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Computers have a remarkable ability to simulate natural and artificial
phenomena. Industry, science, economic affairs and national security have
come to rely upon simulation as an essential technology. We bet our lives
on devices like fly-by-wire aircraft and digitally controlled pacemakers that
require digital computation to function properly. We have replaced testing
of nuclear weapons with an aggressive program of computer simulation, and
international treaties on carbon dioxide emissions are based upon computer
predictions of long term effects of human activity on global climate. The
fidelity and reliability of computer simulation is a critical issue for many en-
deavours. As our computers become faster and cheaper, simulations become
larger, more complex and more difficult to evaluate. The process of simula-
tion itself becomes more diverse in ways described here. A conventional view
of simulation is presented briefly. This is followed by a discussion of issues
that extend beyond this traditional view.

The starting point for fluid simulation – and many other problems – is fre-
quently expressed as the solution of systems of partial differential equations.
We assume that these equations give a correct “first principles” description
of a fluid flow. The key mathematical problems are the creation of algo-
rithms that approximate the solutions of PDEs as the scale of discretizations
tends to zero. As the resolution of the calculations becomes finer and more
computational resources become available, we are able to solve these prob-
lems more accurately. This viewpoint is very prevalent, but it applies fully
to only a limited set of problems. These are problems in which a precise
description can be given with a data set of fixed size, in which the problem
behavior is stable to perturbations of the magnitude of the errors inherent
in the calculations and in which the simulation results are readily compared
with test data. The issues that extend beyond these problems are considered
below in terms of five dichotomies, using an example for each:

• First principles vs. phenomenonology

• Determinism vs. indeterminisms

• Continuous vs. discrete models

• Special structure vs. genericity
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• Complexity vs. aggregation

We then discuss issues of numerical analysis that arise in simulation.

First principles vs. phenomenonology

Computational neuroscience is growing rapidly. Our efforts to model the
brain are rooted firmly in biophysical models of membranes and the channels
they contain, but there is a vast difference between compartmental Hodgkin-
Huxley models of neurons and the Navier-Stokes equations of fluid dynamics.
The Hodgkin-Huxley models are based upon sound biophysical principles,
but these principles do not constrain the models to a definite set of equations
in the same manner that a few assumptions about fluid properties lead to
the Navier-Stokes equations. Instead, many aspects of the models depend
upon approximations, choices of parametric forms of relationships among
quantities and measurements that fit data to these parametric forms. The
assumptions oversimplify and distort information that we know about these
systems. However, when we try to increase the resolution of the models,
then we increase the number of parameters that must be measured to fit
finer models. This creates the need for more measurements, many of which
are unlikely to be feasible. The measurements that can be made create
voluminous data sets that need to be analyzed to extract useful information
for parametrizing and initializing the models. Thus, it is hardly clear that
efforts to increase resolution in these models will to better fits. Uncertainty
about the values of additional parameters may prevent us from obtaining the
improved fidelity that we expect to obtain from finer resolution models.

When data for initializing high resolution models can be collected, it is
usually expensive. Some databases are maintained by the Federal government
at great cost and made partially available for scientific purposes. However,
large scientific collaborations like the human genome project or those cen-
tered around the NSF Long Term Ecological Research Sites are required to
lay the substrate for detailed simulation of many natural processes. Build-
ing high fidelity models from data using phenomenological models requires
planning and coordination greater than has been customary in most research
areas. Successful efforts will require data standards and computational tools
that are accepted by the researchers contributing to modeling efforts directly
or indirectly. Agreement on such standards is likely to increase scientific
orthodoxy, perhaps at the risk of thwarting individual creativity. Thus sim-
ulation may bear cultural costs as well as those of money and effort. This is
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not an argument that we should avoid a focus on simulation, but rather a plea
that we should examine the enterprise. As with large telescopes in astron-
omy, many areas of science stand to reap enormous benefits from thoughtful
planning and investment in technology that will help simulation efforts.

