rather, its
representation theoretic counterpart: invariant trilinear forms) with an
ergodic argument. The dynamical approach is considerably less deep,
but may be adaptable to more general contexts; as any nontrivial bound
suffices for many applications, the numerical value being irrelevant, we
believe that such a method may be useful.

Acknowledgments. This paper owes a great deal to the work of An-
dre Reznikov, whose sequence of beautiful papers on automorphic pe-
riods [3, 11, 12], some in collaboration with Joseph Bernstein, were a
source of inspiration for us. We are equally indebted to the ideas of
Sarnak [13] and Venkatesh [15] on using the group action to deform test
vectors. One of our motivations was to understand the link between

1In [11], the case where C is a closed geodesic is not treated, for reasons which are
explained in that paper. Since the appearance of [11], Reznikov has subsequently
developed the techniques to deal with this remaining case. Our Theorem 1 is,
however, the first time a non-trivial bound on Fourier coefficients about a closed
geodesic for a general compact hyperbolic surface has appeared in print.
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the methods of Bernstein and Reznikov, on one hand, and Sarnak and
Venkatesh, on the other.

1. Representation theoretic viewpoint

By the uniformization theorem, we have Σ ' π1(Σ)\H where π1(Σ)
is viewed (up to conjugacy) as a torsion free uniform lattice in the
group of orientation preserving isometries Isom+(H) ' PSL2(R). We
will work in a slightly more general context than in the introduction,
allowing Σ to be an orbifold. Thus from now on we put G = PSL2(R),
we fix a uniform lattice Γ in G (or any conjugacy class of such), and
we let Σ = Γ\H.

Let K = PSO2(R) and endow the quotient G/K with the metric
coming from the Killing form on Lie(G). We isometrically identify
the left G-spaces H and G/K. The unit tangent bundle T 1(Σ) of Σ
(properly interpreted when Σ is an orbifold) can be identified with Γ\G.
Unlike the base space Σ itself, the quotient Γ\G admits an action by
G, given by right translation. We denote X = Γ\G and let dg be the
unique G-invariant probability measure on X.

1.1. Maass forms. There is a unique up to scaling G-invariant second
order differential operator on G, called the Casimir operator, denoted
by Ω. When Ω is restricted to right K-invariant functions, an appropri-
ate choice of scaling recovers the Laplacian on H = G/K. The Maass
form f of the introduction will then be viewed as an L2-normalized
Ω-eigenfunction on G, left-invariant under Γ and right invariant under
K.

We may write λ = 1−τ2

4
, where τ ∈ (−1, 1) ∪ iR. As τ and −τ give

rise to the same λ, we shall henceforth assume that τ ∈ (0, 1) ∪ iR≥0.
The representation theoretic object associated to the Maass form f is
a triplet (π, ν, e0) given by

(1) an infinite dimensional irreducible unitary spherical represen-
tation (π,Eτ ) of G on which the Casimir operator acts by the
scalar (1− τ 2)/4. We denote by Vτ (or simply V if no confusion
can arise) the space of smooth vectors of Eτ ;

(2) a unitary G-intertwining morphism ν : Vτ → C∞(X), where
C∞(X) is equipped with the standard inner product given by
integration over X with respect to the measure dg. The map ν
is called an automorphic realization of Vτ ;
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(3) an L2-normalized K-invariant vector e0 ∈ Vτ such that f =
ν(e0).

Passing from the Maass form f to its representation theoretic triplet
(π, ν, e0) offers many advantages. We can, for example, isolate the
global (or automorphic) ingredient ν. Moreover, we can in a sense
deform e0 by working with all vectors in the space V .

1.2. Homogeneous cycles. Closed geodesics and geodesic circles C
on Σ can be realized as projections of closed orbits of one-parameter
subgroups of G acting on X. This allows us to use the tools of Lie
theory, homogeneous dynamics, and representation theory to approach
the problem of bounding the coefficients cn(f). More precisely, there
exists x ∈ X and a subgroup H of G such that xH projects to C. We
call H spherical or hyperbolic, accordingly to whether C is a geodesic
circle or closed geodesic.

When C is a geodesic circle, then H = g−1Kg for some g ∈ G
(see [11, §4.1]). We have identified the upper-half plane H with G/K,
where K = PSO2(R), but as there is no preferred choice of maximal
compact subgroup of G, we can instead identify H with the quotient
G/K ′, for some other maximal compact subgroup K ′. Doing so with
K ′ = gKg−1, the acting group H giving rise to C simplifies to H =
g−1K ′g = K. We will henceforth assume that H = K in the spherical
case. We use the usual parametrization of the circle group

H =

{
h(θ) =

[
cos θ − sin θ
sin θ cos θ

]
: θ ∈ R

}
, (2)

where the bracket matrix refers to the class in PSO2(R).

