
224

Computational Linguistics Volume 28, Number 2

Efficient Processing with Constraint-Logic Grammars Using
Grammar Compilation

Guido Minnen
(Motorola Labs)

Stanford: CSLI Publications (Stanford
monographs in linguistics), 2001,
viii+255 pp; distributed by University
of Chicago Press; hardbound, ISBN
1-57586-305-7, $55.00, £35.00;
paperbound, ISBN 0-57586-306-5,
$20.00, £13.00

Reviewed by
Suresh Manandhar
University of York

1. Book Content

This monograph should be of interest to researchers working on building practical
and efficient methods for processing highly abstract declarative constraint-based gram-
mars, primarily head-driven phrase structure grammar (HPSG) (Pollard and Sag 1994).
The work should also be of interest to researchers in the logic-programming commu-
nity. The monograph is accessible to anyone with a background in logic programming.
Background in grammar formalisms or HPSG is not essential to follow the monograph.
Minnen has done a commendable job in making the monograph relatively easy to fol-
low by using numerous well-explained examples. A number of typographic errors in
the example programs, however, and a crucial missing figure (Figure 4.17) make the
reading somewhat more difficult than it need have been.

Declarative constraint-based grammars are notorious for being highly inefficient
from a processing point of view. Minnen’s techniques, several of which are explored
in the monograph, automatically transform the input grammar into a more specialized
grammar that efficiently realizes the user’s goal. The techniques can be viewed as per-
forming equivalence transformations on the input logic program to derive a logic pro-
gram that is more efficient with respect to the input goal. These transformations range
from simple strategies such as literal rearrangement to more complex ones such as build-
ing recursion reversal and magic templates. Although most of these techniques are closely
related to work by other researchers (Strzalkowski 1994, Ramakrishnan 1991), Minnen
has extended them to make them suitable for dealing with feature-based grammars.

The monograph is divided into three parts: top-down control, bottom-up control,
and lexical rules. Whereas the top-down and bottom-up control chapters primarily
deal with grammar rule compilation, the lexical-rules chapter deals with methods for
processing lexical rules.

Central to the extraction of control information are two notions:

• the adornment of a literal, which identifies those arguments in a literal that
are bound.

• the degree of nondeterminism (DoN) of a literal, which is the number of
alternatives or choice points available when evaluating the literal.

225

Book Reviews

Given a user-specified goal and a user-specified global DoN, Minnen’s grammar com-
pilation procedures attempt to transform the grammar nondeterministically into an
equivalent grammar until the transformed grammar meets the global DoN require-
ment.

Minnen’s method can be understood generally in terms of two mutually recursive
methods:

• Adornment of a goal is used to perform a static abstract interpretation of
the program to determine the DoN of each literal.

• The information gained from abstract interpretation is employed to
perform a program transformation.

Minnen couples program transformation with relatively sophisticated tabulation tech-
niques to store partial solutions and hence minimize the cost of processing recursive
goals with shared subgoals. His tabulation method stores failed goals, successful goals,
and currently “opened” goals.

Chapter 3 describes literal rearrangement, in which the literals of a clause are re-
arranged to make the goal more deterministic. Literal rearrangement employs adorn-
ment information specified in the user goal to determine the best literal rearrangement
to achieve the specified DoN. Literal rearrangement, although fairly simple in princi-
ple, requires a recursive search through the clauses of each literal and hence can be
costly. Tabulation becomes essential here. In addition, Minnen describes a local heuris-
tic that chooses the literal with the most arguments (or feature paths, in the case of
constraint-based grammars) instantiated to minimize the cost of this search. A simple
iterative deepening search over the literal rearrangement procedure starting with DoN
= 1 finds the literal rearrangement program transformation with the smallest possible
DoN.

When information from two literals is simultaneously required to successfully
constrain the processing task, such as in certain treatments of German partial verb
phrase topicalization (Example (1)), then literal rearrangement alone is insufficient. In
fact, in such cases, Minnen states that coroutining or parallel processing of literals is
required. He then goes on to show that coroutining can be simulated by unfolding the
literals and applying literal transformation to the resultant clause.

(1) [Anna lieben]i wird i Karl.

The second problem that literal rearrangement cannot solve is left recursion, since
in a grammar such as the one shown in Figure 1, described by Minnen (p. 72), it is
not the literal order that is problematic but that the base case needs to be processed as
early as possible. Chapter 4 explores techniques for automatically detecting when such
a building recursion reversal (BRR) transformation can be applied and describes methods
for implementing it correctly. This type of transformation is more involved than the
simpler literal rearrangement transformation of the previous chapter, as it involves
analyzing argument instantiation patterns called argument sequences. For example, in
the program in Figure 1, one possible argument sequence (if we trace the second
argument of vp/4) is the sequence <Comps,[Comp|Comps]> (given in simplified form
here). Roughly speaking, a building recursion reversal changes the order of argument
sequences from a sequence such as <Comps,[Comp|Comps]>, which builds structure, to
the reversed sequence <[Comp|Comps],Comps>, which consumes structure.

Part 2 covers bottom-up processing using magic transformations, which transform
the original program by adding an additional literal, known as a magic rule, to the

226

Computational Linguistics Volume 28, Number 2

vp(Subj, Comps, VSem, P0, P):-
vp(Subj, [Comp|Comps], VSem, P0, P1),
np(Comp, P1, P0).

vp(Subj, Comps, VSem, P0, P):-
v(Subj, Comps, VSem, P0, P).

v(Subj, [Obj,IObj], bring(Subj,IObj,Obj),[bring|P],P).

np(john, [john|P], P).
np(flowers, [flowers|P], P).
np(mary, [mary|P], P).

