
International Journal of Non-Linear Mechanics 43 (2008) 320–327
www.elsevier.com/locate/nlm

Autoparametric quasiperiodic excitation

Si Mohamed Sahb, Geoffrey Recktenwalda, Richard Randa,∗, Mohamed Belhaqb

aDepartment of Theoretical and Applied Mechanics, Cornell University, Ithaca NY, USA
bFaculty of Sciences Aïn Chock, BP 5366 Maârif, Casablanca, Morocco

Received 3 December 2007; received in revised form 10 December 2007; accepted 19 December 2007

Abstract

The dynamics of an autonomous conservative three degree of freedom system which exhibits autoparametric quasiperiodic excitation is
investigated. The system is a generalization of a classical system known as the “particle in the plane”. The system exhibits a motion, the z = 0
mode, whose stability is governed by a linear second order ODE with quasiperiodic coefficients. The behavior of the latter ODE is studied by
using three different methods: numerical integration, harmonic balance and perturbation methods.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Parametric excitation is a phenomenon associated with sys-
tems involving differential equations with periodic coefficients.
The paradigm example is Mathieu’s equation

ẍ + (� + � cos t)x = 0. (1)

Systems with periodic coefficients typically occur in two dif-
ferent ways. On the one hand they occur in non-autonomous
systems which involve periodic forcing. An example is the mo-
tion of a pendulum whose support is periodically forced in a
vertical direction. The presence of an external forcing function
is, however, not required for parametric excitation. A second
class of problems involving parametric excitation involves au-
tonomous systems which exhibit periodic motions. In this case
a study of the stability of the periodic motion leads to a differ-
ential equation with periodic coefficients, a situation referred
to as autoparametric excitation [1].

This type of system may be illustrated by an example which
will be important to us in the present paper. The example is
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called the “particle in the plane” and was first studied by Rosen-
berg and his associates in the 1960s [2–6]. This consists of a
particle of unit mass which is constrained to move in the x–y
plane, and is restrained by two linear springs, each with spring
constant of 1

2 . The anchor points of the two springs are located
on the x-axis at x = 1 and −1. Each of the two springs has
unstretched length a. See Fig. 1.

This autonomous two degree of freedom system exhibits an
exact solution corresponding to a mode of vibration in which
the particle moves along the x-axis:

x = R cos t, y = 0. (2)

In order to determine the stability of this motion, one must first
derive the equations of motion, then substitute x = R cos t +
u, y = 0 + v, where u and v are small deviations from the
motion (2), and then linearize in u and v. The result is two
linear differential equations on u and v. The u equation turns
out to be the simple harmonic oscillator, and cannot produce
instability. The v Equation is [7]

d2v

dt2 +
(

1 − a − R2 cos2 t

1 − R2 cos2 t

)
v = 0. (3)

Here stability is defined by all solutions being bounded. An
equation is said to be unstable if an unbounded solution exists.
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Fig. 1. The particle in the plane consists of a particle of unit mass which is
constrained to move in the x–y plane, and is restrained by two linear springs,
each with spring constant of 1

2 . The anchor points of the two springs are
located on the x-axis at x=1 and −1. Each of the two springs has unstretched
length a.

The present work involves quasiperiodic parametric exci-
tation, that is, systems which involve differential equations
with quasiperiodic coefficients. Here the system which is
comparable to Mathieu’s equation (1) has been called the
quasiperiodic Mathieu equation [8–16]:

ẍ + (� + � cos t + � cos �t)x = 0. (4)

Our goal in this paper is to investigate a system which exhibits
autoparametric quasiperiodic excitation, that is, an autonomous
system which possesses a quasiperiodic motion, the stability
of which leads to a differential equation with quasiperiodic
coefficients.

