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ABSTRACT: 
 
Traditionally, an unsupervised classification divides all pixels within an image into a corresponding class pixel by pixel; the number 
of clusters usually needs to be fixed a priori by a human analyst. In general, the spectral properties of specific information classes 
change with the seasons, and therefore, the relation between object class and spectral cluster is not constant over time. In addition, 
relations for one image can in general not be extended to others. Thus, even if the number of clusters is correctly fixed for one image 
at one instance in time, the results cannot be transferred to other areas or epochs. 
In this study, a heuristic method based on Genetic Algorithms (GA) is adopted to automatically determine the number of cluster 
centroids during unsupervised classification. The optimization is based on the Davies-Bouldin Index (DBI). A software programme 
was developed in MATLAB, - and the GA unsupervised classifier was tested on an IKONOS satellite image. The classification 
results were compared to conventional ISODATA results, and to ground truth information derived from a topographic map for the 
estimation of classification accuracy. 
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1. INTRODUCTION 

1.1 Background on unsupervised classification 

Image classification, including supervised and unsupervised 
classification, is an established analytical procedure of digital 
image processing (Lillesand and Kiefer, 2000). Supervised 
classification procedures require a human analyst to provide 
training areas, which form a group of pixels with known class 
label, so as to assemble groups of similar pixels into the correct 
classes (Avery and Berlin, 1992). In comparison, unsupervised 
classification proceeds with only minimal input. An 
unsupervised classification divides all pixels within an image 
into a corresponding class pixel by pixel. Typically, the only 
input an unsupervised classification needs is the number of 
classes of the scene. However, this value is usually not known a 
priori. Moreover, the spectral properties of specific classes 
within the images can change frequently and the relationships 
between the object classes and the spectral information are not 
always constant, and once defined for one image cannot 
necessarily be extended to others. Supervised and unsupervised 
classification suffers from these drawbacks. 
Heuristic unsupervised classification works by establishing 
some mathematical model and then optimising a predefined 
index to determine the cluster numbers and centroids 
automatically. Heuristic optimization processes, therefore, are 
seen as a repeatable, accurate, and time-effective method to 

classify remote sensing imagery automatically, which is the 
main objective of this research. Genetic algorithms (GA) 
constitute one possibility for heuristic unsupervised 
classification. GA -have already been adopted successfully in 
image processing (Kawaguchi, et al., 1997), and image 
recognition for some special purposes such as medical 
treatment or criminal offence investigations (Caldwell and 
Johnston, 1991; Yang, et al., 2000). In this study, GA is 
adopted to determine number of cluster centroids of an image 
for use in unsupervised classification. 
 
1.2 Status of research applying genetic algorithms  

Genetic algorithms, introduced by John Holland in 1975 (Coley, 
1999; Pham and Karaboga, 2000), are numerical optimisation 
algorithms inspired by the nature evolution process and directed 
random search techniques. In many fields, such as the analysis 
of time series, water networks, work scheduling, and facial 
recognition, GA have been successfully applied (Coley, 1999; 
Rothlauf, 2006). In 1975, De Jong (1975) executed a number of 
tests to study the effect of the various control parameters 
concerning the performance of GA. In this research, suitable 
values were defined, such as population size, crossover 
probability, and the mutation probability (Pham and Karaboga, 
2000). In 2001, Bandyopadhyay and Maulik (2001) applied GA 
to cluster different man-made experimental point data sets and 
obtained very good results. 



 

  

 
2. BASES OF GENETIC ALGORITHM  

The genetic algorithm is a method, which is suitable for solving 
an extremely wide range of problems (Coley, 1999). Recently, 
GA has been widely and successfully applied to optimization 
problems specifically in unsupervised classification of digital 
data sets (Ross, 1995; Bandyopadhyay and Maulik, 2002). The 
following sections describe the general operation of GA.   
 
2.1 Chromosome representation 

In GA applications, the unknown parameters are encoded in the 
form of strings, so-called chromosomes. A chromosome is 
encoded with binary, integer or real numbers. Since multi-
spectral image data are usually represented by positive integers, 
in this research a chromosome is encoded with a unit (tuple) of 
positive integer numbers. Each unit represents a combination of 
brightness values, one for each band, and thus a potential 
cluster centroid. 
The length of the chromosome, K, is equivalent to the number 
of clusters in the classification problem. K is selected from the 
range [Kmin, Kmax], where Kmin is usually assigned to 2 unless 
special cases are considered (Bandyopadhyay and Maulik, 
2002), and Kmax describes the maximum chromosome length, 
which means the maximum number of possible cluster centroids. 
Kmax must be selected according to experience.  
Without assigning the number of clusters in advance, a variable 
string length is used. Invalid (non-existing) clusters are 
represented with negative integer "-1". The values of the 
chromosomes are changed in an iterative process to determine 
the correct number of clusters (the number of valid units in the 
chromosomes) and the actual cluster centroids for a given 
classification problem. 
 
