CANNON-THURSTON MAPS DO NOT ALWAYS EXIST
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AsstracT. We construct a hyperbolic group with a hyperbolic subgrfmrpwvhich inclu-
sion does not induce a continuous map of the boundaries.
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1. INTRODUCTION

Hyperbolic groupsare the finitely generated groups whose Cayley graphs gispiarac-
teristics of negative curvature. Their systematic study imdiated by Gromov in12] and,
mimicking the study of Riemannian manifolds, pays partcalttention to large—scale and
asymptotic geometric features such as boundaries.

One of the many equivalent definitions of tB&@omov boundaryG of an infinite hyper-
bolic groupG with word metricd is as the set of equivalence classes of sequerges(
G such that

(am- an)e = (d(am,€) + d(an, €) — d(am, an))/2 — oo
asm,n — oo, where two such sequenceg)and () are equivalent whera, - bp)e — o
asm,n — oo. It is independent of the choice of finite generating set d&fid and of the
choice of basepoint. Se6][and [14] for surveys.

WhenH is an infinite hyperbolic subgroup &, one can seek to induce a maigd — 9G
from the inclusion map. InZ1] and [23] Mitra (or Mj, as he is now known) asks whether
this is always well-defined, the concern being thidtis defined via the word metric on
H anddG via that onG, and these may ffer. He cites Bonahor¥] for similar questions
and Bonahon{], Floyd [8] and Minsky [L9] for related work on Kleinian groups. The
guestion is also raised by I. Kapovich & Benakl¥] and appears in the problem lis§ [
and [L5]. When the map exists, it is known as the Cannon—Thurston map

The Cannon-Thurston map exists for many families of exasplée most straightfor-
ward is wherH is quasi—convex (that is, undistorted). Cannon & Thurstgéave the first
distorted example: they showed the map exista{f& — 71M whereM is a closed hyper-
bolic 3—-manifold fibering over the circle with fiber a hypelibsurfaceS (and, strikingly,
the Cannon-Thurston map is a group—equivariant spacegfieano curv&! — S?).
Mitra generalized this widely. He showed the Cannon-Tlomrshap exists whel is
an infinite normal subgroup of a hyperbolic groGg21], and he developed a theory of
ending laminations for this context (inspired B#})[to describe it R0]. He also showed
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the Cannon—Thurston map exists whtns one of the infinite vertex— or edge—groups of
a finite graph of group& in which G and all of the vertex— and edge—groups are hyper-
bolic, and all the defining monomorphisms from edge—groap®ttex—groups are quasi—
isometric embedding2p).

Recently, Mj established that Cannon—Thurston maps eaissdrface Kleinian groups
[29) (answering a question of Cannon & Thurston frofhgnd Question 14 from Thurston’s
celebrated 1982 Bulletin AMS pape2q]) and then for arbitrary Kleinian group24
(proving a conjecture of McMullen fromlB]). Mitra’s question can be viewed as ask-
ing whether the natural generalization of these resulthénsetting of Geometric Group
Theory holds. We answer it negatively:

Theorem 1. There are positive words C,1:CC, on ¢, ¢, and Dy, Dy, D13, D12, D21, D22
on dy, dy so that
alblab=C, blcb=C,
G = <a’ 0. €102 1.tz | (ap)igj(ab) = D), G =Dy, 1<i,j<2
is hyperbolic, the subgroup
H = (b,d;,d)
is free of rank3, and there is no Cannon—Thurston map — 9G.

A positiveword is one in which inverses of generators never appear.

At the expense of complicating the constructi@ can be made CAK1), as we will
outline in Remarl®.

ThatH is free is not pertinent to the nonexistence of the Cannouorstbn map. Theoreth

is the starting point for a proof by Matsuda and Ogutv] that for every non—elementary
hyperbolic group there is an embedding in some other hyfiertp@up for which there is
no Cannon-Thurston map. Implications of Theorehave also been explored by Gerasi-
mov and Potyagailo in a recent pap8f §n convergence actions.