Now let us consider the case of C a closed geodesic. Once again we let
H = G/K. Fix the standard identification of the unit tangent bundle
T 1(H) of H with PSL2(R) by associating the point (i, ↑) ∈ T 1(H) with
the identity element in PSL2(R). Then the geodesic flow on T 1(H) is
given by the action of A, the group consisting of (classes of) diagonal
matrices (see [1, II.§3]). When one changes the base point (i, ↑) in
T 1(H), the geodesic flow is given by a conjugate of A. This reflects the
fact that, as in the maximal compact case, there is no preferred choice
of maximal split torus. In the hyperbolic case, we may therefore freely

suppose that H = rAr−1, where r =
[

cosπ/4 − sinπ/4
sinπ/4 cosπ/4

]
. We parametrize

our group as

H =

{
h(θ) =

(
cosh θ sinh θ
sinh θ cosh θ

)
: θ ∈ R

}
. (3)
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The above choices of H allow us to use similar notation for both the
spherical and hyperbolic cases.

We now fix H to be either (2) or (3), according to whether C is a
geodesic circle or a closed geodesic. Recall that there is an x ∈ X such
that xH projects to C. If x = Γg, then the stabilizer of x in H is given
by g−1Γg ∩ H. Now changing Γ to a conjugate lattice g−1Γg gives a
surface isometric to Σ, so we are free to suppose that x is the identity
coset.

We have reduced the set-up to H being of the form (2) or (3) and the
uniform lattice Γ of G being such that Γ∩H\H is compact. We denote
by XH the H-orbit on the identity coset in X. We give XH the natural
measure coming from the probability Haar measure on Γ ∩H\H.

1.3. Model representations. If we drop the automorphic realization
ν from our triplet (π, ν, e0) then we are left with an abstract representa-
tion (π, Vτ ). Abstract unitary representations of semisimple Lie groups
such as PSL2(R) can often be realized concretely as spaces of sections of
vector bundles on flag varieties. This is the case for our representation
(π, Vτ ), as we explain below.

Let R2−0 be the plane punctured at the origin. We view the elements
of R2 − 0 as column vectors. Let V mod

τ = C∞ev,−τ−1(R2 − 0) consist of

smooth complex valued functions Φ on R2 − 0 which are even and
homogeneous of degree −τ − 1. These conditions mean that

Φ

(
ax
ay

)
= |a|−τ−1Φ

(
x
y

)
for all a ∈ R×. The natural action of g ∈ G on R2 − 0 by left matrix
multiplication by g−1 induces a G-action on the space of functions
V mod
τ . The resulting representation, denoted πmod, is irreducible and

given explicitly by(
πmod(g).Φ

)(x
y

)
= Φ

(
g−1

(
x
y

))
= Φ

(
δx− βy
−γx+ αy

)
if g =

[
α β
γ δ

]
. (4)

The one-dimensional space of K-invariants consists of rotationally in-
variant functions. There exists an intertwining Vτ → V mod

τ , unique up
to scalars, which we denote by v 7→ Φv.

We now endow V mod
τ with a G-invariant inner product, in such a way

that v 7→ Φv becomes an isometry. A very general way of doing this is
to take any simple closed curve Q going around the origin and endow
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it with the measure dq corresponding to “area swept out”: an open set
U of Q is given the Lebesgue measure of the cone emanating from the
origin and abutting at U . One then defines

〈Φ,Φ〉 =

∫
Q

Φ(q)(IΦ)(q)dq, (5)

where I : V mod
τ → V mod

−τ is an isometric intertwining. The curve Q can
close “at infinity” and the condition that the functions in V mod

τ be even
allows us to integrate over a curve confined to some half-plane.

We will choose the curve defining the inner product according to the
relevant group H. Let Xmod

H ⊂ R2 − 0 be the H-orbit passing through
the origin x0 = ( 1

0 ). In the spherical case, this model orbit is the circle{
xθ = (cos θ, sin θ)t : θ ∈ [−π, π]

}
,

while in the hyperbolic case, it is the hyperbola{
xθ = (cosh θ, sinh θ)t : θ ∈ R

}
.

We give Xmod
H the measure 1

2π
dθ in the spherical case and 1

2
dθ in the

hyperbolic case. The formula (5), where Q = Xmod
H and dq is the above

choice of measure, is our choice of G-invariant inner product. In the
spherical case, this corresponds to passing to the circle model. Another
common choice of Q is the vertical line through x0 with measure 1

2
dx;

this is referred to as the line model. The hyperbolic model does not
seem to be present in the literature.

We write this out explicitly as follows. When τ ∈ iR we have V−τ =
Vτ , the complex conjugate representation. In this case the G-invariant
scalar product 〈Φ,Φ〉τ is

1

2π

∫ π

−π
|Φ(xθ)|2dθ or

1

2

∫ ∞
−∞
|Φ(xθ)|2dθ,

for H spherical or hyperbolic, respectively. When τ ∈ (0, 1), the G-
invariant scalar product 〈Φ,Φ〉τ is

1

2π

∫ π

−π
Φ(xθ)(IΦ)(xθ)dθ or

1

2

∫ ∞
−∞

Φ(xθ)(IΦ)(xθ)dθ (6)

where the intertwining map (IΦ)(xθ) is (see [7, §1.3.2], where their s
is our −τ)

1

2π

∫ π

−π
Φ(xθ′)| sin(θ−θ′)|τ−1dθ′ or

1

2

∫ ∞
−∞

Φ(xθ′)| sinh(θ−θ′)|τ−1dθ′.

