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1. Introduction

The dynamics of a conservative system like the unforced, undamped Duffing oscillator,
€xþ x� x3 ¼ 0 ð1Þ
involves a relationship between the amplitude of vibration R of a typical periodic motion and its period or frequency x. This
relation, when plotted as a curve in the x–R plane, is called a backbone curve (see Fig. 1). Note that the backbone curve for
Eq. (1) is bent to the right for the upper sign (hardening Duffing oscillator) and to the left for the lower sign (softening Duf-
fing oscillator). This behavior is well-known to cause hysteresis and jump phenomena in the forced equation (see, for exam-
ple, [1,2] or [3]).

There may be some situations where the jump phenomenon is undesirable. This leads us to the question of designing a
differential equation which is similar to the Duffing equation (1) in that it is conservative, but for which the backbone curve
is a straight vertical line in the x–R plane, as shown in Fig. 1.

In what follows we offer an example of such a system and discuss some related oscillators.

2. Derivation

We propose to focus our investigation on equations of the form:
€xþ xþ x _x2 þ f ðxÞ ¼ 0 ð2Þ
where f ðxÞ is odd and strictly nonlinear in x:
f ðxÞ ¼ a3x3 þ a5x5 þ a7x7 þ � � � ð3Þ
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Fig. 1. Numerically obtained backbone curves of the Duffing oscillator (1) (dotted lines) and a straight-line backbone curve (solid line).
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We ask how can we define the coefficients ai in f ðxÞ such that Eq. (2) will exhibit a straight-line backbone curve, and thus
when forced and possibly damped, will not exhibit jumps.

To begin with, we note that Eq. (2) is conservative and may be derived using Lagrange’s equation. We take the Lagrangian
to be of the form
L ¼ expðx2Þ 1
2

_x2 � gðxÞ
� �

ð4Þ
where g(x) is to be determined. Lagrange’s equation becomes:
€xþ x _x2 þ dgðxÞ
dx
þ 2xgðxÞ ¼ 0 ð5Þ
Comparing Eqs. (2), (3), (5) we see that g(x) must satisfy the equation:
dgðxÞ
dx
þ 2xgðxÞ ¼ xþ a3x3 þ a5x5 þ a7x7 þ � � � ð6Þ
This may be solved for g(x) by taking g(x) in the form of a power series with even powered terms:
gðxÞ ¼ b2x2 þ b4x4 þ b6x6 þ � � � ð7Þ
Substitution of (7) into (6) leads to expressions for the bi coefficients, the first few of which are:
b2 ¼
1
2
; b4 ¼

a3 � 1
4

; b6 ¼
2a5 � a3 þ 1

12
; . . . ð8Þ
Thus the Lagrangian (4) produces the differential equation of motion (2) which exhibits the first integral
expðx2Þ 1
2

_x2 þ gðxÞ
� �

¼ constant ð9Þ
3. Straight-line backbone curve

We set x ¼
ffiffiffi
�
p

~x in Eqs. (2) and (3) and drop the tilde for convenience, giving:
€xþ xþ �x _x2 þ �a3x3 þ �2a5x5 þ �3a7x7 þ � � � ¼ 0 ð10Þ
In order to obtain an approximate solution to Eq. (10), we expand x in a power series in �:
x ¼ x0 þ �x1 þ �2x2 þ � � � ð11Þ
Note that since we are after a straight-line backbone curve, there is no need to expand frequency in a power series in � as is
usual in Lindstedt’s method [3]. Substituting (11) into (10) and collecting terms we get a sequence of equations of which the
first few are given by:
€x0 þ x0 ¼ 0 ð12Þ
€x1 þ x1 ¼ �x0 _x2

0 � a3x3
0 ð13Þ

€x2 þ x2 ¼ �2x0 _x0 _x1 � _x2
0x1 � 3a3x2

0x1 � a5x5
0 ð14Þ
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We take the solution to Eq. (12) to be
Fig. 2.
subscri
x0 ¼ R cos t ð15Þ
whereupon (13) becomes, after some trig reduction:
€x1 þ x1 ¼
a3 � 1