Given that Cannon-Thurston maps do not always exist, thetiguearises as to what
bearing subgroup distortion has. Heavy distortion appeab& no obstacle to the map’s
existence: we showed iri] that Cannon—Thurston maps exist for highly distorted free
subgroups of hyperbolic hydra groups; these examples #xthid maximum distortion
known among hyperbolic subgroups of hyperbolic groups. @ssfall distortion, if a
subgroup of a hyperbolic group is subexponentially disrthen the subgroup is quasi—
convex by Proposition 2.6 ofLB] and so the Cannon—Thurston Map exists. The natural
open question, then, (which llya Kapovich asked us) is wéretihere is an exponentially
distorted hyperbolic subgroup of a hyperbolic group forethihe Cannon—-Thurston map
does not exist. It will be apparent from our proof of Theoreirthat the subgroupl < G

is at least doubly—exponentially distorted.

Acknowledgements.We thank llya Kapovich and Hamish Short for comments and-espe
cially for Lemma7, which replaces a more ad hoc argument in an earlier versitmso
article. We are also grateful to an anonymous referee forefaeading, improvements
to our exposition, and insights on the background to Mitpatblem.

1An earlier version of this article claimed that the subgr@iey < G (defined before Lemm&) is such an
example. AlthougldGpcq — G is not well-defined, we realized that the distortion is astemubly exponential,
so Kapovich’s question remains open.
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2. PROOF OF THE THEOREM

Denote the free group on a sty F(S). If S = {sy, ..., S}, write F(S) = F(sy, ..., S)-
If Fis agroupan C F a subset so that the natural ma@X) — F is an isomorphism,
thenX is called afree basidor F andF is said to be dree group of ranicard(X).

We begin by showing that whe@, C;, D; and D;; are chosen suitably, the gro@ of
Theoreml is hyperbolic.

A finite presentation for a group satisfies 16§1) small-cancellation condition when,
after cyclically reducing all the defining relations, thé Seof all their cyclic permutations

and those of their inverses, has the property that every acomprefix between two distinct
ri,r2 € S has length less thahtimes the lengths of each of andr; [16, page 240].

Following Rips R6], we take

2 3 r
C = €102C1C5C1C5 - - - €10,
Ci = adtadPad 3 ad™,

Dj = dudy*did) P d) 3 - - dyd
Dij — dld;("+j)+ld1d;(”+j)+2d1d;(”+j)+3 . dld;("”)”,

wherer is suficiently large that the presentation f@rof Theoreml satisfies theC’(1/6)
condition, and s& is hyperbolic. (AlIC’(1/6) groups admit linear isoperimetric functions
and so are hyperbolid].)

Next we analyze the construction Gfto show (via Lemmag and5 (iv), (v)) thatH is
free of rank 3 for suclt, C;, D; andD;;. Specifically, we will viewG as being built from
the free groug-(ds, do) by HNN-extensions

SupposaB < Aare groups and : B — Ais any injective homomorphism (not necessarily
the subgroup inclusion map). The HNN-extensfop of A with defining homomorphism
¢ andstable letter tis the group presented by

A, = (At|tbt=g(b)forallbe B),

wheret is a new generator. (We may instead presegtby only including the relations
t~1bt = ¢(b) for b in some particular generating set f8r) The groupsB and¢(B) are
calledassociated subgroups the HNN-extension.

Lemma 2 (Britton’s Lemma; e.g.6, 16, 27]). Suppose a hon-empty word w on the alpha-
bet{A {e}} LI {t,t"1} contains no two consecutive letters from.fe} and no subword tt
or t™t. Then w# 1in A,, unless w contains a subwordtbt where be B or tct™* where

c € ¢(B).

In particular, the natural map A- A, is injective, so A can be regarded as a subgroup
of A4 (hence “extension”), and t generates an infinite cyclic swog of A, trivially
intersecting A.

We will need to recognize when a map between free groupsestiag in order to show
that it gives rise to an HNN-extension. To this end, we willniveo be able to recognize
free bases. Nielsen showed that a set of words represerge ddsis for a subgroup of
F(X) when certain small-cancellation conditions are satisfied
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Proposition 3(Nielsen, seel6, pages 6—7])A set U of words on an alphabet X represents
a free basis for a subgroup of(K) if for every \, vo, vs € U*L,

NO. v; # e,
N1. vivo # € = [V1Vo| > |1, |Val,
N2. vivo £ e and yv3 £ € = |V1VoVs3| > |vq| — [Vo| + |V3].