Figure 1
Example program from Minnen (p. 86).

start of the right-hand side of each clause. In the example, magic transformation of
the predicate vp/4 of the program shown in Figure 1 with respect to the goal shown
in Figure 2 would result in the clauses shown in Figure 3. The magic rule magic_vp/4

acts as a guard by instantiating variables and filters out subgoals that cannot be part
of the main goal. In a naive bottom-up strategy, all facts are used to deduce the goal.
Naive bottom-up processing is expensive in terms of both space and time. The magic
rule provides a top-down filtering component and hence makes an otherwise purely
data-driven control more goal driven. Minnen explores both the Earley deduction
strategy and an improved seminaive bottom-up processing strategy and concludes
that the two are very similar, with the semi-naive strategy being slightly better in
terms of space requirements. He concedes, however, that to ensure termination, both
a subsumption check and an abstraction function are necessary. Subsumption checks
are computationally expensive, and abstraction functions have to be user specified,
which is a big disadvantage.

The final part of the monograph deals with the treatment of HPSG lexical rules.
This work builds upon work reported by Meurers and Minnen (1997). The nice part
is that, in Minnen’s setup, lexical rules can be viewed as definite clauses, so that
techniques from the previous chapters directly apply to lexical rules. As in Meurers
and Minnen (1997), lexical rule interaction (through which the output of a lexical
rule can be the input of another lexical rule) is modeled by means of a finite-state
automaton, computed off-line, that precompiles all the possible interactions between
lexical rules. Minnen shows that nondeterminism in lexical rule expansion can be
minimized by combining partial unfolding with lexical rule interaction. In this way, a
large number of choice points that lead to failure can be eliminated at compile time.

2. Final Analysis

Minnen’s monograph provides a refreshing entry point for someone wanting to pur-
sue a research program in efficient implementation of constraint-based grammars.
Minnen’s work complements work on compilation techniques for typed-feature hi-

vp(Subj,Comps,bring(john,flowers,mary),P0,P1)

Figure 2
User goal.

227

Book Reviews

vp(Subj, Comps, VSem, P0, P):-
magic_vp(Subj,Comps,VSem, P0, P1),
vp(Subj, [Comp|Comps], VSem, P0, P1),
np(Comp, P1, P0).

vp(Subj, Comps, VSem, P0, P):-
magic_vp(Subj,Comps,VSem, P0, P1),
v(Subj, Comps, VSem, P0, P).

magic_vp(Subj,Comps,bring(john,flowers,mary), P0, P1).

Figure 3
Application of magic transformation to vp/4 from Figure 1.

erarchies (cf. Fall 1996, Wintner and Francez 1995). Coupling Minnen’s techniques
with compilation methods for typed-feature hierarchies should provide the necessary
mechanisms for efficient implementation of large HPSG grammars.

A fair amount of work still remains: For an automated grammar-compilation sys-
tem, it is essential that as much of the control information be extracted automatically as
possible. Minnen’s work, however, falls short of achieving this objective. His top-down
processing strategy employing literal transformation and BRR transformation comes
close to being a fully automated strategy, but I suspect that space requirements from
tabulation becomes a factor, and hence (heuristic) techniques for making tabulation
decisions need to be explored before the approach can be made practical. Somewhat
surprisingly, Minnen does not explore the behavior of other variations on the basic
top-down strategy, such as deterministic closure. It was not clear to me why the BRR
transformation could not be used along with top-down control.

To ensure termination, Minnen’s bottom-up control requires additional user-
supplied control information in the form of parse types and delay patterns, which is not
very desirable. Either automated generation of such control information or methods to
eliminate it are needed. Although it is clear that Minnen’s transformation techniques
apply to typed-feature-structure grammars, there are hardly any examples of this in
the monograph. Results of evaluation on a realistic grammar are only glossed over or
missing, making it impossible to assess performance on large HPSG grammars such
as the LinGo grammar (Copestake and Flickinger 2000).

References
Copestake, Ann and Dan Flickinger. 2000.

An open-source grammar development
environment and broad-coverage English
grammar using HPSG. In Proceedings of the
Second Linguistic Resources and Evaluation
Conference, Athens, Greece, pages 591–600.

Fall, Andrew. 1996. Reasoning with
Taxonomies. Ph.D. dissertation, Department
of Computer Science, Simon Fraser
University, July 1996.

Meurers, Detmar and Guido Minnen. 1997.
A computational treatment of lexical rules
in HPSG as covariation in lexical entries.
Computational Linguistics, 23(4):543–568.

Pollard, Carl and Ivan Andrew Sag. 1994.

Head-Driven Phrase Structure Grammar.
Chicago: University of Chicago Press and
Stanford: CSLI Publications.

Ramakrishnan, Raghu. 1991. Magic
templates: A spellbinding approach to
logic programs. Journal of Logic
Programming, 11:189–216.

Strzalkowski, Tomek, editor. 1994. Reversible
Grammar in Natural Language Processing.
Kluwer Academic.

Wintner, Shuly and Nissim Francez. 1995.
An abstract machine for typed feature
structures. In Proceedings of the Fifth
Workshop on Natural Language
Understanding and Logic Programming,
Lisbon, pages 205–220.

228

Computational Linguistics Volume 28, Number 2

Suresh Manandhar is a lecturer in Computer Science at the University of York. He has worked
on the implementation and formalization of constraint-based grammars. His published work
includes papers on constraint logics and efficient compilation methods for constraint-based
grammars, unsupervised learning of categorial grammars, learning of WordNet relations, and
applications of inductive logic programming to natural language processing. Manandhar’s ad-
dress is: Department of Computer Science, University of York, Heslington YO1 5DD, York, U.K.;
e-mail: suresh@cs.york.ac.uk.

