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ABSTRACT: 
 
Depending on the spatial resolution, the appearance of roads differs in images. In high resolution aerial images a road might be 
distinguishable as an area with visible road markings, while in a satellite image of low resolution, roads appear as lines and their 
network character becomes important. The design of the object model for the extraction of roads therefore has to be influenced by 
the resolution of the available imagery.  
In this paper we present results of a concept to automatically adapt road models for high resolution images to models suitable for any 
other lower resolution images with the same spectral characteristics. The road model is formulated as a semantic net, which ensures 
an explicit representation of objects. Starting from the manually created semantic net for high resolution images and the given target 
scale, the road model is first automatically decomposed into object parts with similar scale behaviour. The representation of the 
object parts in the coarser scale is then automatically predicted by scale change models, which are generated by deploying analytical 
as well as simulation procedures. After scale adaptation of the decomposed object parts, they are fused back to a complete object 
model in form of a semantic net, which is suitable for road extraction in images of the lower target resolution. 
The automatically created semantic nets for different scales are used for automatic object extraction. Using an object model for road 
extraction in urban areas, the developed methods were successfully tested. The presented methodology facilitates the creation of new 
object models for automatic object extraction in lower resolution images by adaptation, and therefore avoids redundant work. 
 
 

1. INTRODUCTION 

Landscape objects appear differently in images of varying 
spatial resolution. Depending on its size, an object might be 
perceptible as an area or barely visible as a point in an image of 
a certain spatial resolution. The same applies for the reduction 
of the resolution to an object of the same size – with increasing 
pixel size of the image the object will appear simplified with 
less detail until it disappears. A prerequisite for the reliable 
extraction of landscape objects is the development of suitable 
object models. However, due to the varying appearance of the 
same object in different resolution the model for the object 
extraction must be modified to fit to each spatial resolution. 
Thus, various object models have to be created for the same 
object. All information needed for the description of the object 
in low resolution is already contained in the object models for 
high resolution, as in the process of scale reduction no new 
details appear. Hence, redundant work for the creation of low 
resolution object models can be avoided, if there already exists 
an object model for high resolution images. 
 
In this paper an approach to derive automatically object models 
for low resolution images from models created for high 
resolution images is presented. The object model for high 
resolution is to be formulated manually as a semantic net, 
which ensures an explicit representation of objects. The focus 
for objects to be investigated lies on line-type features, such as 
roads and railways. The developed methodologies are presented 
here and tested exemplarily on an object model describing a 
dual carriage highway. As roads are dominant landscape 
features, they are subject to ongoing research in the field of 
image analysis. Object models were developed for various road 
types, contexts and spatial resolutions [Wiedemann02, 

Baumgartner03, Hinz04]. Extensive research has also been 
carried out on the fundamentals of linear scale-space theory 
[Witkin86, Lindeberg94, Florack94] and its application, e.g. on 
feature detection [Lindeberg98]. Investigated was also the scale 
behaviour of line-type features [Steger98, Mayer98]. By 
combining scale-space theory with object modelling in 
[Baumgartner03, Hinz04], object models integrating different 
image resolution levels in a single model were proposed. In 
[Mayer&Steger98] scale events in linear scale-space for roads 
and for buildings in morphological scale-space [Mayer00] were 
analyzed and predicted. But, so far, the analysis of complete 
object models in scale-space and the adaptation to another scale 
is missing. The general strategy for the adaptation of semantic 
nets to a coarser scale was presented in [Pakzad&Heller04] 
incorporating first examinations concerning the scale behaviour 
of feature extraction operators and demonstrating the strategy 
using an example in an adaptation process carried out manually. 
Necessary constraints for the creation of the initial object 
models in order to ensure the models’ automatic adaptability 
were also stated. 
 
In section 2 a repetition concerning the general strategy of the 
procedure is given and the different steps are briefly described. 
The relevant concepts of linear scale-space theory are briefly 
summarized in section 3. The characteristics of line-type 
objects in scale-space and the thereof derived methodologies 
used in the automatic adaptation algorithm are explained in 
section 4. Section 5 contains an example for an adaptation of a 
particular road model to coarser scales. The last section gives a 
summary and draws conclusions from the presented paper also 
for future work. 