4
R3 cos 3t þ 3a3 þ 1

4
R3 cos t ð16Þ
We take a3 ¼ �1=3 to remove resonance terms, and obtain
€x1 þ x1 ¼ �
1
3

R3 cos 3t ð17Þ
which gives the particular solution:
x1 ¼ �
1

24
R3 cos 3t ð18Þ
Substituting (15, 18) into (14) gives
€x2 þ x2 ¼
15a5 � 1

24
R5 cos t þ NRT ð19Þ
where NRT stands for non-resonant terms. For no resonance, we choose a5 ¼ 1=15. Proceeding in this way, we obtain the
following values for the coefficients ai in Eq. (3):
a3 ¼ �1=3 ð20Þ
a5 ¼ 1=15 ¼ 1=ð3 � 5Þ ð21Þ
a7 ¼ �1=105 ¼ �1=ð3 � 5 � 7Þ ð22Þ
a9 ¼ 1=945 ¼ 1=ð33 � 5 � 7Þ ð23Þ
a11 ¼ �1=10395 ¼ �1=ð33 � 5 � 7 � 11Þ ð24Þ
a13 ¼ 1=135135 ¼ 1=ð33 � 5 � 7 � 11 � 13Þ ð25Þ
a15 ¼ �1=2027025 ¼ �1=ð34 � 52 � 7 � 11 � 13Þ ð26Þ
a17 ¼ 1=34459425 ¼ 1=ð34 � 52 � 7 � 11 � 13 � 17Þ ð27Þ
Now it is a remarkable fact that the typical term in the foregoing list of coefficients may be written in the following com-
pact form:
a2nþ1 ¼
ð�1Þn

ð2nþ 1Þ!! ð28Þ
Thus the straight-line backbone differential equations (2) and (3) may be written:
€xþ xþ x _x2 þ
X1
n¼1

ð�1Þnx2nþ1

ð2nþ 1Þ!! ¼ 0 ð29Þ
or absorbing the x term into the sum, cf. Eqs. (5) and (6),
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€xþ x _x2 þ
X1
n¼0

ð�1Þnx2nþ1

ð2nþ 1Þ!! ¼ 0 ð30Þ
In order to check this analytical result, Eq. (30) was solved numerically and the frequency was extracted from the time
response for different values of the initial amplitude R. This was done for a different number of odd-powered polynomial
terms in the sum from Eq. (30). The backbone curves of the corresponding oscillators (Oj) are shown in Fig. 2, where the sub-
script j denotes the highest power included into the sum. Thus, the oscillator O5 has the backbone of the softening type. Addi-
tional terms change the way how the backbone curve is bent, alternating it between hardening and softening, making it be
straighter for higher amplitudes. The oscillator O15 has a backbone curve that is straight on the region of R considered. The
backbone curve of the oscillators with higher powers of nonlinearity remains straight on that region, too.

4. Closed form solution

It is another remarkable fact that the sum in Eq. (30) can be written in the following closed form:
X1
n¼0

ð�1Þnx2nþ1

ð2nþ 1Þ!! ¼
ffiffiffiffi
p
2

r
e�

x2
2 erfi

xffiffiffi
2
p
� �

ð31Þ
where erfi denotes the ‘‘imaginary error function’’ defined as [4]
erfiðzÞ ¼ �ierf izð Þ ð32Þ
where erf represents the error function [4,5],
erf ðzÞ ¼ 2ffiffiffiffi
p
p

Z z

0
e�t2

dt ð33Þ
We note that erfiðzÞ satisfies the equation [4]:
d
dz

erfiðzÞ ¼ 2ffiffiffiffi
p
p exp z2 ð34Þ
Thus starting from a local perturbation analysis we have been able to obtain an expression for the straight-line backbone
differential equation which is valid for all x, namely
€xþ x _x2 þ
ffiffiffiffi
p
2

r
e�

x2
2 erfi

xffiffiffi
2
p
� �

¼ 0 ð35Þ
The terms ai obtained by use of the perturbation series (11) were derived with the requirement that the frequency of
oscillations be unity, this being equivalent to requiring that the period of oscillations be 2p. Because of the local nature
of such a procedure, results may be expected to be valid only for small amplitudes of vibration. Since we were able to
sum the series in closed form, and since it is easy to show using the ratio test that the resulting series converges for all x,
it should be possible to show directly the straight-line backbone property, i.e., that all motions of Eq. (35) have period
2p, regardless of amplitude.