2. Description of system

The system which we study in this paper has 3 degrees of
freedom and is autonomous. It involves a single particle of unit
mass restrained by four linear springs and is a generalization
of the particle in the plane. Each of the four springs has one
end attached to the particle, and the other end attached to a
frictionless movable anchor which permits free motion in a
direction perpendicular to the length of the spring. The anchors,
respectively, run along the lines x = ±1 and y = ±1 in the
plane z = 0. See Fig. 2. As a result of the frictionless movable
anchors, the y-location of the anchors which run along x = ±1
are both equal to each other and to the y-location of the particle.
Similarly for the x-location of the anchors which run along
y = ±1.

Fig. 2. Three degree of freedom system studied in this paper. A particle of
unit mass is restrained by four linear springs and is a generalization of the
particle in the plane, cf. Fig. 1. Each of the four springs has one end attached
to the particle, and the other end attached to a frictionless movable anchor
which permits free motion in a direction perpendicular to the length of the
spring. The anchors, respectively, run along the lines x = ±1 and y = ±1 in
the plane z = 0.

The springs all have unstretched length a, so that the potential
energy is given by

V (x, y, z) =
kx

(√
z2 + (x + 1)2 − a

)2

2

+
kx

(√
z2 + (1 − x)2 − a

)2

2

+
ky

(√
z2 + (y + 1)2 − a

)2

2

+
ky

(√
z2 + (1 − y)2 − a

)2

2
, (5)

where kx and ky are linear spring constants. The kinetic energy
is given by

T = 1

2

[(
dz

dt

)2

+
(

dy

dt

)2

+
(

dx

dt

)2
]

. (6)

The system has the following three equations of motion:

d2x

dt2 +
w2

x(x + 1)
(√

z2 + (x + 1)2 − a
)

2
√

z2 + (x + 1)2

−
w2

x(1 − x)
(√

z2 + (1 − x)2 − a
)

2
√

z2 + (1 − x)2
= 0, (7)

d2y

dt2 +
w2

y(y + 1)

(√
z2 + (y + 1)2 − a

)

2
√

z2 + (y + 1)2

−
w2

y(1 − y)

(√
z2 + (1 − y)2 − a

)

2
√

z2 + (1 − y)2
= 0, (8)
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d2z

dt2 +
w2

yz

(√
z2+(y+1)2−a

)

2
√

z2+(y+1)2
+

w2
yz

(√
z2+(1−y)2−a

)

2
√

z2+(1−y)2

+
w2

xz
(√

z2+(x+1)2 − a
)

2
√

z2+(x+1)2
+

w2
xz

(√
z2+(1−x)2−a

)
2
√

z2+(1−x)2
= 0,

(9)

where w2
x = 2kx and w2

y = 2ky .
We note that z = 0 is an exact solution to Eqs. (7)–(9) corre-

sponding to the invariant manifold {z= 0, dz/dt = 0}, which is
four dimensional. The motion in this invariant manifold, which
we shall refer to as the “z = 0 mode”, is given by

d2x

dt2 + w2
xx = 0, (10)

d2y

dt2 + w2
yy = 0. (11)

The z = 0 mode thus has the solution:

x = Rx cos(wxt), y = Ry cos(wyt + �), (12)

where � represents the difference in phase between the x and
y motions.

In order to investigate the stability of the z= 0 mode, we set

x = Rx cos(wxt)+u, y = Ry cos(wyt+�)+w, z = 0+v

(13)

and linearize in u, w and v. This turns out to give that u and w
satisfy simple harmonic oscillator equations, and are therefore
stable, whereas v satisfies the following equation:

d2v

dt2 + f (t)v = 0, (14)

where

f (t) = (w2
x + w2

y)x
2y2 − ((1 − a)w2

y + w2
x)x

2 − ((1 − a)w2
x + w2

y)y
2 + (1 − a)(w2

x + w2
y)

(x2 − 1)(y2 − 1)
(15)

in which x and y are given by Eq. (12). For general values of
wx and wy , f (t) is quasiperiodic. In what follows, we take
wx = 1. This is equivalent to stretching time and can be done
without loss of generality in this autonomous system.

