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Abstract

A spanning tree T in a finite planar connected graph G determines a dual spanning
tree T ∗ in the dual graph G∗ such that T and T ∗ do not intersect. We show that
it is not always possible to find T in G such that the diameters of T and T ∗ are
both within a uniform multiplicative constant (independent of G) of the diameters
of their ambient graphs.

2000 Mathematics Subject Classification: 05C10, 05C12, 20F06, 57M15

1 Introduction

Suppose G is a finite connected undirected graph (or multigraph) embedded in the plane.
Given a spanning tree T in G, define T ∗ to be the spanning tree in the dual graph G∗

whose edges are those dual to edges in G r T . Figure 1 gives an example.

T ∗ T

G

Figure 1: Dual spanning trees.

The length of a walk in a graph is the number of edges it contains and the distance
between two vertices is the length of the shortest walk between them. The diameter

∗The authors gratefully acknowledge support from NSF grants DMS–0540830 and DMS–0513436.
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DiamG of a finite connected graph G is the maximum distance between pairs of vertices
of G.

Motivated by issues arising in Geometric Group Theory concerning the geometry of
van Kampen diagrams, Gersten & Riley asked [3]:

Question 1. Does there exists C > 0 such that if G is a finite connected planar (multi-)
graph then there is a maximal tree T in G with

DiamT ≤ C DiamG, and

DiamT ∗ ≤ C DiamG∗?

They conjectured positive answers to a number of variants of this question with bounds
imposed on the degrees of vertices in G or G∗. We exhibit a family of graphs resolving
these negatively.

Theorem 2. There are families (Gn)n∈N of finite connected planar graphs such that all

vertices in Gn and G∗

n have degree at most 6, and there are constants C1, C2 > 0 such that

for all n ∈ N and all spanning trees T in Gn,

Diam Gn + DiamG∗

n ≤ C1n, and (1)

Diam T + DiamT ∗ ≥ C2n
2. (2)

Establishing (2) involves two key ideas. The first is to regard Gn as the 1-skeleton of
a combinatorial 2-disc ∆n and invoke a concept known as filling length. In the context of
a simply connected metric space, Gromov [5] defined the filling length of a based loop γ
to be the infimal L (assuming it exists) such that γ can be contracted through a family of
based loops each of length at most L to the constant loop (i.e. to the basepoint). We will
use a combinatorial analogue of filling length from [2] concerning shellings of diagrams.

A diagram (∆, ⋆) is a finite planar contractible combinatorial 2-complex ∆ equipped
with a base vertex ⋆ on its boundary. One can regard ∆ as a finite planar multigraph G,
the 1-skeleton of ∆, with a 2-cell filling each face other than the outer (i.e. unbounded)
face. Define the boundary walk of ∆ based at ⋆ to be the anti-clockwise closed walk
around the boundary of ∆ that has origin ⋆ and follows the attaching map of the outer
face. The length of the boundary walk is the number of edges it contains (note that those
in 1-dimensional portions of ∆ are counted twice), or equivalently the degree of the vertex
of G∗ dual to the outer face of G.

A shelling of a diagram ∆ = ∆0 down to a vertex ⋆ on its boundary is a sequence
(∆i)m

i=0 of diagrams in which ∆m is the single vertex ⋆ and, for all i, we obtain ∆i+1 from
∆i by one of the following two moves.

• Remove a pendent edge and incident leaf v 6= ⋆.

• Remove an edge e and the interior of a (closed) 2-cell f where e is in the boundaries
of both f and ∆i.
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Each such move results in an elementary homotopy of the boundary walk: in the first
case a backtracking pair of edges is removed, and in the second e is replaced by the
complementary portion of the walk around the boundary of f . These moves ultimately
achieve the contraction of the boundary walk of ∆ down to the trivial walk at ⋆. So we
define the filling length FL(∆, ⋆) of (∆, ⋆) to be the minimal L such that there is a shelling
(∆i)m

i=0 of ∆ in which for all i, the length of the boundary walk of ∆i is at most L.
Filling length will be useful to us because, given a diagram (∆, ⋆) with G the 1-skeleton

of ∆, the layout of a spanning tree T in G and the corresponding T ∗ in G∗ can be made
to dictate a shelling of ∆ with filling length bounded above in terms of Diam T +DiamT ∗

(see Proposition 3). So a lower bound on the filling length of (∆, ⋆) leads to a lower bound
on Diam T + DiamT ∗.

This brings us to the second key idea, which is to construct diagrams (∆n, ⋆) so as to
contain a fattened tree that forces the filling length of (∆n, ⋆) to be suitably large. In the
context of Riemannian 2-discs this has been done by Frankel & Katz in [1], answering a
question of Gromov; our ∆n will essentially be combinatorial analogues of their metric
discs. To obtain ∆n we first inductively define a family of trivalent trees Tn by taking T0

to be a lone edge, and Tn to be three copies of Tn−1 with a leaf of each identified. (We
note that this does not determine Tn uniquely.) We then fatten Tn to a complex An (see
Figure 2) in which each of its edges becomes an n×n grid. Finally, to obtain ∆n we attach
a combinatorial hyperbolic skirt (a planar 2-complex Bn that is topologically an annulus
– see Figure 3) around the boundary of An to reduce the diameter of its 1-skeleton to ∼n.

