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ABSTRACT: 
 
The main objective of this research is to improve understanding of the methodological and validation requirements for mapping 
urban land cover over large areas from coarse resolution remotely sensed data.  A technique called boosting is used to improve 
supervised classification accuracy and provides a means to integrate MODIS data with the DMSP nighttime lights data.  Results 
indicate that fusion of these two data types improves urban classification results by resolving confusion between urban and other 
classes that occurs when either of the data sets is used alone.  Traditional measures of accuracy assessment as well as new, maplet-
based methods demonstrate the effectiveness of the methodology for creating maps of cities at continental to global scales. 
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1. INTRODUCTION  

Urban land cover presently accounts for less than one percent of 
the Earth’s land area, although this proportion is growing 
rapidly as more and more cities expand into natural ecosystems 
and agricultural areas (Douglas, 1994).  Identifying and 
anticipating the location and growth rate of urban areas is an 
important component to understanding and mitigating many 
aspects of global population growth, and by extension global 
change.   
 
Previous studies of urban areas from remote sensing have 
consistently relied on fine resolution data (Landsat, SPOT), 
which limits these studies to small areas.  The only existing 
global maps of urban areas are the Digital Chart of the World 
(DCW) urban layer (Danko, 1992), and maps derived from the 
Defense Meteorological Satellite Program Operational Linescan 
System (DMSP-OLS), or nighttime lights data (Elvidge et al., 
1996).  While the DCW urban data is valuable, it was compiled 
from 1960s Operational Navigation Chart data and no longer 
provides an accurate representation of city size.  The nighttime 
lights data has produced stunning images for several years, 
however for mapping purposes the data possesses coarse (2.7 
km) resolution, is poorly registered, and exhibits blooming 
effects that inflate city boundaries (Elvidge et al., 1996).   
 
Recent coarse resolution land cover mapping efforts from 
remote sensing data have not included cities because of the 
limitations of Advanced Very High Resolution Radiometer 
(AVHRR) imagery and inadequacies of traditional 
classification algorithms (Loveland et al., 1999; Hansen et al., 
2000; Friedl et al., 2002).  Data from NASA’s recently 
launched Terra platform offer a new opportunity for mapping 
urban areas, providing the potential to transform such studies 
from local to global scales. In particular, Terra’s Moderate 
Resolution Imaging Spectroradiometer (MODIS) acquires 
multispectral data with high temporal frequency, and is 
designed specifically to monitor land properties at global scales.  

Unfortunately, classifications based on MODIS data alone 
result in confusion between urban and barren areas.   
 
The primary goal of this paper is to describe and assess a 
methodology for mapping urban land cover at 1 km spatial 
resolution by fusing two sources of coarse resolution data.  Two 
major tasks were involved in this study.  First, a supervised 
decision tree classification method was developed by fusing 1 
km MODIS data and an ancillary sources, the nighttime lights 
data (Elvidge et al., 1996).  The second task was to establish the 
best means for evaluating the accuracy of urban land cover 
maps produced over large regions, an issue that is especially 
problematic when the class of interest is a small fraction of the 
total area mapped.   
 
 

2. METHODOLOGY 

Overview 

The method involved three main steps.  In the first step, the 
nighttime lights data was used in a logistic regression model to 
produce a probability surface for urban areas.  In the second 
step, a decision tree algorithm was trained using a global set of 
training sites for 17 land cover classes (including urban) defined 
by the International Geosphere-Biosphere Program (IGBP), and 
the trained tree was applied to the MODIS data.  The output 
from this first stage provided a map of per-pixel probabilities 
for each of 17 classes.  The class probabilities and the 
probability surface were then used as input to the third step, 
where Bayes’ Rule was applied at every pixel.  To do this, the 
probabilities of urban areas derived from the logistic regression 
were used as prior probabilities, and the final pixel label was 
assigned based on the maximum likelihood derived from the 
posterior probabilities.  In this way, information from both data 
sources was fused to create a final map of urban areas.   
  



 

2.2 Data 

The 1 km nighttime lights data (Elvidge et al., 1996) was used 
as input to a logistic regression model to create a map of “prior 
probability” for urban areas for each continent.  A sample of 
4000 1 km2 pixels was selected randomly from the nighttime 
lights data and the DCW (the latter serving as the dependent 
variable to train the logistic model) to produce a binary 
urban/non-urban class map for each continent.    The urban 
class defined in the DCW maps, although out of date, is 
considered a consistent source of data to sample city cores.   
 
The classification stage employed a full year of MODIS 
imagery acquired between October 15, 2000 and October 15, 
2001.  These data included seven bands of Nadir-corrected 
BRDF Adjusted Reflectance values, and the MODIS Enhanced 
Vegetation Index (EVI) composited over 32 day periods.  The 
decision tree algorithm was trained using 1800 training sites 1 
to 100 km2 in area, obtained by manual interpretation of 
Landsat data.  Urban training sites were selected from cities 
using the criteria that the area must be composed of greater than 
50 percent urban land cover.   
 