3. Numerical integration

In this section we present stability charts for the z=0 mode,
obtained by numerically integrating Eq. (14). In the case that
the ratio wy/wx is irrational, the function f (t) in Eq. (15) will
not be periodic, and Eq. (14) will not be treatable by using
Floquet theory. However, since an irrational number can be
approximated to any order of accuracy by a rational number,
we may obtain an accurate representation of the stability chart
by sampling only points which correspond to rational values of
the ratio wy/wx . With this sampling technique the parametric
forcing function f (t) is periodic allowing us to use Floquet
theory.

The stability of the system is found by creating a fundamen-
tal solution matrix. The differential equation (14) is numeri-
cally integrated for exactly one period of the parametric forcing
function f (t), using two sets of initial conditions:[

�1(0)

�1,t (0)

]
=

[
1
0

]
and

[
�2(0)

�2,t (0)

]
=

[
0
1

]
. (16)

The results are combined into a fundamental solution matrix C
whose eigenvalues determine stability:

C =
[

�1(T ) �2(T )

�1,t (T ) �2,t (T )

]
. (17)

If, for a given point in parameter space, either eigenvalue of C
has absolute value greater than unity, then that point is said to
be unstable (and stable otherwise).

To create Fig. 3 we sampled all frequencies such that
wy/wx = m/n is rational with m and n relatively prime in-
tegers, and where n < 150 and 0 < m/n < 2. In the case that
wx = 1, the period T is given by the expression T = 2�n. The
maximum period sampled is T = 300�. However, portions of
the parameter space were carefully swept with n < 1500 to fill
in gaps left by the method.

We set Rx = e, Ry = e, wx = 1, and � = 0 in Eqs. (12).
Here e is a parameter which measures the amplitude of the x
and y motions. Figs. 3 and 4 show stability charts in the a–wy

parameter plane for e2 = 0.5 and 0.1, respectively.

4. Harmonic balance

In order to obtain an analytical approximation for the transi-
tion curves in Eq. (14), we use a scheme based on Fourier series
known as harmonic balance. This approach was used success-
fully on Eq. (4) by Zounes and Rand [8]. The idea is to look

for solutions along the transition curves in the form

v=
∞∑

n=0

∞∑
m=−∞

Anm cos(nwx+mwy)t+Bnm sin(nwx+mwy)t

(18)

in which we take wx = 1 without loss of generality. The ar-
gument for the above ansatz is made when wy is restricted
to rational values: wy = p/q, where p and q are relatively
prime, positive integers. Note that any irrational number can
be approximated by a rational number to any degree of ac-
curacy. With this restriction, the Eq. (15) becomes Hill’s
equation with frequencies 2wx = 2 and 2wy = 2p/q (since
f (t) in Eq. (15) depends on x2 and y2, cf. Eq. (12)). In this
case f (t) has period T = �q. According to Floquet theory,
any solution v(t) along the transition curves of Eq. (14) has
minimum period 2T or 4T , and hence, can be expanded in
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Fig. 3. Stability chart for z = 0 mode obtained by numerical integration of Eq. (14) for e2 = 0.5. White regions are stable, black regions are unstable.

Fig. 4. Stability chart for z = 0 mode obtained by numerical integration of
Eq. (14) for e2 = 0.1. White regions are stable, black regions are unstable.

a Fourier series:

v = A0 +
∞∑

k=1

Ak cos
k

q
t + Bk sin

k

q
t . (19)

Since p and q are relatively prime, any integer k can be ex-
pressed as a linear combination k=nq+mp. As a result, the set
of integers k can be put into a one-to-one correspondence with
the set of ordered pairs of integers I = (n, m). Ordered pairs
that yield the same integer are identified and thus the Fourier
series (19) can be expressed as follows:

v =
∑
I

Anm cos

(
nq + mp

q
t

)
+ Bnm sin

(
nq + mp

q
t

)

=
∑
I

Anm cos(n + mwy)t + Bnm sin(n + mwy)t , (20)

which is in the form of the ansatz given by Eq. (18).