We will sometimes drop the subscript τ and write 〈 , 〉 if no confusion
can arise.



7

1.4. Periods and multiplicity one. For a character χ of H denote
by Cχ the complex numbers viewed as a representation space for χ.
Given a χ such that dim HomH(Vτ , χ) = 1, we may define a non-zero
element of HomH(V,Cχ) by the model inner product

`modχ (v) =
〈Φv, χ〉τ√
〈χ, χ〉reg

τ

.

We make some remarks on this definition. In the spherical case, we
may view χ as a vector in V mod

τ by extending it uniquely, by homogene-
ity, from the circle to a function on the punctured plane. Moreover,
the inner product in the denominator requires no regularization in this
case. In the hyperbolic case, however, one cannot view χ as an element
of V mod

τ . The inner product 〈Φv, χ〉τ in the numerator is therefore taken
to be the integral defined in the previous section; it is the Fourier trans-
form of Φv along the hyperbola. As for the regularized inner product,
it is given in the hyperbolic case by

〈Φ,Φ〉reg
τ = lim

δ→0
〈ΦKδ,Φ〉τ ,

where Kδ is any good kernel, such as Kδ(θ) = 2δ−1/2e−πθ
2/δ. When

τ ∈ iR we have 〈χ, χ〉reg
τ = 1.

If, furthermore, χ descends to Γ ∩ H\H = XH , we define `autχ ∈
HomH(V,Cχ) by the integral

`autχ (v) =

∫
XH

ν(v)χ.

As the space HomH(V,Cχ) is one dimensional, the (H,χ)-equivariant
functionals `autχ and `modχ are proportional. Thus,

`autχ = cχ(ν)`modχ

for some complex number cχ(ν) ∈ C. This constant of proportionality
depends, up to a scalar factor of modulus 1, on the choice of model
representation πmod and the automorphic realization ν.

1.5. A more precise formulation of Theorem 1. We are now in a
position to state Theorem 1 more precisely.

Assume XH projects to the fixed curve C ⊂ Σ from the Introduction.
Fix a group isomorphism of Z with the character group of Γ∩H\H =
XH , denoted n 7→ χn. Each χn can be naturally viewed as a function
on XH , and (since XH was given volume 1) the set {χn}n∈Z forms an
orthonormal basis of L2(XH). We write `autn for `autχn and similarly for
the model functionals. This defines coefficients of proportionality cn(ν).
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Since we will only work with the modulus of the Fourier coefficients, we
abuse notation and write simply cn. Then the statement of Theorem 1
is that cn = O(|n| 12−δ), for the value of δ given there.

To see how to obtain the original statement, in the more concrete
setting of the Fourier expansion (1), we let {ψn}n∈Z be the orthonormal
basis of L2(C) given by the image of {χn}n∈Z under the projection down
to Σ, and put

Wn,λ(z) = `modn

([
r1/2

r−1/2

]
e0

)
ψn(θ),

where z = (r, θ) =
[
r1/2

r−1/2

]
h(θ).z0 ∈ H and z0 ∈ C is fixed.

1.6. Other periods. One could relax the restriction that the hyper-
bolic surface (or orbifold) Σ be compact, and instead ask only that
it be of finite volume, i.e., remove the condition that the lattice Γ be
uniform. In this more general context, one can still study the Fourier
coefficients of a Maass form along a closed geodesic or hyperbolic circle.
However, some of the Sobolev norm estimates that we quote in Sec-
tion 3 have not yet been extended to such non-compact Σ. Moreover,
since the equidistribution result Lemma 1 would naturally be stated
for functions of compact support, one would need to control the error
incurred when applied to Maass forms, perhaps assuming cuspidality.

When Γ is non-uniform, one can also consider Fourier coefficients
along closed horocycles. If Γ is a congruence subgroup of PSL2(Z) and
the Maass form is an eigenfunction of all Hecke operators, bounds on
the unipotent Fourier coefficients are directly related to the Ramanujan
conjecture. For an arbitrary lattice Γ, non-trivial bounds were first
obtained by Good [8] and Sarnak [14]. Later, Venkatesh [15] gave a
more dynamical treatment which used the mixing properties of the
geodesic flow together with an amplification technique. Our method is
quite close to that of Venkatesh, but rather than amplifying we “shorten
the interval”. In other words, we establish a sharp upper bound for the
mean value

∑
|n−N |≤T |cn|2 where T = N1−δ for some δ > 0, and the

bound in Theorem 1 follows after dropping all but one term. A bound
for dyadic interval would only recover the trivial bound.