Determinism

Is the weather predictable? There is abundant evidence that global fore-
cast models display sensitive dependence to initial conditions. Perturbations
within the measurement error of current observations lead to different fore-
casts. It is likely that this sensitivity is not an artifact, but an inherent prop-
erty of atmospheric circulation. Let us assume here that the atmospheric flow
is turbulent and that disturbances grow to effect global circulation. What
are the implications for simulation? Dynamical systems analysis of chaotic
systems gives insight into the answer to this question. It clarifies how unpre-
dictability can arise in a deterministic, clockwork universe. Sensitive depen-
dence to initial conditions is a property of many dynamical systems, from
simple nonlinear mechanical linkages to population models. The chaotic na-
ture of such systems has been studied extensively, to the point that there
are solid mathematical foundations for quantifying their unpredictabiity us-
ing such quantities as invariant measures, entropy, Lyapunov exponents and
fractal dimensions. Still, the application of these concepts to the simulation
of complex systems remains problematic.

Faced with systems that display sensitive dependence to initial condi-
tions, long term prediction of the full state of the system as a function of
time is simply impossible. Weather forecasts five weeks in advance, let alone
five years, can specify at best average properties of the weather. Operational
weather forecasts have begun to employ ensemble forecasting based on simu-
lations of several initial states. The usefulness of dynamical systems methods
is problematic for simulations with attractors whose dimensions are large.
Probabilistic methods about system behavior seem more suited to these sit-
uations, but assumptions about underlying statistical distributions are hard
to verify. For example, the statistical properties of turbulent fluid flows re-
lated to coherent geometric structures remain a controversial subject. Monte
Carlo methods embody systematic approaches to the modeling of stochastic
systems. Producing high fidelity simulations in complex systems with many
parameters using Monte Carlo methods is an even larger task than it is for
deterministic models with stable asymptotic states. When faced with noisy,
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unpredictable systems like the brain, we have only a primitive understanding
of which aspects of dynamical behavior of complex systems we can hope to
simulate.

From Model Architecture to Dynamics

Modern molecular biology has invested great effort to determine the reaction
pathways of living organisms. This research produces graphs that show how
important biological molecules are produced, modified and used to regulate
physiological processes. Frequently missing from this work is an understand-
ing of the kinetics of the pathways. We see information about the structure
of the pathway, but we do not understand how it works. In particular, we
have difficulty predicting the functional consequences of drugs, mutations or
other modulatory effects on the network. For example, the deleterious side
effects of calcium blockers used as cardiac drugs illustrate the importance
of understanding biological kinetics. Molecular biologists have assumed that
function will be evident from structure. They have made the elucidation
of structure the principal goal of the subject. However, the case of neu-
ral networks demonstrates that a single morphological network may support
a diverse set of behaviors. Molecular biologists increasingly recognize that
systems modeling will facilitate their understanding of complex biological
processes.

Apart from considerations of symmetry, we have had little success in
relating system structure to function. Dynamical systems theory provides
a context for guiding our intuition of dynamical phenomena that we expect
to observe in generic systems. Using results from differential topology and
singularity theory, we have a coherent view of phenomena that we regard
as typical and phenomena that are exceptional. When there is symmetry
in a system, we know how to modify the theory. We believe that there
are architectural principles which are important in building robust complex
systems, but there is little theory to support our intuition. In the context of
specific applications such as electronic circuit design, we build hierarchical
systems of astounding complexity with millions of elements. Concepts such
as hierarchy and feedback control have not been incorporated into a general
theory of nonlinear dynamical systems. Our lack of insight into how system
architecture constrains dynamical behavior limits the power of simulation as
a tool for studying complex systems.
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Continuous, Discrete and Hybrid Models

High fidelity simulation of human walking is a demanding task. We perceive
small variations in gait, and readily distinguish departures from normality.
Attempts to build two legged locomotion machines have floundered over the
issue of maintaining balance in dynamically unstable states. Computational
models of walking must contend with impacts. These break stride into phases
in which the primary physical forces acting on the body differ. Dynamical
systems in which there are discrete events in the phase space that result in
discontinuous changes of the underlying model are called hybrid systems.
Hybrid models can have continuous and discrete components in space and
time. For example, the engagement of gears changes the dimension of the
phase space of a model of two rotating shafts. Most of the machines that we
build are hybrid systems. The construction of full system simulations from
simulations of components frequently introduces the need for hybrid models.

