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Stability of strongly nonlinear normal modes
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Abstract

It is shown that a transformation of time can allow the periodic solution of a strongly nonlinear oscillator to be written
as a simple cosine function. This enables the stability of strongly nonlinear normal modes in multidegree of freedom sys-
tems to be investigated by standard procedures such as harmonic balance.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This work is concerned with the stability of periodic motions in multidegree of freedom conservative
dynamical systems. As an example, consider the system with kinetic energy T and potential energy V, where
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T ¼ 1

2
_x2 þ 1

2
_y2; ð1Þ

V ¼ 1

2
ðx2 þ x2Þy2 þ 1

4
x4 þ 1

5
x5. ð2Þ
This system is governed by the following equations of motion:
€xþ x3 þ x4 þ xy2 ¼ 0; €y þ x2y þ x2y ¼ 0. ð3Þ
These equations possess an invariant manifold y = 0, on which lies a family of nonlinear normal modes
(NNMs) which satisfy the following equations:
€xþ x3 þ x4 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0. ð4Þ
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Let us suppose that the NNM which satisfies Eq. (4) is written in the form
x ¼ f ðtÞ; ð5Þ
where f(t) is a periodic function, f(t + T) = f(t). In order to investigate the stability of this solution, we set
x ¼ f ðtÞ þ uðtÞ; y ¼ 0þ vðtÞ. ð6Þ
Substituting Eq. (6) into (3) and linearizing in u and v, we obtain
€uþ ð3f 2 þ 4f 3Þu ¼ 0; €vþ x2vþ f 2v ¼ 0. ð7Þ
The first of Eq. (7) determines the stability of the motion (5) in the invariant manifold y = 0, that is, in the x– _x
phase plane. This is well-known to be Liapunov unstable due to phase shear, that is, due to the change in per-
iod associated with a change in amplitude, but is orbitally stable [1]. This effect is well understood and is of no
interest to us here.

We are rather interested in the boundedness of solutions to the second of Eq. (7), the v-equation, which
determines the stability of the invariant manifold y = 0. The NNM (5) will be said to be stable if all solutions
of the v-equation are bounded, and unstable if an unbounded solution exists. The stability will be determined
by two parameters, x and A, and we ask which regions in the x–A parameter plane correspond to stable
motions, and which to unstable motions.

The stability of the v-equation may be investigated by appealing to Floquet theory [2], which states that on
transition curves in the x–A plane separating stable regions from unstable regions, there exists periodic solu-
tions to the v-equation with period T or 2T, where the NNM x = f(t) has period T. This property may be
implemented by writing v in the form of a Fourier series with period 2T (which includes period T motions
as a special case in which the odd coefficients vanish)
v ¼
X1
n¼0

an cos
npt
T
þ bn sin

npt
T

. ð8Þ
Substituting Eq. (8) into the v-equation in (7), trigonometrically simplifying and collecting terms, we obtain an
infinite set of coupled linear algebraic equations on the coefficients an, bn. By truncating this system and requir-
ing the determinant to vanish, we may obtain an analytic approximation for the transition curves.

Of course in order for this standard procedure to work [3], the function f(t) must be expanded in a Fourier
series. Herein lies the problem, and the point of this paper. If the NNM f(t) were to satisfy a simpler ODE than
Eq. (4), for example €xþ x ¼ 0, then f(t) could be trivially written as Acost. Even if f(t) were to satisfy a weakly
nonlinear ODE, such as €xþ xþ x3 ¼ 0, perturbation methods could be used to obtain f(t) in the form of a
truncated Fourier series. However, if the equation governing the NNM is strongly nonlinear, as in the case
of Eq. (4), then the previously described algorithm for determining stability is stymied.

In this work, we provide a method for dealing with such situations. The idea of the method is to transform
time in the original system (3) so that the NNM is given by x = A0 + A1cos2s, where s is transformed time.
Once this simplified representation of the NNM is achieved, the rest of the analysis proceeds as above.