Corollary 4. C,Cy,C; span a rank3 free subgroup of k¢, c;) and Dy, Dy, D11, D1,
D21, D2, span a ranké free subgroup of Fds, d).
(Indeed, NO-N2 are satisfiedUf satisfies the&’(1/2) property.)
Define
Ged = (C1,Cp, i, 0 | ¢idjci = Dy, 1<i,j<2),
Goed = (Gea, b | bleb=Ci, 1<i<2).

Lemma 5. The groups defined above have the following properties.

(i) F(dy,dy) is a subgroup of G.
(i) F(cy,c) is also a subgroup of G and Fcy, ¢2) N F(dy, dp) = {1).
(iif) Gpeg is an HNN-extension of &g with stable letter b and defining homomorphism
¢ : F(c1, C2) = Gpeg mapping ¢+ C;.
(iv) H = (b,d;,d2) < Gpeqis free of rank3.
(v) G of Theoreni is an HNN-extension of g with stable letter a:

G = (Gpwa | @a'ba=bC?, aldja=bDjb™}, 1<j<2).

Proof. (i) By Corollary 4, the mapg: : F(dy,d2) — F(di,d2) given byd; — Dyj is
injective. Sog; defines an HNN-extension &f(d;, d). Calling the stable letter, this
HNN-extension has presentation

Gea = (€1, dy, do | CIldej_ = Dlj, 1<j<2).

By Britton’s Lemma,F(dy, dz) < G¢,g. Similarly, Geq is an HNN-extension o6c,q with
stable letterc, and defining homomorphisgy : F(di, d2) — Gc,q given byd; — Dy;.
Note thatp, has image contained F(ds, d) < G¢,q. Again, - is injective by Corollang.
SoF(dy, d2) < Ge,a < Geg by Britton’s Lemma.

(ii) To show that(c;, c;) is a free subgroup (cy, cz) of Geq trivially intersectingF(dy, dy),
we prove the following claim. For ang > 1, any non-identityd € F(di,d;), and any
integerso, ..., M1, S1,---» S

0\nS1 A1 +~S2 'n ~Sh A+t H
(dcP)eseiey - creyey™ # 1inGeg

wheneverrj,s # O forall 1 < i < n. This, in turn, follows from Britton's Lemma
applied to the extensioB.q (Which has stable letter;) once we shovwdc’l0 and c? are
not in the associated subgroups@fy. As these associated subgroups &(é,, d,) and
F(D21, D22) < F(di,dy), the observation thai:) is an infinite cyclic subgroup 0B g
trivially intersectingF (dy, d2) by Britton’s Lemma completes the proof.

(iii) By Corollary 4, {C1,C,} is a free basis of a subgroup Bf{cy, ¢;) < Gpeg- So the
defining homomorphism : F(c1, ¢2) — Gpeq, G — Cj is injective.
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(iv) By Britton’s Lemma applied to the HNN-extensi@.q of G¢q, any freely reduced
word w on b, dy, d> representing the identity would contain a subwbtdub™ whereu

is a nonempty reduced word @i, d, representing an element of the associated subgroup
F(c1, ¢2) or of the associated subgrouf(c;, ¢,)) < F(cy, ¢2). By (i), this is impossible.
SoH :=(b,dq, dy) is free of rank 3.

(v) The given presentation f@ arises from that in Theorethby rewriting the defining
relations involvinga. We must show thaioC%, bD1b™1, bD,b™1) < Gpq is free of rank 3.

It suffices to show the same of the conjugate subgkbafC, D1, D2) < Gpeg. We do this
by proving that ifis, ...i,_1 # 0 andW;, ..., W; are nontrivial elements of the rank-2 free
groupF (D3, D2) < F(d1, d2) < Gpeg, then

w = (b7XC)ow,(b1C)' - - - W, (b™1C)"

does not represent the identity @ncq. This is achieved by writingv in a way so that
Britton’s Lemma applies.

The relationd1c;b = C; imply that p~1C)¥ € (c1, ¢) b7 (¢4, ), SO:

W € (C1, Co) b7 (Cy, €2y Wi {Cp, 2y b7 (€1, ©2) - -+ Wi {C1, €2) b7 {Cy, C).