From Eq. (9) with the initial condition xð0Þ ¼ R; _xð0Þ ¼ 0, we obtain
expðx2Þ 1
2

_x2 þ gðxÞ
� �

¼ expðR2ÞgðRÞ ð36Þ
We may use this equation to compute the period of oscillation once we know g(x). From Eqs. (5), (6) and (35), we have
dgðxÞ
dx
þ 2xgðxÞ ¼

ffiffiffiffi
p
2

r
e�

x2
2 erfi

xffiffiffi
2
p
� �

ð37Þ
Multiplying by expðx2Þ, an integrating factor, we obtain
d
dx

ex2
gðxÞ

� �
¼

ffiffiffiffi
p
2

r
e

x2
2 erfi

xffiffiffi
2
p
� �

ð38Þ
Now from Eq. (34) we have
d
dx

erfi2 xffiffiffi
2
p
� �

¼ 2

ffiffiffiffi
2
p

r
e

x2
2 erfi

xffiffiffi
2
p
� �

ð39Þ
Comparison of Eqs. (38) and (39) gives that we may take g(x) as
gðxÞ ¼ p
4

e�x2
erfi2 xffiffiffi

2
p
� �

ð40Þ
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Having found g(x), we may now return to Eq. (36), which may be solved for _x, leading to the following expression for per-
iod of oscillation T:
Fig. 3.
(solid li
T ¼ 4
Z R

0

dx
_xj j ¼ 4

Z R

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2gðxÞ þ 2 expðR2 � x2ÞgðRÞ

q ð41Þ
Substitution of Eq. (40) in (41) gives
T ¼ 4

ffiffiffiffi
2
p

r Z R

0

expðx2=2Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
erfi2ðR=

ffiffiffi
2
p
Þ � erfi2ðx=

ffiffiffi
2
p
Þ

q ð42Þ
Careful differentiation gives the result that
d
dx

arctan
erfiðx=

ffiffiffi
2
p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

erfi2ðR=
ffiffiffi
2
p
Þ � erfi2ðx=

ffiffiffi
2
p
Þ

q ¼
ffiffiffiffi
2
p

r
expðx2=2Þdxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

erfi2ðR=
ffiffiffi
2
p
Þ � erfi2ðx=

ffiffiffi
2
p
Þ

q ; ð43Þ
whereupon we have
T ¼ 4 arctan
erfiðx=

ffiffiffi
2
p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

erfi2ðR=
ffiffiffi
2
p
Þ � erfi2ðx=

ffiffiffi
2
p
Þ

q
�������
R

0

¼ 4
p
2
¼ 2p: ð44Þ
So, the period of oscillations is 2p.
5. Restoring force

There are two ways of approaching the concept of restoring force for the foregoing oscillator. On the one hand we may
consider the Lagrangian (4) in which the potential energy is given by V ¼ expðx2ÞgðxÞ, where g(x) is defined by Eq. (40), which
gives
V ¼ p
4

erfi2 xffiffiffi
2
p
� �

ð45Þ
The potential energy V is plotted as a solid line in Fig. 3(a). In this case the force that corresponds to it is F1 ¼ �@V=@x. Omit-
ting the minus sign, we can recognize that the restoring force–displacement law is given by the right-hand side of Eq. (38),
which is shown as a solid line in Fig. 3(b). For comparison, these same figures contain plots of the potential energy V ¼ x2=2
and restoring force x of an harmonic oscillator which has the same period 2p. Note that both the nonlinear oscillator under
consideration and the corresponding harmonic oscillator have a single-well potential. An example of a mechanical system
that mimics this behavior is a particle whose mass changes exponentially with its position, and which moves along a fixed
smooth horizontal surface, being connected to the spring whose potential energy and the force–displacement law corre-
spond to those given in Fig. 3.