Finally we mention that in the non-compact case, one can also con-
sider the Fourier coefficients along a divergent geodesic, i.e., one which
leaves every compact as t→ ±∞. Here, one more difficulty arises: the
cycle itself is not of finite volume. See the work of Oh-Shah [9] for
interesting results in this setting. In the case of congruence subgroups,
the period integral along the divergent geodesic iR+ of a Hecke-Maass
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form against a character is related to special value of an L-function by
means of the classical Hecke integral.

2. Summation formula

For any smooth function F on G and any 1 ≤ p ≤ ∞ let

Sp,d(F ) =
∑

ord(D)≤d

||DF ||Lp(Γ\G)

be the Sobolev (p, d)-norm. Here D ranges over all monomials of a
fixed basis of g = sl2(R). The action of an element X ∈ g is by right
differentiation (X.F )(g) = d

dt
F (getX)

∣∣
t=0

, and one extends this action
to monomials by composition.

For any 0 < ε < 1
2
, put

Nε(F ) = S2,1(F )1/2+ε||F ||1/2−ε2 .

Note that Nε(λF ) = λNε(F ) for scalars λ > 0. The norm Nε is a
substitute for the fractional Sobolev (2, 1/2 + ε)-norm.

For T > 0 let

a(T ) =

(
T 1/2

T−1/2

)
,

and if v ∈ V put
vT = π(a(T ))v.

The aim of this section is to prove the following result.

Proposition 1. For any smooth vector v ∈ V and for all T > 1 we
have ∑

n∈Z

|cn|2|`modn (vT )|2 −
∫
X

|ν(v)|2

= Oε

(
S∞,1(|ν(v)|2)

1
2

+εNε(|ν(v)|2)
1
2

T (1−τ1)/4−ε +
S∞,1(|ν(v)|2)

T

)
.

Here τ1 is related to λ1 as in Theorem 1.

Let `autXH
∈ HomH(V ⊗ V ,C) be the linear form on V ⊗ V given by

the L2-norm of the restriction of ν(v) to XH . In other words

`autXH
(v) =

∫
XH

|ν(v)|2.

The idea of the proof of Proposition 1, which goes back to Sarnak [13],
is to evaluate `autXH

(vT ) in two different ways.
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On one hand, we have the decomposition

`autXH
=
∑
n∈Z

|`autn |2

given by the Parseval formula for L2(XH). Inserting the proportionality
relation we obtain

`autXH
=
∑
n∈Z

|cn|2|`modn |2,

which we can then apply to the vector vT to obtain the left hand-side
of Proposition 1.

On the other hand,

`autXH
(vT ) =

∫
XH

|ν(v)(ha(T ))|2dh.

Proposition 1 then follows by an application of the following lemma to
the case where F = |ν(v)|2.

Lemma 1. For any F ∈ C∞(Γ\G) and all T > 1 we have∫
Γ∩H\H

F (ha(T ))dh−
∫
Γ\G

F (g)dg = Oε

(S∞,1(F )
1
2

+εNε(F )1/2

T (1−τ1)/4−ε +
S∞,1(F )

T

)
.

In words, Lemma 1 states that the a(T )-translate of the probability
measure integrating over the homogeneous cycle XH weak-* converges,
in an effective way, to the uniform probability measure on Γ\G.

We prove Lemma 1 following a well-known argument of Eskin and
McMullen [6] that goes back to Margulis’s thesis. The idea is that
the a(T ) translate of a fattening of XH remains uniformly close to a
fattening of the translate. This is the wavefront lemma, see [6]; it is a
reflection of the negative curvature of Σ. Thus the left hand side can
be viewed as a matrix coefficient, up to a small error. Then uniform
and effective versions of the Howe-Moore theorem provide the desired
decay of matrix coefficients.

Before proceeding, we introduce some explicit coordinates and group
decompositions. Let

A =

{
a(t) =

(
t1/2

t−1/2

)
: t > 0

}
,

N =

{
n(x) =

(
1 x

1

)
: x ∈ R

}
.

We write a general element ofH as h(z) for z ∈ R, using the parametriza-
tion of (2) or (3).
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A generalized (local) form of the Iwasawa decomposition grants the
existence of a neighborhood U of the identity element e ∈ G such that
any g ∈ U can be written uniquely as g = han, where h ∈ H, a ∈ A,
and n ∈ N . We can in fact take U to be all of G when H is spherical,
for in this case one obtains the standard Iwasawa decomposition G =
KAN .

We now prove Lemma 1. We borrow heavily from the presentation
of a similar result in [15, Lemma 9.4].

Proof. We begin by defining a smoothing function on G, depending on
a small parameter 0 < δ < 1. We make use of the HAN coordinates in
the neighborhood U . For the H-coordinate, write p > 0 (for “period”)
for the smallest positive real number such that h(p) ∈ Γ, and let η ∈
C∞c (R) be such that

(1) (a) η(z) = 1 for all δ 6 z 6 p− δ,
(b) η(z) = 0 for all z 6 δ/2 and all p− δ/2 6 z,
(c) 1

p

∫ p
0
η(z)dz = 1.