2.2  Chromosome initialization 

A population is the set of chromosomes. The typical size of the 
population can range from 20 to 1000 (Coley, 1999). In the 
following an example is given to explain the creation of an 
initial population: we assume to have a satellite image with 
three bands, Kmin is set to 2 and Kmax to 8. At the beginning, for 
each chromosome i (i =1, 2,…,.P, where P is the size of 
population) all values are chosen randomly from the data space 
(universal data set; here: positive integers). Such a chromosome 
belongs to the so-called parent generation. One (arbitrary) 
chromosomes of the parent generation is given here: 
 
-1    (110, 88, 246)    (150, 78, 226)    -1    (11, 104, 8)    (50, 
100, 114)    -1    (227, 250, 192) 
  
2.3 Crossover and Mutation 

2.3.1 Crossover:  The purpose of the crossover operation is 
to create two new individual chromosomes from two existing 
chromosomes selected randomly from the current population. 
Typical crossover operations are one-point crossover, two-point 
crossover, cycle crossover and uniform crossover. In this 
research, only the simplest one, the one-point crossover was 
adopted; the following example illustrates this operation (the 
point for crossover is after the 4th position): 
 
Parent1 :  -1  (110, 88, 246)  (150, 78, 226)  -1  (11, 104, 8)  
(50, 100, 114)  -1  (227, 250, 192) 
 

Parent2 :  (210, 188, 127)  (110, 88, 246)  -1  -1  (122, 98, 45)   
-1  (98, 174, 222)  (125, 101, 233) 
 
Child1 :  -1  (110, 88, 246)  (150, 78, 226)  -1  (122, 98, 45)  -1  
(98, 174, 222)  (125, 101, 233) 
 
Child2 :  (210, 188, 127)  (110, 88, 246)  -1  -1  (11, 104, 8)  
(50, 100, 114)  -1  (227, 250, 192) 
 
2.3.2 Mutation:  During mutation, all the chromosomes in 
the population are checked unit by unit and according to a pre-
defined probability all values of a specific unit may be 
randomly changed. An example explains this procedure; the 
bold-faced and italic units represent the result of the mutation.  
 
Old string:  (210, 188, 127)  (110, 88, 246)  -1  -1  (122, 98, 45)  
-1  (98, 174, 222)  (125, 101, 233) 
 
New string:  (210, 188, 127)  (97, 22, 143)  -1  -1  (122, 98, 45)  
-1  (98, 174, 222)  (125, 101, 233) 
 
2.4 Indices identification 

Based on crossover and mutation the chromosomes, once 
initialised, iteratively evolve from one generation to the next. In 
order to be able to stop this iterative process, a so-called fitness 
function needs to be defined to measure the fitness or 
adaptability of each chromosome in the population. The 
population then evolves over generations in the attempt to 
maximize the value of fitness, also called index. 
Previous research used different indices, such as distance, 
separation index, Fuzzy C-Means, K-means, Davies-Bouldin 
Index (DBI), and Xie-Beni Index (XBI), as criteria to determine 
the best clustering (Ross, 1995; Bandyopadhyay and Maulik, 
2002). Here, the DBI was adopted, because it is not as complex 
as fuzzy C-Means and one can obtain better results than with 
some other indices as shown using simulated data 
(Bandyopadhyay and Maulik, 2002; Yang and Wu, 2001). For 
the reasons of comparison, we also used the ISODATA 
algorithm. 
 
 

3. METHODOLOGY 

 
3.1 GA application of unsupervised classification 

In the following paragraphs we explain the application of GA 
within unsupervised classification of satellite imagery. In 
particular, each GA procedure (such as reproduction, crossover, 
and mutation) is described.  
 
3.1.1 Parent generation and population size:  This 
procedure is an operation to produce the cluster centroids 
including the initial cluster centroids, which are selected 
randomly. This step is identical to the example given above. 
The range [Kmin, Kmax] equals [2, 8]. Two population sizes were 
used in or research: 40 and 100. 
 



 

  

3.1.2 Crossover:  Crossover is considered, according to the 
crossover probability, for example, if there are 100 
chromosomes (population size 100), and the crossover 
probability is 0.8, the best 80 chromosomes (according to some 
index) are chosen for the crossover pool. The next generation 
(the new 100 chromosomes) are then only produced from the 80 
old chromosomes of this pool.  
 