Theoretical models and computational tools for studying dynamical sys-
tems are framed in terms of continuous or discrete time, but seldom both.
Theory and numerical methods that apply to discontinuous or singular sys-
tems are more limited than those that treat analytic or smooth systems.
Consequently, the foundations for simulations of hybrid systems are shaky.
Dynamical systems theory has sharpened our intuition about what types of
phenomena we should expect to see in continuous phase spaces of systems
that operate in continuous or in discrete time. Extending that understand-
ing to hybrid systems is a barrier to confident simulation of hybrid systems.
We are left with weaker intuition to guide design of machines and industrial
processes that meet our desired specifications.

Scales and Aggregation

Decomposition of natural systems into different ”scales” is one of the cen-
tral tasks in producing high fidelity simulations. We seek to understand
how macroscopic behavior results from physical laws that operate on smaller
scales. For example, we would like to understand fracture in terms of atom-
istic properties of materials. Reducing all complex phenomena to atomic
interactions is clearly a hopeless task. It is preposterous to model the ef-
fects of global climate change on natural populations and agriculture on an
atomic scale. Recognizing when we can separate physical scales and encap-
sulate smaller scale information in models that operate at larger scales has
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been a central issue within condensed matter physics. In studying popula-
tion biology, economies, or the brain the issue of aggregating small scales is
fuzzier and more challenging.

Only recently have we acquired the computing resources required to sim-
ulate detailed multi-scale models. One of the areas that is growing rapidly is
the simulation of models with large numbers of components. In applications
as varied as molecular dynamics, battlefield simulations and traffic flow, we
build stochastic models from which we seek to observe emergent behavior at
the system level. Such simulations form the basis for a whole set of com-
puter games. The challenge with these efforts is to obtain results that fit the
real world. We seldom know which details of component behavior are most
significant for determining system properties, so it would be prudent to have
systematic ways of evaluating the effects of uncertainty in model components
upon system behavior. Such methods hardly exist at this time.

Numerical Analysis

Numerical implementation of dynamical systems models depends upon ap-
proximations that themselves are subtle. The simplest, most direct numeri-
cal integration algorithm (the Euler method) is subject to substantial errors.
These errors can accumulate to give qualitatively incorrect predicitions about
long time dynamics, as happens with the harmonic oscillator. Historically,
numerical solution methods for differential equations addressed stringent lim-
itations on the speed and cost of performing arithmetic. The dramatic im-
provements of digital computers during the past fifty years have completely
transformed these parts of mathematics. The speed of computation in sim-
ulation of physical systems as a limiting factor has largely been replaced by
issues such as memory hierarchies, round-off errors inherent in floating-point
arithmetic, and extracting useful information from very large data sets.

Consider the problem of simulating electric power systems. Reliable elec-
tric power produced with minimal environmental impact is vital to the world
today. Adequate capacity to handle anticipated loads and real-time mon-
itoring of operations are essential for these systems. Simulating network
models at first sight seems like a straightforward task in numerical integra-
tion. However, when we look a bit closer we find technical issues that are
bothersome. One issue is that the equations for a network are naturally ex-
pressed as differential-algebraic equations rather than as ordinary differential
equations. The mathematical theory of DAE’s is more complex than that of
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ODE’s. For DAE’s, not all initial conditions in the phase space are consis-
tent with the equations. Moreover, there are points in phase space where the
algebraic constraints inherent in the equations are satisfied, but there still
are no solutions (or multiple solutions) with these initial conditions. The
mathematical underpinnings of the theory of DAE’s remain incomplete. Re-
strictive assumptions on models are required to guarantee that simulation
algorithms will work. Still DAE’s are common in engineering applications
and cannot be ignored. In addition to power systems, DAE’s arise naturally
as models of constrained mechanical systems.