 

2. STRATEGY FOR SCALE ADAPTATION 

The general strategy for the automatic adaptation of object 
models can be divided into three main steps that enable the 
separate scale-space analysis of object parts for the prediction 
of their scale behaviour while scale changes (cf. Fig.1).  
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Figure 1. Strategy for Scale Adaptation 

 
With knowledge of the target scale, the original object model 
for high spatial resolution is at first decomposed into object 
parts with similar scale change behaviour as well as in 
neighbouring objects parts that interfere each other’s 
appearance in the coarser scale. 
 
These groups of object parts are then analyzed separately 
regarding their scale behaviour. Their appearance in the lower 
target resolution is predicted by scale change models. At last, 
all predicted objects are composed back to a complete object 
model, suitable for the extraction of that object in images of the 
lower target resolution. 
 
 

3. LINEAR SCALE-SPACE 

The reduction of spatial resolution is a matter of scale change. 
Due to the direct relationship between scale and spatial 
resolution in aerial images, the analysis may be undertaken in 
scale space to examine a change in resolution. The scale space 
analysis regarding the object parts of the semantic net is carried 
out deploying the concepts of linear scale space theory, first 
introduced by [Witkin86]. A family of signals serves as multi-
scale representation which can be generated from the original 
signal dependent on only the scale parameter R+σ ∈ . With 
only this single parameter any other level of scale can be 
described, while the original signal corresponds to σ=0. For the 
creation of another scale level, the original signal is convolved 
with the Gaussian kernel generated with the respective scale 
parameter σ: 
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The signal family derived from the Gaussian kernel fulfils the 
diffusion equation and has some unique characteristics: It is 
isotropic and homogeneous, i.e. no direction or location is 
preferred during scale change. 
   
Objects may interfere with each other as scale becomes coarser. 
According to [Lindeberg94] there are 4 events in scale space to 
be distinguished:  
 

- Annihilation : an object disappears 
- Merging : several objects merge into a single object 
- Creation : a new object is created 
- Split : a single object splits into two or more objects 

Creation and Split events are extremely rare and not relevant to 
parallel line-type objects. However, possible scale events of 
Annihilation and Merging may take place while scale changes 
from the original to the coarser target scale and therefore need 
to be considered in the scale change models, as these events 
influence the remaining objects.  
 
The line-type objects (lines and stripes) subject to the analysis 
are exclusively elongated and parallel. The examination of the 
lines’ profiles is therefore sufficient and reduces the problem to 
one dimension. The object type “Stripe” can be regarded as a 
broad line and its behaviour in scale-space is comparable to that 
of lines. Therefore, in the remaining of this paper it will solely 
be referred to lines. 
 
 

4. METHODOLOGY 

In the hereby presented adaptation methods, only line-type 
objects, i.e. lines and stripes, are considered. 
 
4.1 Decomposition of the Object Model 

All object parts are separated regarding their object type and 
interference with each other as scale changes to the target scale. 
For the lines appearing in road models, as a realistic profile a 
bar-shaped line with width w and contrast c is assumed, given 
by the following definition: 
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In the discrete space (as we have with digital images) the likely 
existence of interaction in the target scale between two adjacent 
objects can be determined by their distance and the width of the 
filter that is used for the generation of the image in coarser 
scale. As long as the filter width is smaller than the distance of 
the objects, no interaction will take place. When the filter width 
becomes larger than the object distance, the objects might 
influence each other’s appearance and therefore need to be 
grouped to be analyzed together regarding their scale 
behaviour. Hence, the case of interaction can easily be handled 
by a comparison of the filter width wf and the object distance 
d1/2. The geometric relation is depicted in Fig.2. 
 

wF

d1/2

wF
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Figure 2. Dependency of Interaction between two Objects from 

the Filter Width and Object Distance 
 
Based on these relations, all object parts of the original object 
model are sorted into single lines or groups of lines in the 
decomposition process (cf. Fig. 3). A decomposition module 
undertakes this task. 
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Figure 3. Decomposition of the Initial Object Model 
 
 

4.2 Scale Change Models 

For all object parts that were separated in the decomposition 
step, their appearance in the target scale is to be predicted by 
the scale change models. This task can principally be coped 
with in an analytical or empirical way. The scale change models 
we propose use a combination of these two possible solutions 
due to practical reasons. 
 
The decomposed object parts are at first investigated for 
possible scale events of Merging and Annihilation, as they 
affect the type and number of the resulting objects in the small 
target scale.  
 