Imagine inscribing Tn in the plane, circling it with a loop, and then contracting that
loop down to a point. In the course of being contracted, the loop will intersect Tn. In
Lemma 4 we show that however the loop contracts it must, at some time, meet at least
n + 1 distinct edges of Tn. Envisage An to be inscribed with a copy of Tn as in Figure 2.
The lemma can be applied to the boundary walks of the diagrams ∆i

n of any shelling of
∆n to learn that for some i at least n + 1 distinct edges of Tn will be intersected; it then
follows from the construction of ∆n that at that time the length of the boundary walk is
Ω(n2).

Acknowledgement. Question 1 was a topic of class discussion in a course taught by the
second author at Cornell University in the Fall, 2005. We are grateful to the members of
the class, particularly John Hubbard and Greg Muller, for their contributions. Addition-
ally, we thank Andrew Casson, Genevieve Walsh and two anonymous referees for their
comments on earlier versions of this article.

2 Constructing the graphs Gn

Let An be the family of diagrams (fattened trees) obtained from Tn (shown underlying) as
illustrated in Figure 2 by replacing edges by n×n grids and non-leaf vertices by tessellated
triangles.

For k = 2m with m ≥ 3 define Dk to be the planar combinatorial 2-complex that is
topologically an annulus and is built out of m− 2 concentric rings of pentagons as shown
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Figure 2: A1, A2 and A3 inscribed with T1, T2 and T3.

in Figure 3 for m = 3, 4, 5. For m ≥ 3 and 2m−1 < k ≤ 2m, obtain Dk from D2m by
inserting single edges in place of pairs of adjacent edges sharing a degree–two vertex until
the total number of edges in the outer boundary cycle is reduced to k. Figure 3 shows
the example of D44.

D8

D16
D32

D44

Figure 3: The annular 2-complexes Dk.

The combinatorial length of the boundary circuit of An is pn := (5.3n + 3)n/2. For
n ≥ 1, define Bn := Dpn

, which plays the role of a hyperbolic skirt : attach An to Bn by
identifying the boundary of An with the outer boundary circuit of Bn to give the planar
combinatorial 2-disc ∆n. Let Gn be the 1-skeleton of ∆n.
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3 Diameter estimates

We will now show that (Gn)n∈N enjoys the properties listed in Theorem 2. By inspection,
every vertex in Gn and G∗

n has degree at most 6. Every vertex in An is a distance at
most (n − 1) from the boundary, and one checks that the diameter of Bn is at most a
constant times n since the number of concentric rings is O(log pn). Combined with similar
considerations for the dual graphs this shows that there exists C1 for which (1) holds.

For (2) we will use the following inequality from [4] on filling length. (In fact, the
definition of a shelling used in [2, 4] allows a third move, omitted from our the definition
in Section 1, but that move is not needed here and plays no role in the proofs of the
results cited in this article, namely Propositions 3 and 5.)

Proposition 3 (Proposition 3.4, [4]). Suppose (∆, ⋆) is a diagram in which the degree of

each 2-cell is at most λ. If T is a spanning tree in the 1-skeleton of ∆ then

FL(∆, ⋆) ≤ DiamT + 2 λ DiamT ∗ + ℓ(∂∆), (3)

where ℓ(∂∆) denotes the length of the boundary walk of ∆.

We refer the reader to [4] for a detailed proof, but will sketch the idea here. Regard
the vertex of T ∗ outside ∆ as the root r of T ∗. The embedding of T ∗ in the plane defines
a cyclic ordering on its leaves. Define a T ∗-gallery of ∆ to be a subcomplex that is the
union of the closed 2-cells of ∆ that are dual to the vertices lying on a path in T ∗ from r to
a leaf. The idea is that tunnelling along paths of T ∗ from r to successive leaves, following
their cyclic ordering, dictates a shelling (∆i) of ∆ that establishes (3): when traversing
an edge e∗ in such a path shell the edge e dual to e∗ and the face dual to the terminal
vertex of e∗; en route, remove all pendant edges (with leaf vertices 6= ⋆) immediately they
become available. The boundary walks of the diagrams ∆i are then each comprised of a
path in T , trails in the 1-skeleta of two T ∗-galleries of ∆i, and a portion of the boundary
walk of ∆. Thus we get (3).

For the following lemma and subsequent discussion it is convenient to regard Tn as
a disjoint union of its edges; accordingly choose one edge in Tn to include both of its
end-vertices and all others to include exactly one end-vertex.

