Geometric notions of space complexity for the word problem

Work with Martin Bridson

Vanderbilt
May 2006

Tim Riley

Filling length as SPACE

Γ a group with finite presentation $\langle\mathcal{A} \mid \mathcal{R}\rangle$ w a word representing 1
$\mathrm{FL}(w)$ is the minimal L such that w can be converted to the empty word ε through words of length at most L by

- applying relators
- freely reducing
- freely expanding.

Filling length function $\mathrm{FL}: \mathbb{N} \rightarrow \mathbb{N}$
$\operatorname{FL}(n)=\max \{\mathrm{FL}(w) \mid w=1$ in Γ and $\ell(w) \leq n\}$

Example

$$
\left\langle a, b \mid a^{-1} b^{-1} a b\right\rangle
$$

$$
\begin{gathered}
b a b a^{-2} b a b^{-3} \\
\downarrow \\
b a b a^{-2} a b b^{-3} \\
\downarrow \\
b a b a^{-1} b^{-1} b^{-1} \\
\downarrow \\
b b^{-1} \\
\downarrow \\
\varepsilon
\end{gathered}
$$

$\operatorname{FL}(n) \simeq n$

Filling length via geometry

For a loop ρ in a simply connected metric space X,
$\operatorname{FL}(\rho)=\inf \left\{\begin{array}{l|l}\exists \exists \text { a based null-homotopy of } \rho \\ \text { through loops of length } \leq L\end{array}\right\}$

$\mathrm{FL}(\ell)=\sup \{\mathrm{FL}(\rho) \mid$ loops ρ of length at most $\ell\}$

The Cayley 2-complex of

$$
\left\langle a_{1}, \ldots, a_{m} \mid r_{1}, \ldots, r_{n}\right\rangle
$$

is the universal cover of

Example

$$
\langle a, b \mid[a, b]\rangle=\mathbb{Z}^{2}
$$

Example

$$
\left\langle a, b \mid b^{-1} a b=a^{2}\right\rangle
$$

Combinatorial null-homotopy moves

Does allowing free null-homotopies change filling length?

I.e. allowing cyclic conjugation
$\mathrm{FFL}=$ Free filling length

Theorem. There is a finitely presented group \mathcal{P} with a family of words w_{n} representing 1 , such that

$$
\ell\left(w_{n}\right) \simeq n
$$

$\operatorname{FFL}\left(w_{n}\right) \simeq n$
$\mathrm{FL}\left(w_{n}\right) \simeq 2^{n}$.

Theorem. There is a closed Riemannian manifold with a family of null-homotopic loops ρ_{n} such that

$$
\begin{aligned}
\ell\left(\rho_{n}\right) & \simeq n \\
\operatorname{FFL}\left(\rho_{n}\right) & \simeq n \\
\operatorname{FL}\left(\rho_{n}\right) & \simeq 2^{n} .
\end{aligned}
$$

Generators: a, b, r, s, t
Relations: $\quad b^{-1} a b a^{-2},[t, a],[r, a t],[r, s],[s, t]$

$$
w_{n}:=\left[s,\left(b^{-n} a^{-1} b^{n}\right) r\left(b^{-n} a b^{n}\right)\right]
$$

Theorem. The filling functions

$F L, F F L, F F F L: \mathbb{N} \rightarrow \mathbb{N}$

 for \mathcal{P} satisfy$$
\begin{aligned}
\operatorname{FL}(n) \simeq \operatorname{FFL}(n) & \simeq 2^{n} \\
\operatorname{FFFL}(n) & \simeq n .
\end{aligned}
$$

FFFL $=$ Free and fragmenting filling length

Open problem.
Does there exist a finite presentation for which $\mathrm{FL}(n) \not \approx \mathrm{FFL}(n)$?