For the A0- and N -coordinates, let α, ν ∈ C∞c (R) be real-valued func-
tions satisfying

(2) supp(α) ⊂ [−δ, δ] and
∫

R α(y)dy = 1;

(3) supp(ν) ⊂ [−1, 1] and
∫

R ν(x)dx = 1.

For δ small enough the image of (z, y, x) ∈ [0, p] × [−δ, δ] × [−1, 1]
under h(z)a(ey)n(x) is contained in U , and we may define a function
ξ ∈ C∞c (G) by

ξ(h(z)a(ey)n(x)) = η(z)α(y)ν(x).

We obtain a Γ-invariant non-negative function on G by averaging over
the group,

Ξ(g) =
∑
γ∈Γ

ξ(γg).

From the HAN decomposition of the neighborhood U as well as the
fact that Γ intersects A and N only at e, we compute the volume of Ξ
by unfolding to get∫

Γ\G
Ξ(g)dg =

∫
Γ∩H\G

ξ(g)dg =
1

p

∫ p

0

η(z)dz

∫
R
α(y)dy

∫
R
ν(x)dx = 1.

With these preliminaries out of the way, we now consider the matrix
coefficient

〈a(T ) · F,Ξ〉 =

∫
Γ\G

F
(
ga(T )

)
Ξ(g)dg
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in the right regular representation of G on L2(Γ\G). This is the
probability measure averaging the a(T ) translate of F over a small
O(1) × O(δ) × O(1) ball (in the H × A × N -coordinates) around the
origin (which is the same as averaging F over the a(T ) translate of
an O(δ) × O(1) fattening (in the A × N coordinates) of the H-orbit
XH). A uniform version of the Howe-Moore theorem states (see [15,
Equation (9.6)]) that

〈a(T )·F,Ξ〉 =

∫
Γ\G

F (g)dg

∫
Γ\G

Ξ(g)dg+Oε

(
Nε(F )Nε(Ξ)T−

1
2

(1−τ1)+ε
)
.

Using the volume normalization of Ξ and the bounds

Nε(Ξ)� (δ−3/2)1/2+ε(δ−1/2)1/2−ε = δ−1−ε,

we find

〈a(T ) · F,Ξ〉 =

∫
Γ\G

F (g)dg +Oε

(
Nε(F )T−

1
2

(1−τ1)+εδ−1−ε). (7)

On the other hand, we may unfold the integral to obtain

〈a(T ) · F,Ξ〉 =

∫
Γ∩H\G

F
(
ga(T )

)
ξ(g)dg

=
1

p

∫ p

0

∫
y∈R

∫
x∈R

F
(
h(z)a(ey)n(x)a(T )

)
η(z)α(y)ν(x)dxdydz.

Using the contraction relation

a(T )−1n(x)a(T ) = n(xT−1), (8)

we find

〈a(T )·F,Ξ〉 = T
1

p

∫ p

0

∫
y∈R

∫
x∈R

F
(
h(z)a(T )a(ey)n(x)

)
η(z)α(y)ν(Tx)dxdydz.

The right hand side is the probability measure averaging F over a
O(δ)×O(1/T )-fattening (in the A×N directions) of the a(T )-translate
of XH . The contraction relation (8), as elementary as it may seem,
encodes the negative curvature of Σ. Indeed, it is simply a group
theoretic reformulation of the geometric fact that the geodesic flow
admits a hyperbolic structure on the unit tangent bundle of Σ.

Continuing, note that for x = O(T−1) and y = O(δ) and any g ∈ G
one has

F
(
ga(x)n(y)

)
= F (g) +O

(
S∞,1(F ) max(T−1, δ)

)
,

the implied constant being independent of g by the compactness of
Γ\G. Since the x, y integration variables are constrained to these ranges



13

(and α and ν have volume 1), we deduce

〈a(T ) · F,Ξ〉 =

∫ p

0

F
(
h(z)a(T )

)
η(z)dz +O

(
S∞,1(F ) max(T−1, δ)

)
.

From the assumed properties of η, we have

〈a(T ) · F,Ξ〉 =

∫
Γ∩H\H

F
(
ha(T )

)
dh+O

(
S∞,1(F ) max(T−1, δ)

)
. (9)

Combining (7) and (9) and choosing

δ =
Nε(F )1/2

S∞,1(F )T (1−τ1)/2

completes the proof. �

The ergodic result could have been proved spectrally (in the style
of Duke-Rudnick-Sarnak [5]), instead of appealing to the wave-front
lemma as we have. Proceeding by spectral methods to prove Lemma
1 is not, as one might suspect, a repackaging of Reznikov’s argument.
Indeed, the spectral argument reduces to bounding matrix coefficients
and the resulting bounds depend again on the spectral gap of the lat-
tice, which is not a feature of Reznikov’s argument.

