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ABSTRACT: 
 
The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to collect low-
light imaging data of the earth at night.  The OLS and its predecessors have collected this style of data on a nightly global basis since 
1972.  The digital archive of OLS data extends back to 1992.  Over the years several global nighttime lights products have been 
generated.  NGDC has now produced a set of global cloud-free nighttime lights products, specifically processed for the detection of 
changes in lighting emitted by human settlements, spanning 1992-93 to 2003.  While OLS data leave much to be desired for urban 
remote sensing (coarse spatial resolution - 2.7 km ground sample distance, limited dynamic range - 6 bit quantitization and no on-
board calibration) significant changes in lighting can be observed in the change pair: rings of growth in lighting surround many 
urban centers, suites of linear features found in countries such as United Arab Emirates and China, and the contraction of lighting 
across much of the former Soviet Union.   A major issue affecting the use of the time series in change detection are the differences 
between the OLS sensors and declines in sensor throughput over time.  NGDC plans to address the intercalibration of the products 
through empirical approaches, such as intercomparison of products generated by two or more satellites for the same set of nights and 
the use of sets of lights deemed to have been stable over time.   The nighttime lights products may be useful in modeling the spatial 
distribution of population density, distributed carbon emissions, and economic activity. 
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1. INTRODUCTION 

Since the early 1970's the U.S. Air Force Defense 
Meteorological Satellite Program (DMSP) has operated polar 
orbiting platforms carrying Operational Linescan Systems 
(OLS) capable of detecting clouds using two broad spectral 
bands: visible and thermal infrared. The program began with 
the SAP (Sensor Aerospace Vehicle Electronics Package) 
which were flown from 1970-76.  The current generation of 
OLS sensors began flying in 1976 and are expected to continue 
flying until ~2010.  At night the visible band is intensified with 
a photomultiplier tube to permit detection of clouds illuminated 
by moonlight.  A digital archive for the DMSP-OLS data was 
established in mid-1992 at the NOAA National Geophysical 
Data Center (NGDC).  NGDC has had a ten year program to 
develop algorithms for producing nighttime lights products 
from OLS data and applications for the products (Elvidge et al., 
1997, 2001 and 2003).  Since 2000, NGDC has concentrated on 
producing nighttime lights product suitable for change 
detection.  This paper reviews some preliminary results from 
the nighttime lights change detection products from 1992 and 
2003. 
 
 

2. DATA PROCESSING 

The complete set of nighttime OLS data was extracted from the 
OLS archive and processed to generate geolocated images (30 
arc second grids) from the individual orbits in which lights, 
clouds, and data quality characteristics were identified.  Cloud-
free data from these images acquired under conditions of zero 

lunar illuminance were then composited to form global 
composites.  The raw composites contain light detections from 
human settlements, gas flares, fires and heavily lit fishing boats.  
The four types of lighting can then be separated based on the 
location, appearance, and temporal character of the lighting. 
The following section briefly outlines the processing 
algorithms.    
 

LABELING VISIBLE BAND DATA QUALITY 
 
Processing to label the quality of nighttime lights data in each 
pixel begins with the calculation of the latitude and longitude of 
each pixel center using the satellite ephemeris for each scanline.  
The calculation is done without terrain correction to save time.  
The latitude/longitude coordinates are held in memory while the 
sunlit data are identified and lunar illuminance calculations are 
performed. 
 
Sunlit Data  
 
The solar elevation angle for each pixel is calculated using 
equations from Meeus (1991).  The calculation uses the year, 
month, day and time, plus the latitude/longitude for each pixel.  
Pixels having solar elevation angles greater than -6 degrees 
were flagged as sunlit.  Solar elevation angles are held in 
memory for use in the glare detection described below. 
 
Lunar Illuminance 
 
The lunar illuminance for each pixel was estimated with 
equations from Janiczek and DeYoung (1987) using the same 



 

inputs as the solar elevation calculation.  Pixels having zero 
lunar illuminance were flagged.  
 
Glare 
 
Images were searched for solar glare, a condition caused when 
sunlight is scattered into the OLS telescope.  Glare is only 
possible in scanlines where the minimum solar elevation 
exceeds -40 degrees.  Potential glare is detected based on the 
presence of 75 or more saturated visible band pixels found in 40 
by 40 widows tiled through the image.  This condition spawns a 
search for contiguous pixels having DN values greater or equal 
to 20.  The scanlines containing these image sections are then 
checked to ensure that some portion of the scanline has a solar 
elevation angle greater than -40 degrees.  
 