In practice, approximate results are obtained when the infinite
sums in Eq. (18) are replaced by sums from 0 to N and from
−N to N, respectively. Since the forcing term f (t) in Eq. (14)
is an even function of t, the solution space can be spanned by
an even solution and an odd solution. This permits us to take
first Bnm and then Anm as zero in Eq. (18), thereby reducing
the size of the (truncated) determinant by half. In the former
case, we substitute Eq. (18) with Bnm = 0 into Eq. (14). Using
computer algebra, we perform a trigonometric reduction and
collect terms to give the system of 2N2 +2N +1 simultaneous
equations on the Anm only. For example, in the case of N = 3,
the matrix of coefficients has dimension 25. Fig. 5 shows both
the sine and cosine solutions for N = 3, and for parameters
e2 = 0.5, Rx = e, Ry = e, wx = 1, and � = 0. This figure is
to be compared with Fig. 3 which was obtained by numerical
integration.

Although the expressions for the transition curves in Fig. 3
for N = 3 are too long to give here, we list the following four
transition curves for the case N=1. These are displayed in Fig. 6
for comparison with results obtained by the other methods:

a = − (e2 − 2)(3e2 − 4)w2
y

2(3e2w2
y − 4w2

y + 2e2 − 4)
, (21)

a = − (e2 − 2)(3e2 − 4)

2(2e2w2
y − 4w2

y + 3e2 − 4)
, (22)

a = − (e2 − 4)(e2 − 2)w2
y

2(e2w2
y − 4w2

y + 2e2 − 4)
, (23)

a = − (e2 − 4)(e2 − 2)

2(2e2w2
y − 4w2

y + e2 − 4)
. (24)
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Fig. 5. Transition curves in stability chart for z=0 mode obtained by harmonic
balance with N = 3 for e2 = 0.5. Compare with Fig. 3.

5. Perturbation method

In this section we use a perturbation method to investigate
the stability of the z = 0 mode in the case of 1:1:1 resonance.
We begin by scaling x, y and z in Eqs. (7)–(9):

x = √
ex̂, y = √

eŷ, z = √
eẑ, (25)

where e is a small parameter, and then dropping the hats for
convenience:

d2x

dt2 + w2
xx − a w2

xxz2e + · · · = 0, (26)

d2y

dt2 + w2
yy − aw2

yyz2e + · · · = 0, (27)

d2z

dt2 + (1 − a)(w2
y + w2

x)z

− (2az(w2
xx

2 + w2
yy

2) − a(w2
x + w2

y)z
3)e

2
+ · · · = 0,

(28)

where we have neglected terms of O(e2). Next we choose pa-
rameters to produce a 1:1:1 resonance:

wx = 1, wy = √
1 + ek, a = 1

2 + e�. (29)

Substitution of Eqs. (29) into Eqs. (26)–(28) shows that each
of the oscillators has a linear frequency of unity:

d2x

dt2 + x − z2xe

2
+ · · · = 0, (30)

d2y

dt2 + y + (2k − z2)ye

2
+ · · · = 0, (31)

d2z

dt2 + z + (z3 + (−4� + k − x2 − y2)z)e

2
+ · · · = 0. (32)

Fig. 6. Comparison of stability chart for z = 0 mode obtained by numerical
integration (top) with transition curves (59)–(64) obtained by perturbations
(middle) and transition curves (21)–(24) obtained by harmonic balance with
N = 1 (bottom), all for e2 = 0.1.