2. Time transformation

For the purposes of clarity of presentation, we will explain the method by applying it to the foregoing
example. Our goal is to transform time from t to s so that the NNM x = f(t) which satisfies Eq. (4) can be
written in the simplified form x = A0 + A1cos2s. We set
dt ¼ dsffiffiffiffiffiffiffiffiffi
gðsÞ

p ; ð9Þ
where g(s) is to be found. Applying the chain rule, we obtain
dx
dt
¼ dx

ds
ds
dt
¼ dx

ds

ffiffiffiffiffiffiffiffiffi
gðsÞ

p
; ð10Þ
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d2x
dt2
¼ d2x

ds2
gðsÞ þ 1

2

dx
ds

dg
ds
; ð11Þ
so that Eq. (4) becomes
x00g þ 1

2
x0g0 þ x3 þ x4 ¼ 0; ð12Þ
where primes represent differentiation with respect to s. We wish to select g(s) such that Eq. (12) has the
solution
xðsÞ ¼ A0 þ A1 cos 2s. ð13Þ
Substituting the latter into Eq. (12), we obtain the following equation on g(s):
�A1 sin 2s g0 � 4A1 cos 2s g þ ðA0 þ A1 cos 2sÞ3 þ ðA0 þ A1 cos 2sÞ4 ¼ 0. ð14Þ
We seek a solution to Eq. (14) in the form
gðsÞ ¼ KðsÞ
sin2 2s

. ð15Þ
Substituting Eq. (15) into Eq. (14), we obtain an expression for K 0(s)
K 0ðsÞ ¼ sin 2s
A1

ððA0 þ A1 cos 2sÞ3 þ ðA0 þ A1 cos 2sÞ4Þ. ð16Þ
Eq. (16) may be easily integrated by using the substitution u = cos2s, giving
KðsÞ ¼ 1

2A2
1

C � 1

4
ðA0 þ A1 cos 2sÞ4 � 1

5
ðA0 þ A1 cos 2sÞ5

� �
; ð17Þ
where C is an arbitrary constant. Combining Eqs. (17) and (15), we obtain an expression for g(s)
gðsÞ ¼ 1

2A2
1 sin2 2s

C � 1

4
ðA0 þ A1 cos 2sÞ4 � 1

5
ðA0 þ A1 cos 2sÞ5

� �
. ð18Þ
Eq. (18) may be written in a more convenient form by using the identity cos22s = 1 � sin22s and collecting
terms
gðsÞ ¼ 1

2A2
1 sin2 2s

C þ q1 þ p1 cos 2sþ sin2 2sðq2 þ p2 cos 2sÞ þ sin4 2sðq3 þ p3 cos 2sÞ
� �

; ð19Þ
where
q1 ¼ �A0A4
1 �

A4
1

4
� 2A3

0A2
1 �

3A2
0A2

1

2
� A5

0

5
� A4

0

4
; ð20Þ

p1 ¼ �
A5

1

5
� 2A2

0A3
1 � A0A3

1 � A4
0A1 � A3

0A1; ð21Þ

q2 ¼ 2A0A4
1 þ

A4
1

2
þ 2A3

0A2
1 þ

3A2
0A2

1

2
; ð22Þ

p2 ¼
2A5

1

5
þ 2A2

0A3
1 þ A0A3

1; ð23Þ

q3 ¼ �A0A4
1 �

A4
1

4
; ð24Þ

p3 ¼ �
A5

1

5
. ð25Þ
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The method involves selecting the arbitrary constant C and the amplitudes A0 and A1 so that there are no sin-
gularities in g(s) due to the vanishing of sin2s in the denominator of Eq. (19). This requires that C = �q1 and
p1 = 0. The latter condition prescribes a relationship between A0 and A1
A4
1 þ 10A2

0A2
1 þ 5A0A2

1 þ 5A4
0 þ 5A3

0 ¼ 0. ð26Þ

Thus we obtain the following expression for g(s):
gðsÞ ¼ 1

2A2
1

q2 þ p2 cos 2sþ sin2 2sðq3 þ p3 cos 2sÞ
� �

ð27Þ
which gives, using Eqs. (22)–(25),
gðsÞ ¼ A0A2
1 þ

A2
1

4
þ A3

0 þ
3A2

0

4
þ A3

1 cosð2sÞ
5

þ A2
0A1 cosð2sÞ þ A0A1 cosð2sÞ

2
� A0A2

1 sin2ð2sÞ
2

� A2
1 sin2ð2sÞ

8
� A3

1 cosð2sÞ sin2ð2sÞ
10

. ð28Þ
This choice of g(s) defines the time transformation via Eq. (9), dt ¼ ds=
ffiffiffiffiffiffiffiffiffi
gðsÞ

p
, which allows us to represent

the NNM solution x = f (t) of Eq. (5) in the form x = A0 + A1cos2s. The initial condition of Eq. (4) requires
that
xð0Þ ¼ A; x0ð0Þ ¼ 0) A ¼ A0 þ A1. ð29Þ
3. Discussion