Beyond Simulation

Simulation viewed as the evolution of specific initial conditions for a dynami-
cal computer model is unlikely to directly answer many of the questions that
we ask. For example, consider the problem of fitting parameters to experi-
mental data. In Hodgkin-Huxley models for neurons, a typical vector field
may have a ten dimensional phase space and forty parameters. The model
of a network of ten neurons built from single compartment Hodgkin-Huxley
neurons will have a phase space of dimension approximately one hundred
with several hundred parameters. If there are many model parameters that
cannot be measured directly, then we are left with a complex “inverse” prob-
lem of using simulation data to optimize the parameters. In the case of the
neural network, the problem is further complicated by the distortion of the
primary voltage measurements that occurs due to unmodeled spatial effects
in the system. This means that the most useful data for model comparisons
is likely to be related to qualitative properties like the period of oscillations or
the stability boundaries for different dynamical states as physical parameters
are varied. Obtaining this information by sampling trajectories can only be
done for a small number of parameters because the number of required tra-
jectories grows exponentially with the number of parameters. Thus, solution
of these parameter identification problems seems to require algorithms that
go beyond simulation. The problems of fitting model parameters inhibit the
creation of high fidelity models. As described previously, increasing model
resolution to include smaller scales in a problem may increase the number of
parameters that must be determined faster than the fidelity of the models
improve.

Bifurcation theory for dynamical systems provides a framework for direct
determination of information about how system behavior changes qualita-
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tively with parameter variations. Implementation of algorithms based on
this theory is a step towards computing parameter ranges that produce de-
sired behavior. For bifurcations of equilibria, stability boundaries can be
determined without numerical integration by formulating defining equations
for bifurcations from the derivatives of the vector field. These methods have
been implemented in a continuation setting to compute curves of codimension
one Hopf and saddle-node bifurcations in two-parameter families of vector
fields and curves of codimension two bifurcations in three-parameter families
of vector fields. We need better algorithms to compute multi-dimensional
continuation of submanifolds of bifurcations and to treat bifurcations of pe-
riodic orbits reliably.

There are additional geometric questions about dynamical systems that
are important for varied applications. Computation of mixing properties of
fluid flows has been greatly facilitated by regarding the instanteous velocity
fields as generating a dynamical system of streamlines and computing in-
variant manifolds of these dynamical systems. The stagnation points of the
fluid flow are saddle points of the dynamical system and their stable and
unstable manifolds give separation boundaries for the fluid flow. Computing
the intersections of these manifolds and the evolution of their turnstile struc-
tures gives approximations to the mixing properites of these fluids. These
techniques have been used to investigate the design of industrial reactors,
chemical reaction rates and fluid transport of ocean eddies. Because invari-
ant manifolds become highly convoluted with sharp bends, substantial care
is need to compute them accurately.

We desire the ability to robustly and routinely compute far more about
the qualitative properties of dynamical systems than we can today. There are
phenomena that play a prominent role in the qualitative theory that occur
on very fine scales in many examples. Developing consistent, converged cal-
culations requires that these scales be resolved. Since the phenomena often
involve singularities and bifurcations, classical algorithms need to be mod-
ified and extended to work with these problems. Mathematical theory has
guided this work, leading to the creation of algorithms that solve challenging
problems. Unlike prevailing trends in computational science, the problems
have often been small and the computing highly interactive. The interplay
between classical and modern mathematics, geometry and numerical analysis
and computational science will continue to be important to progress in the
use of simulation as a powerful scientific tool.

8