Next we apply the two variable expansion perturbation method
[7,17], also known as multiple scales [18], to Eqs. (30)–(32).
We set � = t and 	 = et (slow time) and we expand

x = x0 + ex1 + · · · , y = y0 + ey1 + · · · ,

z = z0 + ez1 + · · · . (33)
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Substitution of Eqs. (33) into Eqs. (30)–(32) and collecting
terms gives the following equations on x0, y0 and z0:

d2x0

d�2 + x0 = 0,
d2y0

d�2 + y0 = 0,
d2z0

d�2 + z0 = 0 (34)

and the following equations on x1, y1 and z1:

2
d2x1

d�2 + 2x1 = −4
d2x0

d	d�
+ z2

0x0, (35)

2
d2y1

d�2 + 2y1 = −4
d2y0

d	d�
+ y0z

2
0 − 2ky0, (36)

2
d2z1

d�2 + 2z1 = −4
d2z0

d	d�
+ z0x

2
0 − z3

0 − (−4� − y2
0 + k)z0.

(37)

We take the solution to Eqs. (34) in the form

x0 = bx sin � + ax cos �, y0 = by sin � + ay cos �,

z0 = bz sin � + az cos �, (38)

where ax , bx , ay , by , az and bz are slowly varying functions of
slow time 	. Substituting (38) into Eqs. (35)–(37) and removing
secular terms, we obtain the following slow flow:

dax

d	
= −3bxb

2
z + 2axazbz + a2

z bx

16
, (39)

dbx

d	
= axb

2
z + 2azbxbz + 3axa

2
z

16
, (40)

day

d	
= −−8byk + 3byb

2
z + 2ayazbz + a2

z by

16
, (41)

dby

d	
= −8ayk + ayb

2
z + 2azbybz + 3aya

2
z

16
, (42)

daz

d	
= −bz(−4k + 16� + 3b2

y + 3b2
x − 3a2

z + a2
y + a2

x) − 3b3
z + 2ayazby + 2axazbx

16
. (43)

dbz

d	
= az(−4k + 16� + b2

y + 3a2
y + 3a2

x) − 3azb
2
z + (2ayby + 2axbx)bz + azb

2
x − 3a3

z

16
. (44)

In order to study the stability of the z = 0 mode, we linearize
Eqs. (39)–(44) in az and bz:

dax

d	
= 0,

dbx

d	
= 0, (45)

day

d	
= byk

2
,

dby

d	
= −ayk

2
, (46)

daz

d	
= bzk

4
− bz� − 3b2

ybz

16
− 3b2

xbz

16
− a2

ybz

16

− a2
xbz

16
− ayazby

8
− axazbx

8
, (47)

dbz

d	
= − azk

4
+ az� + aybybz

8
+ axbxbz

8
+ azb

2
y

16

+ azb
2
x

16
+ 3a2

yaz

16
+ 3a2

xaz

16
. (48)

We take the solution to Eqs. (45)–(46) in the form

ax = √

, bx = 0, ay = √


 cos

(
	k

2

)
,

by = −√

 sin

(
	k

2

)
. (49)

Here we have scaled ax , bx , ay and by to go like
√


 in order
to use 
 as a small parameter in the analysis of Eqs. (47)–(48).
The idea of using perturbations on a slow flow in problems
involving quasiperiodic parametric excitation has been used
in [14]. We substitute Eqs. (49) into Eqs. (47)–(48) and then
differentiate (47) to get a single second order ODE on az. For
convenience in what follows, we replace slow time 	 by slow
time � = k	, with the result:

(1 + h1
)
d2az

d�2 + h2

daz

d�
+ (w2 + h3
 + h4


2 + h5

3)az = 0, (50)

where

w2 =
(

1

4
− �

k

)2

, (51)

h1 = cos � − 3

4k − 16�
, (52)

h2 = sin �

4k − 16�
, (53)

h3 = − (3k + 4�) cos � + 11k − 44�

64k2 , (54)

h4 = (k + 20�) cos � + 17k − 76�

128k2(k − 4�)
, (55)

h5 = −cos(2�) − 20 cos � + 43

1024k2(k − 4�)
. (56)

The period of the forcing terms in Eq. (50) is 2�, and thus
from Floquet theory [7] we know that on the transition surfaces
separating stable solutions from unstable solutions in the �–k–

parameter space, there are periodic solutions with period 2� or
4�. Now when 
=0, Eq. (50) becomes d2az/d�2+w2az=0, so
that the transition curves in the �–k parameter plane correspond
to the condition w2 = n2/4, n = 0, 1, 2, 3, . . ., giving