Marginal Data  
 
Pixels are flagged as “marginal” if marginal data if they occur 
in scanlines with glare or sunlit data.  All scanlines located 
poleward between glare and sunlit data are also flagged as 
marginal.  The marginal data have slightly elevated DN values 
when com pared to the highest quality nighttime lights.   
 
 
Bad Scan Lines and Lightning 
 
A bad scan line is defined as a scan line with 10 consecutive 
lights, with no lights above or below them.  This algorithm is 
run on the flagged lights. This algorithm also detects many of 
the streaks of light generated when scanlines cross clouds 
illuminated by lighting.  As an additional test applied to F10 
data, pixels with at least n consecutive zero values in the visible 
band with no zero data above or below are identified as bad 
scan lines. 

 
GEOLOCATION 

 
All images were projected into 30 arc second grids.  The 
geolocation algorithm operates in the forward mode, projecting 
the center point of each pixel onto the Earth’s surface.  The 
geolocation algorithm estimates the latitude and longitude of 
pixel centers based on the geodetic subtrack of the satellite 
orbit, satellite altitude, OLS scan angle equations, an Earth sea 
level model, and digital terrain data.  The geodetic subtrack of 
each orbit is modeled using daily radar bevel vector sightings of 
the satellite (provided by Naval Space Command) as input into 
an Air Force orbital mechanics model that calculates the 
satellite position every 0.4208 seconds.  The satellite heading is 
estimated by computing the tangent to the orbital subtrack.   We 
have used an oblate ellipsoid model of sea level and have used 
30 arc second shuttle radar topography mission (SRTM) data as 
a source of digital terrain elevations. 
 

CLOUD DETECTION 
 
Cloud detection  was performed using the thermal band data. 
For a number of years NGDC used image analysts to set 
thermal band thresholds for cloud detection, as described in 
Elvidge et al. (1997).  NGDC has recently implemented an 
automatic cloud detection algorithm based on differencing the 
OLS thermal band brightness temperatures with gridded surface 
temperature values produced by NOAA National Center for 
Environmental Prediction (NCEP).   
 

In the NCEP surface temperature grids, the grid cell value 
represents an average surface temperature across the grid cell.  
In grid cells that have both land and sea contribution, the 
land/sea boundary is muted in the NCEP grid, but is present in 
the higher spatial resolution OLS thermal band.  This resulted in 
the inability to accurately detect clouds along coastal 
boundaries.  For example, in coastal grid cells where the land is 
relatively cooler than the sea, the NCEP surface temperature 
average across that grid cell would report a warmer temperature 
and the land would often be misidentified as a cloud.   To 
address this problem, a land-sea lookup table was created for 
each coastal NCEP grid cell.  The lookup table consists of three 
columns and has for each coastal NCEP grid cell, the nearest 
NCEP all land grid cell, and the nearest NCEP all sea grid cell.  
Separate lookup tables were created for the NCEP 1 degree 
grids and the NCEP 2.5 degree grids.   
 
Each OLS image processed was temporally matched to nearest 
NCEP surface temperature grid.  The NCEP grid was resampled 
to a 30 arc second grid covering the study area.  The coastal 
look up table was used to re-assign surface temperatures in the 
30 arc second cells coming from the 1 degree and 2.5 degree 
NCEP cells straddling land and water.  Then a temperature 
difference image was generated by subtracting the 30 arc 
second NCEP derived surface temperatures from the 30 arc 
second OLS thermal band brightness temperatures.  A 
temperature difference histogram was calculated for all the 
open water cells from each OLS image.   Typically the 
histogram displays a bell shaped peak at or near the origin, 
representing data from the cloud-free open water areas. The 
center of this peak was defined as the maximum peak within 15 
degrees of the origin.  Half of a Gaussian curve is fit to the data 
to the left of this peak.  In practice this is done by replicating 
and mirroring the data from the values less than the peak over 
to the values greater than the peak and fitting a Gaussian.  The 
cloud detection threshold is then the mean plus two standard 
deviations of this Gaussian, with a further constraint that the 
thresholds not deviate from the range [5, 20].  That is, the 
chosen difference threshold must be between 5 and 20 degrees 
Celsius. 
 