3.1.3 Mutation:  Mutation is a parameter for extending the 
search space; therefore, the time to reach a convergent solution 
increase with an increase of the mutation probability. 
According to the suggestion of Schaffer et al., in 1989 (Pham 
and Karaboga, 2000), the mutation probability is set to 0.005 
here. 
 
3.2 The Davies-Bouldin's Index  

In this research, the Davies-Bouldin index (DBI) is used to 
represent the fitness of a chromosome (Xie and Beni, 1991; 
Bezdek and Pal, 1998; Swanepoel, 1999; Martini and Schöbel, 
2001; Yang and Wu, 2001; Groenen and Jajuga, 2001). 
First, each pixel xn of the whole image is assigned to the nearest 
cluster centroid of the given chromosome, see Eq. (1): 
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where      xn = pixel n with grey values x (one for each band) 
                N = total number of pixels 
 uk = grey values of kth cluster centroid of the previous 

iteration (=generation) 
 K = total number of clusters 
 μkn = membership function of each pixel xn belonging  
 to the kth cluster 
 
Next, the average and the standard deviation for each cluster 
and for the current iteration are computed (Eq. (2) and (3), 
followed by determining the Minkowski distance between the 
clusters (Eq. (4))): 
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where vk = average value of kth cluster in the current iteration 
  Mk = the number of pixels belonging to the kth cluster  
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where Sk = standard deviation of the pixels in the kth cluster 
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where    dkj,t = Minkowski distance of order t between the kth 

and jth centroids. Here 2 has been chosen for t. 
 
Subsequently, the value Rk,t of the kth cluster can be computed 
as Eq. (5): 
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The DB value is then defined as the average of R for all clusters 
in the chromosome (Eq. (6)): 
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The goal for achieving a proper clustering is to minimize the 
DBI (Eq. (7)). Thus, the fitness function for chromosome j is 
defined as 1/DBj, which is equivalent to the clustering with the 
smallest inner-cluster scatter and the largest cluster separation. 
After calculating the DBI of each chromosome of a given 
population, the best chromosome is compared to the best one of 
the previous generation (iteration). The termination condition 
for the iterations is that the difference between these two values 
lies below a pre-defined threshold. If this condition is not met, 
the best chromosomes are selected into the crossover pool (see 
above) and a new iteration is started. The computations are also 
stopped once a maximum number of generations is reached. 
 
3.3 Influence of crossover and mutation probabilities 

There are five factors that influence the result of a GA 
algorithm: the encoding form (binary, real number and so on), 
the size of the initial population, the fitness function, the genetic 
operations (such as the one-point crossover, two-points 
crossover, etc.), and the probabilities for crossover and mutation 
(Pham and Karaboga, 2000). In this research, variations of the 
initial population size and the crossover probability are 
discussed. 
 
3.4 Image data, ground truth and error matrices 

For our research we used a multi-spectral IKONOS image. The 
image depicts Chandlers Ford in the U.K. and, was taken on 
2000/08/25 with 4 meters pixel size and 11 bits per pixel (see 
Figure 1). We used a subset with a total of 18330 pixels. A 
higher resolution map served as a reference for obtaining 
ground truth information.  
We measure classification success using the well-known criteria 
producer's accuracy or completeness (the number of pixels that 
are correctly assigned to a certain class divided by the total 
number of pixels of that class in the reference data) and user's 
accuracy or correctness (the number of pixels correctly 
assigned to a certain class divided by the total numbers of 
pixels automatically assigned to that class). 



 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. (a) The original IKONOS image; (b) The extracted 
IKONOS subset image; (c) Ground truth map superimposed on 

the subset image.  
 
 

4. ANALYSIS RESULTS 

In this section, we present the results of our research. The 
following parameters of the GA classifier were set:  
  

1. chromosome length          8 
2. single point crossover  
3. crossover probability        0.4 and 0.8 
4. population size                  40 and 100 
5. mutation probability          0.005 

 
In the ground truth data four distinct classes can be found: road, 
farmland, forest, and others. Figures 2 and 3 show the results 
with one colour per class: road in white, farmland in light green, 
forest in dark green, and others in yellow. The error matrices of 
the four experiments are shown in Tables 1 to 4. 
Compare Figure 2 (a) with Figure 2 (b) and Table 1 (a) and (b), 
when the population size increases, the overall accuracy 
increases from 49.1% to 69.8% and four instead of only three 
classes are found. The same effects are evident from Figure 3 (a) 
and 3 (b) and Table 2: the overall accuracy increases from 
54.4% to 71.1% and again four classes can be detected with a 
population size of 100. When comparing the effect of the two 
investigated parameters, it is clear that the population size is 
significantly more important than the mutation probability. 
With a few exceptions, most notably the completeness of roads, 
the producer’s and the user’s accuracy all increase when 
increasing the population size. 
As a reference, Figure 4 and Table 3 depict the results of the 
traditional ISODATA with four classes as prior information. 
The results of the GA are better (taking the higher population 
size) than the ISOADATA results; it should be mentioned, 
however, that the computational expense for GA is significantly 
larger than that for the ISODATA algorithm.  
 