3. Results on Sobolev norms

Let {en}n∈2Z be an orthonormal basis of K-types in Vτ . We write

φ
(n)
τ = ν(en) for the corresponding automorphic functions.

We list some useful bounds that follow from the work of Bernstein
and Reznikov.

Lemma 2. For any n ∈ 2Z, and any integer d ≥ 0, one has

S2,d(φ
(n)
τ )�d (|τ |+ |n|+ 1)d

and
S∞,d(φ(n)

τ )�d (|τ |+ |n|+ 1)d+1/2,

where the implied constants depend only on d.

Proof. This follows from [2, Theorem 2.1, Corollary 2.4] and [4, Propo-
sition 2.5.4]. �

Lemma 3. For any n,m ∈ 2Z, τ ′ ∈ (0, 1)∪ iR≥0, and any D ≥ 0, one
has

〈φ(m)
τ φ

(n)

τ , φ
(n−m)
τ ′ 〉 �τ,D min

(
1,

(|m|+ |n|+ 1)D+1

(1 + |τ ′|)D

)
,

where the implied constants depend only on D and τ .
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Proof. We first observe that

〈φ(m)
τ φ

(n)

τ , φ
(n−m)
τ ′ 〉 ≤ ‖φ(m)

τ φ
(n)

τ ‖2 ≤ ‖φ(m)
τ ‖4‖φ(n)

τ ‖4 �τ 1,

the last estimate on the L4-norm being taken from [3, Theorem 2.6].

On the other hand, since the Casimir operator is self-adjoint (and τ ′

is bounded away from 1), for any fixed integer d ≥ 0 we have

〈φ(m)
τ φ

(n)

τ , φ
(n−m)
τ ′ 〉 �d

1

(1 + |τ ′|)2d
‖∆dφ(m)

τ φ
(n)

τ ‖2.

It follows from [2, Theorem 2.1, Corollary 2.4] and [4, Proposition

2.5.4], that ‖φ(n)
τ ‖∞ � S2,1(φ

(n)
τ ). From these estimates, and the Leib-

niz rule for derivations, one infers that

〈φ(m)
τ φ

(n)

τ , φ
(n−m)
τ ′ 〉 �d (1 + |τ ′|)−2d

∑
d1+d2=2d+1

S∞,d1(φ(m)
τ )S2,d2(φ

(n)
τ ).

Using the estimates in Lemma 2, we conclude the proof. �

Corollary 1. Let N > 1 be an integer, and let an be a sequence of
complex numbers supported on the even integers. Put

g =
∣∣∣ ∑
|n|≤N

anφ
(n)
τ

∣∣∣2 and A =
∑
|n|≤N

|an|2.

Then for any integer d ≥ 0 we have

S∞,d(g)�d,τ AN
7/2+d+ε and S2,d(g)�d,τ AN

3+d+ε.

Proof. By spectral expansion

g =
∑

|m|,|n|≤N

amān
∑
τ ′

〈φ(m)
τ φ

(n)

τ , φ
(n−m)
τ ′ 〉φ(n−m)

τ ′ ,

where τ ′ runs over all spectral parameters (with multiplicity). We apply
Lemmas 2 and 3 to the τ ′-sum. Using Weyl’s law #{τ ′ ≤ R} � R2 we
deduce the stated inequalities. �

Note that the proof actually gave the stronger upper bounds

S∞,d(g)�d,τ

(∑
|n|≤N

|an|
)2

N5/2+d+ε, S2,d(g)�d,τ

(∑
|n|≤N

|an|
)2

N2+d+ε,

to which we then applied Cauchy-Schwarz. We shall not need these
last estimates.
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4. Test functions and estimates

We now choose an explicit test function v to insert into Proposition
1.

We shall assume throughout this section that the Maass form f is
tempered; thus τ ∈ iR≥0. (Note that this is not the same thing as to
assume that the lattice Γ is tempered: τ1 could very well be close to
1.) The calculations when f is non-tempered are similar.

4.1. General formulae. We begin by putting in place some notation.

For a smooth vector v ∈ Vτ let Φ = Φv be the associated vector in
the model space C∞ev,−τ−1(R2 − 0). Denote by ϕ the restriction of Φ to

Xmod
H (see §1.4).

We recall the fixed isomorphism n 7→ χn between Z and the character
group of Γ∩H\H of Section 1.5. As in the proof of Lemma 1, there is
a p > 0 such that χn(θ) = einpθ. For notational convenience, we shall
assume henceforth that p = 1.

In the spherical case, we have

`modn (v) =
1

2π

∫ π

−π
ϕ(θ)e−inθdθ.

For cos θ 6= 0 we have ϕ(θ) = | cos θ|−τ−1Φ ( 1
tan θ ). Thus, if Φ is sup-

ported away from the line x = 0 we have

`modn (v) =
1

2π

∫ π

−π
| cos θ|−τ−1Φ

(
1

tan θ

)
e−inθdθ.