 = 0 : 1

4
− �

k
= ±n

2
, n = 0, 1, 2, 3, . . . . (57)

For small 
 > 0 we may obtain expressions for the transition
surfaces in the form

� =
(

1

4
± n

2

)
k + �1
 + �2


2 + · · · (58)
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by expanding az in a power series in 
, substituting into Eq. (50)
and choosing the �i coefficients for a periodic solution. The first
few expressions so obtained, together with the corresponding
values of n, are as follows:

� = k

4
− (

√
22 + 22)


96
+ O(
2) (n = 0), (59)

� = k

4
+ (

√
22 − 22)


96
+ O(
2) (n = 0), (60)

� = −k

4
− 3


16
+ O(
2) (n = 1), (61)

� = −k

4
− 5


16
+ O(
2) (n = 1), (62)

� = 3k

4
− 


4
+ O(
2) (n = 1), (63)

� = −3k

4
− 


4
+ O(
2) (n = 2). (64)

In order to compare these results with the z = 0 mode stability
results presented earlier in this paper, we set 
 = e, so that x, y
and z are O(e), cf. Eqs. (25), (38), (49). Then we may substitute
Eqs. (59)–(64) into Eqs. (29) to obtain expressions for wy and
a as functions of e. See Fig. 6 which corresponds to e2 = 0.1.

6. Conclusions

In this paper we have investigated the dynamics of an au-
tonomous conservative three degree of freedom system which
exhibits autoparametric quasiperiodic excitation. The system
exhibits a motion, the z = 0 mode, whose stability is governed
by a linear second order ODE with quasiperiodic coefficients.
We have studied the behavior of the latter ODE by using three
different methods: numerical integration, harmonic balance and
perturbation methods. All three methods give a consistent pic-
ture of how the stability of the z = 0 mode depends on the
parameters of the problem, namely the frequencies of the x
and y motions (as characterized by the ratio wy/wx) and their
amplitudes (assumed equal and represented by e). This may be
seen by comparing Fig. 3, obtained by numerical integration,
with Fig. 5, obtained by harmonic balance. Fig. 6 compares the
results obtained by all three methods.

Figs. 3 and 5 show that the stability chart is composed of
infinitely many small instability regions. This type of struc-
ture has been previously observed in the quasiperiodic Mathieu
equation (4) [8]. Although many of the regions are too small
to show up in Fig. 3, which was obtained by numerical inte-
gration, the method of harmonic balance is able in principle
to reveal infinitely many such regions, in the limit as the trun-
cation N goes to infinity. Each instability region may be asso-
ciated with a distinct resonance between the x and y motions
(10), (11) which force the stability Equation (14)–(15) and the
z equation (9). This may be seen most clearly in the perturba-
tion approach which results in a study of Eq.(50). Here each
instability region is associated with an integer n, as in Eq. (57),
relating a resonance between k, which measures the difference

in frequencies between the x and y motions, and �, which is
related to the frequency of the z equation, cf. Eq. (29).

In the numerical simulations we took the phase angle � be-
tween the x and y motions to be zero, cf. Eq. (12). The reason
for this is that the presence of a non-zero value of � makes
no difference in the stability chart. This has been observed by
numerical integration, and can be explained as follows [19]:
Eq. (14) is of the form

v′′ + F(cos(wxt), cos(wyt + �))v = 0. (65)

We may write this in the form

v′′ + F(cos(p), cos(q))v = 0 where p′ = wx and q ′ = wy .

(66)

The forcing function F(cos(p), cos(q)) may be viewed as liv-
ing on the p–q torus. For irrational values of the ratio wy/wx ,
the flow on the p–q torus is dense, and hence the phase of q
relative to p cannot affect boundedness as t → ∞.
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