Another approach to treating the restoring force is to take the nonlinear oscillator as being given in the form (35). In this
case we may identify the restoring force as F2, its value being given by the right hand side of (31). This force–displacement
law is plotted in Fig. 4. It is seen that F2 has a limited codomain, with a maximum at x� � 1:307, for which
F2 x�ð Þ ¼ 1=x� � 0:765. As x further increases, F2 approaches zero monotonically.
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6. Related oscillators

The oscillator given by Eqs. (2) and (3) may be generalized by including even powered terms in the expansion for f ðxÞ:
€xþ xþ a0x _x2 þ a2x2 þ a3x3 þ a4x4 þ a5x5 þ � � � ¼ 0 ð46Þ
In this case we may simplify the a0 coefficient by stretching x. We set x ¼ ly and obtain
€yþ yþ a0l2y _y2 þ a2ly2 þ a3l2y3 þ � � � ¼ 0 ð47Þ
Thus by choosing l2 ¼ 1=ja0j we may make the coefficient of the y _y2 term equal to 1 or to �1, i.e. to sgna0.
Returning to (46), we prepare it for perturbation treatment by setting x ¼ �~x:
€xþ xþ a0�2x _x2 þ a2�x2 þ a3�2x3 þ a4�3x4 þ � � � ¼ 0 ð48Þ
where we have dropped the tilde for convenience. Proceeding as before, requiring the solution to have frequency x = 1, col-
lecting terms, solving equations and removing resonances, we obtain:
9a3 ¼ 10a2
2 � 3a0 ð49Þ

135a5 ¼ 9a2
0 þ 63a2

2a0 þ 378a2a4 � 280a4
2 ð50Þ

14175a7 ¼ �135a3
0 þ 192a2

2a2
0 þ 11934a2a4a0 � 40880a4

2a0 þ 48600a2a6 þ 20412a2
4 � 186480a3

2a4 þ 148400a6
2 ð51Þ

1148175a9 ¼ 1215a4
0 þ 6993a2

2a3
0 þ 73386a2a4a2

0 � 1216755a4
2a2

0 þ 886950a2a6a0 þ 500823a2
4a0

� 15790140a3
2a4a0 þ 29912400a6

2a0 þ 4677750a2a8 þ 3608550a4a6 � 24057000a3
2a6

� 29189160a2
2a2

4 þ 131392800a5
2a4 � 93940000a8

2 ð52Þ

442047375a11 ¼ �42525a5
0 � 435024a2

2a4
0 þ 2671542a2a4a3

0 � 112405293a4
2a3

0 þ 38321100a2a6a2
0

þ 17272926a2
4a2

0 � 2156954184a3
2a4a2

0 þ 8833359150a6
2a2

0 þ 314940150a2a8a0

þ 388520550a4a6a0 � 7348433400a3
2a6a0 � 10286259984a2

2a2
4a0 þ 97229424600a5

2a4a0

� 133948183600a8
2a0 þ 2089678500a2a10 þ 1532430900a4a8 � 14189175000a3

2a8

þ 703667250a2
6 � 31086455400a2

2a4a6 þ 97459362000a5
2a6 � 8459018568a2a3

4

þ 188659270800a4
2a2

4 � 586687701600a7
2a4 þ 379443064000a10

2 ð53Þ
We now discuss a number of special cases of Eq. (46).