In the hyperbolic case, we have

`modn (v) =
1

2

∫ ∞
−∞

ϕ(θ)e−inθdθ.

For all θ we have ϕ(θ) = (cosh θ)−τ−1 Φ ( 1
tanh θ ), so that

`modn (v) =
1

2

∫ ∞
−∞

(cosh θ)−τ−1 Φ

(
1

tanh θ

)
e−inθdθ.

In either case, for Φ supported in a small neighborhood of ±x0, the
expression for `modn (v) closely approximates the Fourier transform of
y 7→ Φ

(
1
y

)
.

We denote vT = π(a(T )).v as in Section 2 and put ΦT = ΦvT . Sim-
ilarly to before, let ϕT be the restriction of ΦT to the model orbit
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Xmod
H . Observe that on vertical lines x = const the A-action is given

by contraction:

ΦT

(
x
y

)
= Φ

(
a(T−1)

(
x
y

))
= T (1+τ)/2Φ

(
x
Ty

)
.

Thus we have the formula

ϕT (θ) = | cos θ|−τ−1T (1+τ)/2Φ

(
1

T tan θ

)
,

valid for cos θ 6= 0. The formula in the hyperbolic case is the same,
but with hyperbolic trigonometric functions (and valid for all θ). In
practice, we will take Φ supported in a small neighborhood of ±x0, in
which case this formula is valid for all θ in the support of ϕT . Assuming
this, we have

`modn (vT ) = T (1+τ)/2

∫ π

−π
(cos θ)−τ−1Φ

(
1

T tan θ

)
e−inθdθ,

and similarly in the hyperbolic case.

4.2. Mean value estimates and convexity breaking. If we choose
v such that Φv is a fixed smooth L2-normalized compactly supported
bump function around ±x0, then one can show that

|`modn (vT )|2 = T−1f(n/T )

for a fixed positive smooth function f of rapid decay. In this case the
summation formula in Proposition 1 reads∑

n∈Z

|cn|2f(n/T ) = T +Oε(T
1− 1

4
(1−τ1−ε)).

This is a smooth mean-square asymptotic for the coeffcients cn. Despite
the power savings error term, the smoothness of the sum does not allow
one to recover anything more than the trivial bound cn = O(|n|1/2) on
any individual coefficient.

In the important paper [15], Venkatesh observed that one can set up a
correspondence between certain dynamical techniques, such as equidis-
tribution and mixing, and classical techniques in analytic number the-
ory for establishing subconvexity of special values of L-functions, such
as mean value estimates and the amplification method of Friedlander-
Iwaniec. He then used the dynamical reformulation to greatly expand
the number of examples for which one can prove a subconvex bound.
We now discuss the relation between the method of Venkatesh and
ours.
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In the general outline of [15, §1.3], a subconvexity result is proven
in two steps. First one establishes a mean value estimate on the co-
efficients cn one is interested in bounding. This corresponds to the
equidistribution of a sequence of measures supported on expanding H-
orbits. The next step is to amplify: this means that one seeks to add
weights to the mean value which are peaked at a given coefficient. The
dynamical equivalent of this is to find a joint eigenmeasure σ for the
orthonormal basis {ψn} of L2(C) with respect to which f is uncorre-
lated. The eigenvalues of σ on ψn are the weights in the mean value,
and the independence of f with σ is expressed quantitatively by the
mixing of the H-action on X. The tension between f , ψn, and σ yields
bounds on cn.

In our setting, the equidistribution result Lemma 1 is not for a se-
quence of measures supported on H-orbits, but rather of measures sup-
ported on translates of a fixed H-orbit. There do exist situations where
the two notions coincide: since A normalizes N , if one translates an
closed N orbit by the A-action, one obtains a continuous deformation
of closed N orbits. In the spherical and hyperbolic cases, however, the
A-translates we consider are not themselves H-orbits. Besides that, it
is not the quantitative mixing of the H-action which enters into our
Lemma 1, but rather that of the A-action, which is in a sense orthogo-
nal to H. (Of course, it doesn’t even make sense to speak of the mixing
of the H-action when H is compact.)

In place of amplification, which puts a spike at a given coefficient,
we shorten the interval in the mean value sum. The dynamical way to
do this is to move the test vector v at the same time as we hit it with
a(T ). This is explained in the next subsection, where we define v as a
function of a second parameter M .

4.3. Precise test function. Let α be a fixed non-zero test function
that is supported in a fixed, but sufficiently small neighborhood of 0.
For a parameter M > 0 let v ∈ Vτ be such that Φ = Φv be the unique
function in C∞ev,−τ−1(R2 − 0) such that

Φ

(
1
y

)
= eiMyα(y).

Note that we are suppressing the dependence of v on M in the notation,
but we will be careful to observe this dependence when it comes time
to estimate various norms of v. In the spherical case, this yields

ϕT (θ) = (cos θ)−τ−1T (1+τ)/2eiMT tan θα(T tan θ).