If b*! does not appear iw, thenr = 1,ip = i1 = 0, andw = W; does not represent the
identity in Gpcg. SO we may assumteappears. To apply Britton’s Lemma, we must show
thatw has no subword*Y b*! whereY is a word orcy, ¢, dy, d, representing an element
of F(cy, ¢2). Thisis so becaude(cy, ¢;) NF(dy, d2) = {1} by (ii) andWk € F(d1, d2) < Gpeqg
does not represent the identity. O

We will use the following lemma of Mitra to show the absenca&@annon-Thurston map
0H — 0G. We give our own account of this lemma if]

Lemma 6 (Mitra [21, 22]). Suppose H is a hyperbolic subgroup of a hyperbolic group G
and X4 and X are their Cayley graphs with respect to finite generating sétere that for

H is a subset of that for G. (Soy{s a subgraph of ¥.) Let M(N) be the infimal number
such that if2 is a geodesic in X outside the ball of radius N about e inyXthen every
geodesic in ¥ connecting the end—points dlies outside the ball of radius [lN) about e

in Xy. The Cannon—Thurston ma@h — 4G exists if and only if NN) — oo as N— co.

We will apply this toG andH of Theoremil, using the generating sedsb, ¢y, ¢;, di, d>
andb, di, dy, respectively.

The next lemma identifies some geodesics in Cayley graphealf-scancellation groups.
We learnt it from llya Kapovich and Hamish Short. It can beragted from Strebel's
appendix to 11] as we will explain. For a finite presentatigA | R), a wordw on A

is Dehn—reducedf every subworde of w that is a prefix of a cyclic conjugate of some
p € RtL satisfieda| < |p|/2, and isstronglyDehn—reduced ifir] < |p|/6.

Lemma7. If (A| Ryis a C(1/6)-presentation, then every strongly Dehn—reduced word on
A is geodesic. (Indeed, it is the unique geodesic word armlthks unique Dehn-reduced
word for the group element it represents.)

Proof. Supposel andv are freely reduced words which represent the same grougeatem
andu is strongly Dehn-reduced awnds geodesic. In his proof of Proposition 39(i) in his
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appendix to 11], Strebel explains that there is a van Kampen diagtsior uv—! whose 2—
dimensional portions adadder—likedisc—diagrams. (See the figure within Theorem 35.)

Suppose there is a 2—cell i and thatp is the defining relation one reads around its
boundary. That 2—cell’'s boundary cycle is assembled fromn paths: two run along the
boundaries of adjacent 2—cells and have lengths lesgdh&nby theC’(1/6) condition);
one runs along and has length at moft/6 by the strongly Dehn—reduced condition; but
then the final path, which runs alowghas length more thajp|/2 contrary tov being a
geodesic word. (Indeed, if we only requiretb be Dehn-reduced we would get the same
contradiction.) S& has no 2—cells and = v as words. O

Proof of Theoremi.. Recall that

G = <a, b, ¢1,Cp, dy, o a_illbilab =G Elcib =Gi, . >
(ab)~“dj(ab) = Dj, c¢djci =Dy, 1<i,j<2
where
C = C1C01C5C1Cs - - - C1Ch,
Ci = cchedi ey *3 .o ey,
Dj = did) o) k)3 did)
Dy = dydl 0,02 gD 3 g e

We must show that for gficiently larger, G is hyperbolicH = (b, d;, dy) is free of rank
3, and there is no Cannon-Thurston ndép — 0G.

As we observed at the start of this secti@gan be made hyperbolic by choosintarge
enough to maké& satisfyC’(1/6). Britton’s Lemma and Lemm&a(iv), (v) together show
thatH is a rank 3 free subgroup for the saméVe may assume> 17. It remains to show
the Cannon—Thurston map does not exist.

The longest subword di "a "d;a"b" that is a prefix of a cyclic conjugate of a defining
relation or the inverse of a defining relatioraigd;a. Sincer > 17, the length o&1d;a is

a small fraction (less thary®) of the length of the shortest of the relators.i5%a"d; a"b"

is strongly Dehn—-reduced. So, by LemnYa the pathy, it labels, passing through the
identity e as shown in Figur@, is geodesic in the Cayley graph®f

Ficure 1. Paths in the Cayley graph Gfillustrating our proof of Theorert.