Lemma 4. Suppose Tn is embedded in a disc, which for convenience we take to be the unit

disc in the complex plane. Suppose H : [0, 1]2 → D
2 is a continuous map (a homotopy)

satisfying H(0, t) = H(1, t) = 1 for all t, and H0(s) = e2πis and H1(s) = 1 for all s,
where Ht denotes the restriction of H to [0, 1] × {t}. Further, assume H([0, 1] × [0, t]) ∩
H([0, 1] × [t, 1]) = H([0, 1] × {t}) for all t. Then Ht meets at least n + 1 edges in Tn for

some t ∈ [0, 1].

Proof. The case n = 0 is immediate. For the induction step, express Tn as the wedge∧
3

i=1
T i

n−1 of three copies of Tn−1 at a vertex v. Obtain T̂ i
n−1 from T i

n by removing a

small open neighbourhood of v. Let ti be such that Hti meets at least n edges of T̂ i
n−1.

Renumbering if necessary, we may assume t1 ≤ t2 ≤ t3. The condition that H([0, 1] ×
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[0, t]) ∩ H([0, 1] × [t, 1]) = H([0, 1] × {t}) for all t, ensures that if t1 ≤ t ≤ t3 and
Ht([0, 1]) ∩ (T 1

n−1 ∪ T 3
n−1) = ∅ then points of Ht1([0, 1]) ∩ (T 1

n−1 ∪ T 3
n−1) are in different

path components than points Ht3([0, 1]) ∩ (T 1
n−1 ∪ T 3

n−1) in D
2

r Ht3([0, 1]), but that is
impossible as T 1

n−1 ∪T 3
n−1 is path connected. We deduce, in particular, that Ht2 intersects

T 1
n−1 ∪ T 3

n−1, and so meets at least n + 1 edges of Tn.

We can now establish (2). Choose any vertex on the boundary of ∆n to serve as the
base vertex ⋆. Envision the subdiagram An of ∆n to be inscribed with Tn as in Figure 2.
The diagrams ∆i

n of a shelling of (∆n, ⋆) are subcomplexes whose boundary walks define
concentric loops ultimately contracting to ⋆. Interpolating suitably between these loops
produces a homotopy in which the boundary walk of ∆n is contracted to the constant
loop at ⋆ through a family of loops Ht. So by Lemma 4 there exists t such that Ht meets
n + 1 edges of Tn and it follows that there exists i such that the boundary walk of ∆i

n

meets n+1 edges of Tn. But any path in the 1-skeleton of ∆n meeting four distinct edges
of Tn has combinatorial length at least n. So the length of the boundary walk of ∆i

n is
at least n⌊n/3⌋. Deduce that FL(∆n, ⋆) ≥ n⌊n/3⌋ and therefore, by Proposition 3, there
exists C2 > 0 such that (2) holds.

4 Two concluding remarks

We note that Proposition 3.3 in [4] exhibits another family of diagrams in which fill-
ing length outgrows 1-skeleton diameter. However, filling length does not outgrow the
diameter of the dual in these examples.

Finally, we mention that our family of diagrams ∆n exhibits the most radical diver-
gence possible between filling length, diameter and dual diameter in the sense of the
following result.

Proposition 5. Given λ > 0, there exists C = C(λ) such that if (∆, ⋆) is a diagram in

which the degree of each 2-cell is at most λ then

FL(∆, ⋆), ≤ C(DiamG)(DiamG∗),

where G is the 1-skeleton of ∆.

This follows from an argument of [2] which we will only briefly outline here. Take a
geodesic spanning tree T in G based at ⋆ – that is, a spanning tree such that for all vertices
v in G, the distance from v to ⋆ in T is the same as in G. Note that DiamT ≤ 2DiamG.
Let the vertex r of G∗ that is outside ∆ be the root of T ∗. By subtrees suspended from a

vertex v in T ∗ we mean the closures of the connected components of T ∗
r{v} that do not

contain r. Describe a vertex as branching when there is more than one subtree suspended
from it. A vertex below v is any vertex of any subtree suspended from v. Define the
weight of a tree to be the number of vertices it contains that have degree at least three.

Consider tunnelling through ∆ along the walk in T ∗ that starts at r, first proceeds to
the nearest leaf or branching vertex (possibly r itself) and then continues according to
the following rules from its current vertex v.
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• If v is a branching vertex then of the as-yet-unentered subtrees suspended from v,
choose one of least weight and proceed to the nearest leaf or branching vertex (6= v)
therein.

• If v is a leaf return to the most recently visited branching vertex attached to which
there remain as-yet-unentered suspended subtrees of T ∗.

The walk is complete when every edge in T ∗ has been traversed. This walk dictates the
following shelling of ∆ (termed logarithmic shelling in [2]): when traversing an edge e∗

for the first time, remove the dual edge e and the face dual to the terminal vertex of e∗,
and immediately any pendant edge (with leaf vertex not ⋆) appears, remove it.

The lengths of the boundary walks of the diagrams encountered in this shelling are at
most a constant (depending on λ) times (Diam T ) log(1+Area∆), where Area ∆ denotes

the number of 2-cells in ∆. As Area ∆ ≤ λDiam G∗

and DiamT ≤ 2DiamG, the result
follows.
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