 

 
(a) 

 
(b) 

 
Figure 2. Results with (a) population size 40, and crossover 

probability 0.4; (b) population size 100 and crossover 
probability 0.4 

 
 

  Reference Data 
 Road Farmland Forest Other 

Road 77.7% 31% 49.7% 52% 
Farmland 7% 52.6% 12.6% 48% 

Forest 15.3% 16.4% 37.7% 0% 

C
la
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ifi
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Other 0 0% 0% 0% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=77.7% Road=14% 
Farmland=52.6% Farmland=87.4% 
Forest=37.7% Forest=33.5% 

Other=0% Other=0% 

Overall accuracy=49.1% 

(a) 
  Reference Data 

 Road Farmland Forest Other 
Road 33.3% 5.5% 1.4% 38.6% 

Farmland 50.2% 76.5% 22.9% 54.7% 

Forest 5.3% 6.9% 74.7% 0.4% 

C
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ti

on
 

Other 11.2% 11.1% 1% 6.3% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=33.3% Road=35.9% 
Farmland=76.5% Farmland=81.4% 
Forest=74.7% Forest=79.3% 

Other=6.3% Other=0.8% 

Overall accuracy= 69.8% 

(b) 
 

Table 1. (a) and (b). Error matrices for results depicted in 
Figure 2  
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Figure 3. Results with (a) population size 40, and crossover 

probability 0.8; (b) population size 100 and crossover 
probability 0.8 

 
 

  Reference Data 
 Road Farmland Forest Other 

Road 77.1% 33.2% 5% 88.8% 
Farmland 19.2% 57.6% 42.3% 7.2% 

Forest 3.7% 9.2% 52.6% 0% 

C
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Other 0% 0% 0% 0% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=77.1% Road=16.4% 
Farmland=57.6% Farmland=82.9% 
Forest=52.6% Forest=56.7% 

Other=0% Other=0% 

Overall accuracy=54.4% 

(a) 
  Reference Data 

 Road Farmland Forest Other 
Road 38.4% 3.2% 1.9% 45.3% 

Farmland 49.6% 79.5% 39.2% 48.9% 

Forest 7.3% 4.5% 57.9% 0% 

C
la

ss
ifi

ca
ti

on
 

Other 4.7% 12.7 1% 5.8% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=38.4% Road=44.4% 
Farmland=79.5% Farmland=84.5% 
Forest=57.9% Forest=72.8% 

Other=5.8% Other=0.6% 

Overall accuracy= 71.1﹪ 

(b) 
 

Table 2. (a) and (b). Error matrices for results depicted in 
Figure 3 

  
 

 
 

Figure 3. Results of ISODATA algorithm (4 clusters) 
 
 

  Reference Data 
 Road Farmland Forest Other 

Road 64% 13.9% 52.2% 69.1% 
Farmland 27.2% 70% 26.4% 9% 

Forest 8.4% 12.5% 20.7% 21.5% 

C
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Other 0.4% 3.6% 0.7% 0.4% 
 
Producer’s Accuracy (Completeness) User’s Accuracy (Correctness) 
Road=64% Road=17.5% 
Farmland=70% Farmland=88.7% 
Forest=20.7% Forest=33.6% 

Other=0.4% Other=0.2% 

Overall accuracy= 65.1% 

 
Table 3. Error matrix from ISODATA results 

 
 

5.  CONCLUSION 

One of the a priori inputs traditionally needed for unsupervised 
classification is the number of clusters in the data set. In many 
cases, however, this number of classes is not available. This 
research describes a procedure for unsupervised classification 
based on genetic algorithms, which is able to estimate the 
required number of clusters as part of the procedure. In order to 
evaluate the individual results we used the Davues-Bouldin's 
Index (DBI). 
The effectiveness of the new technique was evaluated using 
examples of IKONOS satellite image data. Based on 
independent ground truth an overall accuracy of 71.1% was 
reached as compared to 65.1% when using the ISODATA 
algorithm. For a number of applications this accuracy is still 
acceptable.  
GA has a number of free parameters. Two of them, namely 
population size and the crossover probability were considered 
in this research. In our results the population size proofed to be 
significantly more important than the crossover probability. In 
future research we will further investigate the potential 
influence of the other parameters and also consolidate our 
results using more test data and alternative indices for 
measuring the chromosome fitness. 
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