We now wish to expreds "a "d;a"b" as a word irdy, d,. To begin, we prove by induction
onnthat

1) ap’ = b"'aby(C)---¢"*C)¢" *(C)
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in G, whereg : F(c1,¢2) — Gpeg, G — Cj is the defining homomorphism of the HNN-
extensiorGycq With stable letteb—see Lemm& (iii). The base case = 1 is the equation

ab = ab. The induction step follows from the relatian'b~tab = C (which rearranges to
ab = bal):

ab™! = (abb" = (baC)b"

b(ab")(b™"Ch")

b(ab")$"(C)

b(b™*abp(C) - -- o™ (C))¢"(C))¢"(C),
where the last equality uses the induction hypothesis-oeftiplying (1) by a"* yields:
) a'b" = (@b aby(C) - - ¢"*(C))¢"*(C)

Another induction then shows thalth” can be written as a positive woudn the alphabet
{ab, c1, co}. Sob™a"dia"b" = u~ld;uin G, which equals a positive word ah, d, since
(ab)~'dj(ab) = Dj andc*djci = Djj in G.

So the endpoints of, are inH, and the geodesit, joining them in the Cayley graph ¢f
(which is a tree) is labelled by a word a@h, d,. The distance (along the path labellgt)
frometo A, in Hisn.

As the distance fromy, to ein the Cayley graph d& is zero and the distance fratp to ein
the Cayley graph ofl is n, there is no Cannon—Thurston maig — 9G by Lemma6. O

3. ReEMARKS

Remark 8. The inclusionH — G factors throughGycq, Which is also hyperbolic as its
presentation is als@’(1/6). So Theoreni implies the absence of at least one Cannon—
Thurston mapH — 9Gpeq O dGpeq — 9G. In fact, more elaborate versions of the
argument given above establish that both fail to exist. AdlN—extension is an example
of a graph of groups, the latter example also shows that thsigisometric embedding
hypothesis in Mitra’s theorem fron2p] is necessary.

Remark 9. With a similar construction, one can obtain a CAIL] groupG with a free
subgroupH with no Cannon-Thurston map. Wise’s modification 29 of the Rips con-
struction P6] is used in P] to construct CAT{1) groups. Each relator is realized on the
boundary of the unions ai = 5 congruent right-angled regular hyperbolic pentagons,
arranged as row houses atop a geodesic segment. Each etigebofindary corresponds

to a generator. The vertices of the boundary are either aggtes or straight angles, but
the base geodesic gives- 1 consecutive straight angles, bounding a segment of length
n- 2. Wise shows that the Gromov link condition is satisfied wtnenstraight segment is

a freely reduced word and when the lengtla24) remainder of the boundary is obtained
from theWise word

C1(C1C2C1C3 - - - €1C;)C2(C2C3C2C4 - - - C2Cr)C3(C3C4 - - - C3Cr) - - - Cr_1(Cr-1Cr)Cr

by chopping it into consecutive length 2 4 segments (one for each defining relator). The
argument works just as well for amy so we taken = 7 and fit the &b)~'dj(ab), a tb'ab,
btcb, andc;ldjci portions of our relators along the straight segment. We fone Wise
word ofc’s and one ofl’'s. To get sificiently many length—18 subwords of the Wise words,
we increase the number gfandd; in the generating set f@. ThenH = (b, dy, d,...) is

a free subgroup of the CA¥() groupG by the same argument as before.
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Remark 10. H hasinfinite heightin G. That is, for alln, there existys, ..., g, € G such

that "L, g~tHg; is infinite andHg;, # Hg; for all i # j. Specifically, takeg; = cil. Then,

if ¢1 : F(di,d2) — F(dy,dp) is the mapd; — Dy for j = 1,2, theng(F(di, d2)) is an
infinite subgroup insidgi‘ngi forl <i <n,andHg; # Hg; forall i # | sincec'i e H

only for k = 0 by Lemmab. Likewise, Gpcq has infinite height inG: instead of taking

g = cil, takeg = (ab)’ and apply the same argument as above. So our examples do not
resolve the question attributed to Swarupg][ if H is a finitely presented subgroup of a
hyperbolic grougs andH hasfinite heightin G, is H quasiconvex irG?
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