COMPOSITING 
 

Global composites of the average visible band digital number 
(DN) were generated using nightime visible band data meeting 
the following criteria: 
 
Zero lunar illumance. 
High quality visible band data (no glare, marginal, bad scan 
lines or lighting). 
Cloud-free. 
Center half of swath (better geolocation, sharper light features, 
more consistent radiometry). 
 
The resulting average visible band DN composites were then 
further processed to remove background noise and ephemeral 
lights (e.g. fires).  Areas devoid of detected lighting are 
identified based on their low average visible band DN and low 
standard deviation.  Ephemeral lights are identified based on 
their high standard deviation and relatively low average visible 
band DN.   
 
Major flaws in the composites include visible band saturation in 
major urban centers, undetected snow effects, radiometric 
differences between sensors, the decline in sensor throughput 
over time.  In addition to these flaws, the areas of detected 



 

lighting are known to overestimate the actual size of lighting on 
the ground (Imhoff et al., 1997 and Henderson et al., 2003). 
This area overestimation is due to a combination of factors: the 
large OLS pixel size, the OLS' capability to detect subpixel 
light sources, and geolocation errors (Elvidge et al., 2004b). 
Surface effects, such as the presence of snow cover and the 
reflection of lighting by near shore waters also contribute to the 
spread of light that can be detected by the satellite. These 
effects, present in data from single observations, are 
accumulated during the time series analysis.  
 
NGDC plans to address the inter-calibration of the products 
through empirical approaches, such as inter-comparison of 
products generated by two or more satellites for the same set of 
nights and the use of sets of lights deemed to have been stable 
over time.    
 

3. RESULTS 

A preliminary examination of the nighttime lights time series 
reveals that nighttime lights can both expand or contract in 
response to economic conditions.  In the USA and many other 
developed countries, lighting was observed to expand in a 
rather uniform manner, with rims of lighting growth 
surrounding major cities and growth in the brightness of lights 
in many smaller towns. In contrast, lighting was observed to 
contract in many parts of the former Soviet Union. Figure 1 
shows the lighting for Moldova from 1992 and Figure 2 shows 
the lighting for Moldova from 2003.  In 1992 many parts of the 
country had lighting present.  In 2003 only a few large cities 
had lighting.  Rapidly developing countries, such as India and 
China, exhibit wide regional variation in the level of lighting 
expansion with localized areas of lighting contraction.  Some of 
these patterns track administrative boundaries, indicating state 
and provincial differences in economic growth patterns.   
 
 

 
Figure 1.  Nighttime lights of Moldova from 1992. 
 

 
Figure 2.  Nighttime lights of Moldova from 2003. 
 
 

4. CONCLUSIONS 

NGDC has produced a time series of global nighttime lights 
products optimized for change detection. The digital method for 
mapping night-time lights with OLS data utilize large number 
of orbits to overcome the obscuring effects of clouds and to 
separate the observed lights into four primary categories: 
human settlements, gas flares, fishing boats, and ephemeral 
lights (mostly fires).  A preliminary examination of the products 
reveals that lighting changes are common and can be detected 
by satellite.   
  
Nocturnal lighting could be regarded as one of the defining 
features of concentrated human activity. Satellite observations 
of nocturnal lighting can be viewed as an index of human 
activity, similar to the red and near infrared vegetation index 
(VI) or sea surface temperature (SST).   
 
The incredible low-light imaging capabilities provided by the 
DMSP program are expected to continue until at least the year 
2010. The NOAA-DoD converged system of meteorological 
sensors (NPOESS), scheduled for deployment towards the end 
of this decade, will preserve the low-light sensing capability 
initiated with the OLS. Thus, the mapping of light sources 
present at the earth's surface using night-time satellite data can 
be expected to be a continuing source of information for the 
coming decades. 
 
The nighttime lights products have been proven to be useful in 
the analysis of impervious surface areas (Elvidge et al., 2004b) 
urban heat islands (Owens et al., 1998), terrestrial carbon 
dynamics (Milesi et al., 2003), and the modelling of artificial 
sky brightness (Cinzano et al., 2001) and the spatial distribution 
of population density (Sutton  et al. 2001 and 2003).  The close 
linkage between lights, economic activity, and energy related 
carbon emissions (Doll et al., 2000) indicates that the lights 
may be useful in independent estimation of national carbon 
emissions and gross domestic product.  
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