18

The formula is similar in the hyperbolic case. The point of choosing
v as we have is that it is not an A-translate of any fixed vector in V .
Were this not the case, we would essentially be back in the situation
of the smooth mean value estimate described in §4.2.

If we switch notational conventions to write M = N/T for a parame-
ter N ≥ T then we very nearly recover Reznikov’s choice of test vector
(cf. [11, §4.6]), which he takes (using our normalizations) as

T
(1+τ)

2 eiNθα(Tθ).

Our innovation here is simply to write Reznikov’s test vector as the
a(T ) translate of another vector v, which, despite depending on a large
parameter M , has polynomially controlled Sobolev norm. The ergodic
result is then sufficient for a subconvex result.

4.4. Model integrals. We begin by observing that

`modn (vT )� T−1/2 for n = MT +O(T ), (10)

where the implied O(T ) constant is taken sufficiently small. Indeed, in
the spherical case, we have

`modn (vT ) = T (1+τ)/2 1

2π

∫ π

−π
(cos θ)−τ−1α(T tan θ)ei(MT tan θ−nθ)dθ,

and similarly for the hyperbolic case. The integral is supported on an
interval of length � 1/T and for n = MT +O(T ) there is no essential
cancellation in the integral. (Recall also that we are assuming that τ
is purely imaginary.)

4.5. Automorphic estimates. Here we apply the automorphic Sobolev
estimates of Section 3.

Lemma 4. Let v ∈ V be such that Φ = Φv. We have

(1) ‖ν(v)‖2
2 � 1,

(2) S∞,1(|ν(v)|2)�M9/2+ε,

(3) S2,1(|ν(v)|2)�M4+ε,

(4) S2,0(|ν(v)|2)�M3+ε.

The implied constants depend only on τ and ε.
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Proof. To prove part (1) we pass to the model side, via the isometry
‖ν(v)‖2

2 = ‖Φ‖2
2. The latter is O(1), since the modulus |Φ| is indepen-

dent of M .

For parts (2)-(4), we will appeal to Corollary 1 for an appropriate
choice of parameter N . As an orthonormal basis of K-types {en}n∈2Z,
we take en such that the corresponding vector Ψn in the model space
V mod
τ restricts to the circle S1 = {(cos θ, sin θ)t : θ ∈ R} as einθ. By

partial integration one has

an = 〈Φ,Ψn〉L2(S1) �D (1 + |n|/M)−D

for any D ∈ N0. This shows that the an are O(1) for n = O(M) and
negligibly small thereafter. We may therefore insert N = M1+ε and
A = O(1) into Corollary 1 to produce the desired bounds. �

Note that one has the average bound
∑

n |〈Φ,Ψn〉L2(S1)|2 = ‖Φ‖2 =
O(1). This suggests that one can actually prove a sharper pointwise
bound in the range n = O(M) than that used in the above proof, but
we have no need for such a strengthening.

4.6. Putting it all together. Inserting the above estimates into Propo-
sition 1 we obtain

1

T

∑
|n−TM |�T

|cn|2 � 1 +

(
M4

T (1−τ1)/4
+
M9/2

T

)
(MT )ε (11)

Now, in order for the summation range on the left-hand side to be as
short as possible, our interest is in taking M large relative to T . But

for M too large, say M ≥ T
3+τ1

4 – this is the range in which one has
M7/2T−1 ≥ M3T−

1
4

(1−τ1) – the resulting bound on cn is even worse

than the trivial bound. So we may assume that M < T
3+τ1

4 , in which
case we have

1

T

∑
|n−TM |�T

|cn|2 � 1 +M4+εT−
1
4

(1−τ1)+ε.

Equalizing the terms on the right-hand side yields an optimal value of
M = T

1
16

(1−τ1). Dropping all but one term on the left-hand side, we
arrive at Theorem 1.

4.7. Non-tempered f . We add a few words about how the preceding
calculations change when the Maass form f is non-tempered. In the
following paragraphs we assume that τ ∈ (0, 1).
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If we rescale the test vector as

ṽ = M τ/2v and Φ̃ = Φṽ = M τ/2Φ,

then all estimates given in the tempered setting remain valid when
using the inner product (6). For example, in the situation of Lemma
4, part (1), we have

‖ν(ṽ)‖2
2 = ‖Φ̃‖2

2 = M τ 1

(2π)2

∫ π

−π

∫ π

−π

eiM(tan θ−tan θ′)

| cos θ cos θ′|1+τ

dθ dθ′

| sin(θ − θ′)|1−τ

in the spherical case (and similarly in the hyperbolic case). A straight-
forward computation shows that this is O(1). Similarly, the upper
bounds in the remaining parts of Lemma 4 are unchanged.

Regarding the model functional, since 〈χn, χn〉reg
τ ∼τ |n|−τ , one has

`modn (ṽT ) ∼τ M τ/2|n|τ/2〈ΦT , χn〉τ .
The latter inner product is of size T (−1+τ)/2n−τ for |n − MT | � T .
One obtains (10) as before.
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