2.3 Logistic Regression 

The logistic model of urban/non-urban areas possessed the 
form: 

)1(
)Uexp(1

)Uexp()urban(P
i

i

+
=  

 
where P(urban) is the probability that a pixel is urban or non-
urban.  The value of Ui is provided by a conventional linear 
regression model.  The model using the nighttime lights to 
predict urban/non-urban is:  
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where lightsi is the value of the nighttime lights data at the ith 
pixel, the β coefficients are determined empirically using the 
logistic regression routine in SAS, and ei is the random error 
term.  The model results for each continent show that each of 
the coefficients was significant at p < 0.05. 
 
2.4 Decision Trees 

The method employed to compute conditional probabilities of 
IGBP land cover classes relies on a supervised decision tree 
classification algorithm, C4.5 (Quinlan, 1993).  Decision trees 
have been especially effective for coarse resolution 
classifications because they are able to handle noisy or missing 

data, they require no a priori assumptions regarding the 
distribution of the input data, and they can handle complex, 
nonlinear relations between features and classes (Fayyad and 
Irani, 1992). 
 
The technique of “boosting” has been widely shown to increase 
classification accuracies using supervised algorithms (McIver 
and Friedl, 2001).  Boosting improves accuracy by estimating 
multiple classifiers while systematically varying the training 
sample.  At each iteration of the classifier, the training sample 
is modified to focus the classification algorithm on examples 
that were difficult to classify in the previous iteration.  The final 
classification is then produced by an accuracy weighted vote 
across all of the classifications (Quinlan, 1996).   
 
Recently, a statistical examination of boosting has shown that it 
is equivalent to a form of additive logistic regression (Friedman 
et al., 2000).  As a result, probabilities of class membership can 
be assigned for each class at every pixel.  Using these 
probabilities, it is possible to calculate posterior probabilities of 
urban areas with the aid of ancillary information.  For this 
work, Bayes’ Rule was applied at every pixel to combine the 
probability surface (prior information) with the conditional 
probabilities derived from the boosted decision trees. 
 

3. RESULTS 

While it is difficult to assess the quality of the results at 
continental scales, Fig. 1 presents five panels showing the urban 
class at the scale of the city.  Fig. 1a presents Landsat TM 
imagery, where settlement patterns can be seen intermixed with 
forested and agricultural areas.  Similar patterns can be seen in 
the MODIS imagery in Fig. 1b, but with less spatial detail.  Fig. 
1c presents the DCW data, which characterizes the core urban 
area but fails to capture new growth.  Fig. 1d presents the 
nighttime lights data set.  While these maps appear reasonable 
at continental scales, Fig. 1d clearly illustrates how this data set 
leads to overestimation of urban areas.  Finally, Fig. 1e presents 
the results achieved by fusing MODIS data with nighttime 
lights data (hereafter the fusion map).  (Additional results 
available at http://duckwater.bu.edu/urban.) 
 

4. ACCURACY ASSESSMENT 

The conventional approach to accuracy assessment is to 
compare an independent, random sample of “ground truth” 
points to the classified map (Card, 1982).  Representative 
results for North America were evaluated using an independent 
test set of 400 1 km2 pixels.  Producer’s accuracy was used 
because the urban class represents only one percent of the total 
land area.  When prior probabilities were included, the 
Figure 1: The San Francisco Bay area showing (a) 30m Landsat imagery (urban areas appear purple); (b) 1 km MODIS data (urban also appears 
purple), (c) the urban data from the DCW (note misregistration); (d) the nighttime lights data (orange boundary represents commonly used threshold); 
and (e) the fusion map of urban areas produced in this research. 

http://duckwater.bu.edu/urban


 

producer’s accuracy increased from 39 to 79 percent. 
 
The fusion map of urban land cover was also compared against 
the DCW data, the nighttime lights data, and a regional, fine 
resolution map of the U.S., the National Land Cover (NLC) 
data (Vogelmann et al., 1998).  Three maplet-based methods 
were used to supplement the overall accuracy statistics (Stoms, 
1996), which serve to highlight the strengths and weaknesses of 
each for representing current urban land cover.  Results of the 
method comparing city sizes obtained from the 30m NLC data 
against estimates from the DCW, the nighttime lights data, and 
the fusion map are shown in Fig. 2. 
 

5. CONCLUSIONS 

The main objective of this research was to improve 
understanding of the methodological and validation 
requirements for mapping urban areas over large areas.  Urban 
areas were mapped on a continental scale by fusing MODIS 
data and the nighttime lights data.  Decision trees used in 
association with prior probabilities were particularly effective 
for resolving confusion between urban areas and other land 
cover types.  This result reflects a trend towards increased 
fusion of different data types to provide more representative 
characterization of land cover qualities.  This is especially true 
for urban areas, where high levels of within-region and 
between-region variability make classification especially 
difficult.  Finally, this research explored a variety of avenues 
for map accuracy and assessment.   
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Figure 2: A comparison of city size in continental scale maps of urban areas (vertical axis), using the urban areas defined by the 30 m NLC data to 
represent "true" city size (horizontal axis).  The DCW data systematically underestimate city size (a), the nighttime lights data systematically 
overestimate city size (b), and the map produced from the combination of MODIS, nighttime lights and population data (c) achieves the closest and 
least biased fit to the "true" city size. 
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