6.1. Eq. (46) with a0 ¼ 0

In this case the formulas (49)–(53) show that the coefficients may be chosen so that the resulting equation has a straight-
line backbone curve. The first few of them are
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a3 ¼
10
9

a2
2 ð54Þ

a5 ¼
378a2a4 � 280a4

2

135
ð55Þ

a7 ¼
48600a2a6 þ 20412a2

4 � 186480a3
2a4 þ 148400a6

2

14175
ð56Þ
The corresponding backbone curves obtained numerically from the differential equations of motion are shown in Fig. 5
for � = 0.1 and for the coefficients of the even powers equal to unity. The oscillator O3 with a quadratic and cubic nonlinear
term corresponds to the so-called Helmholtz–Duffing oscillator [2]. The relationship between a3 and a2 in Eq. (54) agrees
with the well-know result yielding the frequency independent of amplitude, which is in the literature obtained for the cal-
culation procedure when terms of O e3

� 	
are neglected (see, for example, [6, pp. 55 or pp. 198]). As seen from Fig. 5, an in-

crease in the number of terms in the truncation ceases to produce an increase in the straightness of the backbone curve for
values of amplitude R which are larger than about 2.5. We conjecture that this effect is due to divergence of the associated
perturbation series.

6.2. Eq. (46) with a1 ¼ a3 ¼ a5 ¼ � � � ¼ 0

When all the odd-powered terms are absent, the formulas (49)–(53) determine the following coefficients of the even-
powered terms such that the backbone curve is a straight line:
a2 ¼ �3
ffiffiffiffiffiffi
a0

30

r
ð57Þ

a4 ¼ �
1

14

ffiffiffiffiffiffi
a3

0

30

r
ð58Þ

a6 ¼ �
2209

18900

ffiffiffiffiffiffi
a5

0

30

r
ð59Þ

a8 ¼ �
91673

1157625

ffiffiffiffiffiffi
a7

0

30

r
ð60Þ

a10 ¼ �
2014958909

35006580000

ffiffiffiffiffiffi
a9

0

30

r
ð61Þ
Note that there are two sets of these coefficients (with the upper and lower sign), i.e. two types of oscillators with even-
powered terms that have a straight-line backbone curve. Note however that solutions exist only for a0 > 0. By solving
Eq. (48) with even powered-terms for the coefficients (57)–(61) with the upper signs and for a0 ¼ 1; � = 0.1, the backbone
curves presented in Fig. 6 are obtained.

6.3. Eq. (46) with a2 ¼ a4 ¼ a6 ¼ � � � ¼ 0

This case has been the subject of the earlier sections of this paper based on Eq. (10) where we took a0 = 1. However now
we note that the form of the closed form solution is dependent on the sign of a0. When a0 > 0, the coefficients a2nþ1 are de-
fined by Eq. (28) and have an alternating sign. When a0 < 0, they are all positive and defined by
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a2nþ1 ¼
a0j jn

ð2nþ 1Þ!! ð62Þ
In order to show how additional terms change the shape of the corresponding backbone curve, Eq. (46) with no even
powered-terms was first rescaled to correspond to Eq. (10) and then solved numerically for a0 ¼ �1; � = 0.1 and for a2nþ1

defined by Eq. (62). On the basis of these numerical results, an animation is created, which is given as Supplementary
Material. The backbone curves are of the hardening type, but every additional even-powered term unbends it more and
more, producing the desirable effect of a straight-line backbone curve on the region of R considered.

In the case of Eq. (46) with no even-powered terms but with a0 < 0, the sum can be expressed in the following closed
form
X1
n¼0

a0j jnx2nþ1

ð2nþ 1Þ!! ¼
ffiffiffiffiffiffiffiffiffiffiffi
p

2 a0j j

r
e

a0x2

2 erf

ffiffiffiffiffiffiffiffi
a0j j
2

r
x

 !
ð63Þ
so that Eq. (46) becomes
€x� a0j jx _x2 þ
ffiffiffiffiffiffiffiffiffiffiffi
p

2 a0j j

r
e

a0j jx2

2 erf

ffiffiffiffiffiffiffiffi
a0j j
2

r
x

 !
¼ 0 ð64Þ
7. Conclusions

In this work we have set out to find an oscillator of the form of Eq. (2) whose period is insensitive to amplitude R. In the
process of doing so we have found several classes of such oscillators and have been able to determine the closed form expres-
sion of the associated series in some of them. It would be interesting to obtain similar closed form results for the other cases
mentioned in the previous section, but we have been unable to do so.
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