The idea of this paper is that by transforming time so that the solution to a strongly nonlinear equation
such as Eq. (4) is able to be written in the simplified form x = A0 + A1cos2s, the stability analysis which is
based on the v-equation of Eq. (7) can be handled by standard methods. In the case of the example based
on Eq. (3), the simplified v-equation becomes, transforming time from t to s by using Eq. (11)
v00g þ 1

2
v0g0 þ x2vþ f 2v ¼ 0: ð30Þ
Substituting the expression for g(s) obtained in Eq. (27) and trigonometrically simplifying, we obtain
h1ðsÞv00 þ h2ðsÞv0 þ ðx2 þ h3ðsÞÞv ¼ 0; ð31Þ
where
h1ðsÞ ¼ �
1

8A2
1

ðp3 cos 6sþ 2q3 cos 4s� p3 cos 2s� 4p2 cos 2s� 2q3 � 4q2Þ; ð32Þ

h2ðsÞ ¼
1

8A2
1

ð3p3 sin 6sþ 4q3 sin 4s� p3 sin 2s� 4p2 sin 2sÞ; ð33Þ

h3ðsÞ ¼
A2

1 cos 4s
2

þ 2A0A1 cos 2sþ A2
1

2
þ A2

0. ð34Þ
Eq. (31) may be described as a generalized Ince equation [4]. Since the period in time s of the variable coef-
ficients is T = p, Floquet theory tells us that we may look for transition curves by seeking a periodic solution
of period p or 2p. Using Eq. (8), this involves writing
v ¼
X1
n¼0

an cos nsþ bn sin ns. ð35Þ
Substituting Eq. (35) into Eq. (31) and collecting terms (‘‘the method of harmonic balance’’) we obtain an infi-
nite Hill’s determinant which relates x, A0 and A1. We omit the details of this procedure here since it is well-
known [2,3]. The resulting equation, together with the relations (26) and (29) may be used to obtain stability
transition curves in the A–x plane.
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4. Conclusion

The method presented in this paper for studying the stability of a strongly nonlinear NNM applies to the
general class of problems in which the NNM is given by the ODE:
€xþ F ðxÞ ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0; ð36Þ

where F(x) is an analytic function. For such an equation, the function g(s) in the time transformation given by
Eq. (9) is able to be chosen so that the periodic solutions to Eq. (36) can be written in the form of Eq. (13),
x = A0 + A1cos2s.

We note that in the important special case that F(x) = �F(�x), that is when F(x) is an odd function, the
foregoing procedure will produce periodic functions of the form x = Acos2s. For example if the x4 term is
omitted in Eq. (4), then the condition p1 = 0, which was required to remove the singularity from g(s) in
Eq. (19), will be satisfied by taking A0 = 0. This can be seen from Eq. (21) by omitting the terms of the fifth
power, which come from the x4 term in Eq. (4). Setting A0 = 0 and omitting cubic terms in Eq. (28), we are left
with the result that the strongly NNM defined by
€xþ x3 ¼ 0; xð0Þ ¼ A; _xð0Þ ¼ 0 ð37Þ

can be written in the form x = Acos2s by transforming time as follows:
dt ¼ dsffiffiffiffiffiffiffiffiffi
gðsÞ

p ; gðsÞ ¼ A2

4
� A2 sin2ð2sÞ

8
: ð38Þ
This result can be checked by using the elliptic integral solution of Eq. (37):
x ¼ A cnðAt; kÞ; ð39Þ

where the modulus k ¼ 1=

ffiffiffi
2
p

[5]. Now it is well-known that the elliptic function cn can be transformed to a
cosine by stretching its argument [6]:
dv ¼ duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2 sin2 u

p ) cnðv; kÞ ¼ cos u ð40Þ
Taking v = At and u = 2s in Eq. (40) gives Eq. (38).
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