Merging 
 
In the case of a group of lines, the adjacent lines will at a 
certain scale start interacting with each other depending on their 
distance apart, as described above. For a larger scale parameter 
σ there will be two distinct maxima enclosing a single 
minimum in the profile of the lines (cf. Fig.4). With even larger 
σ the minimum will eventually disappear and there will remain 
only one single maximum, signalling the Merging of the 
adjacent lines. The evolution of Merging levels over scale space 
can be divided into three zones. In the first zone the objects are 
clearly distinctive and apart from each other. Between the point, 
where interaction between the objects starts, and the point of 
definite Merging with only a single maximum in the profile left, 
lies the “Domain of Uncertainty”, in which the adjacent lines 
have started influencing each other’s appearance, but did not 
merge completely yet. In the third and last zone, the Merging of 
both objects has entirely finished and the merged objects will 
behave from there on in scale space like a single object. The 
corresponding zones with their different Merging levels are also 
depicted in Fig.4 with an example for a line group profile and 
image for each zone. Although Fig. 4 shows exemplarily two 
adjacent lines with the same width and the same intensity, the 
algorithm developed for the scale change models is able to 
handle arbitrary width and contrast of the analyzed objects. 
 
The extraction of objects of the semantic net in images is done 
by feature extraction operators bounded to the nodes of the 
object parts. The characteristics of the operator determine the 
separability of objects and therefore the number of objects in 
the lower scale net. In the first zone before interaction takes 
place, the operator will surely detect two separate lines, while 
in the last zone, after the definite Merging, any operator can 
only extract one single line. In the “Domain of Uncertainty”, 
the number of objects that are extracted is uncertain, but is 
dependent on the characteristics of the feature extraction 
operator. The operator will have its own usability threshold in 
scale space for the case of Merging. This threshold can be 
found best by empirical analysis. The feature extraction 
operator, which is bounded to the semantic net in order to 

extract the object of the particular object type, is applied to a 
synthetic image simulating the line group with its attributes. 
Otherwise, the number of the resulting objects in lower scale 
will stay uncertain. Due to the empirical analysis, the algorithm 
is very flexible, since it remains independent from the user’s 
choice of the operator and also practicable, as there are quite a 
few different line extraction operators existent and an analytical 
modelling of the scale behaviour of all relevant operators would 
exceed the realizable amount of work.  
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Figure 4. Merging Zones and Usability Threshold of the Feature 

Extraction Operator 
 
To determine whether the target scale falls into the “Domain of 
Uncertainty” the line profile in the target scale is tested using 
means of differential geometry. By calculating the point of 
interaction and testing for definite Merging by the searching for 
the existence of a minimum, the zone, in which the target scale 
is located, can be found. The result of the operator applied to a 
synthetic image simulating the line group with their attributes in 
the target scale will express the operators’ ability to extract the 
lines of this particular group separately and therefore determine 
the number of objects in the resulting semantic net in the target 
scale.  
 
For the case of interaction, a shift in line position of the 
resulting object could occur, if the Merging level is advanced 
enough. For the determination of the modified line position the 
result of the feature extraction operator that is applied to the 
synthetic image simulating the target scale is used. 
 
Annihilation 
 
According to [Steger98] the responses of the convolution of the 
bar-shaped line profile (notations as in section 4.1) with the 
Gaussian function g(x,σ) can be calculated by: 
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In continuous space a single line will become wider and flatter 
when convolved with the Gaussian function, but the centre of 
the line will not disappear entirely as long as the scale 
parameter σ is smaller than infinity. 
 
In discrete space, however, by convolving the line profile with 
increasingly large Gaussian kernels the line will become flatter 



 

and wider until the line disappears at a certain size of the 
Gaussian kernel. Annihilations in discrete space can be 
calculated numerically by the convolution integral of the 
function describing the bar shaped line profile and the Gaussian 
function with the corresponding scale parameter of the target 
scale σt . The value of the convolution integral determines the 
grey value displayed in a discrete pixel matrix of the resulting 
image. As long as the response value stays larger than the 
smallest quantisation step of the displayed image, the object 
will still exist. Only when the grey value falls below that 
threshold, the object has disappeared. Thus, Annihilation has 
certainly occurred during scale reduction, if the following 
statement is true: 
 
 Qt rcwxr <= ),,,0( σ    (6) 
 
where :Qr  smallest quantisation step (grey value of 1) 
 
In this case, no feature extraction operator will be able to 
extract a line. But an operator can possibly fail to extract a line 
as well for small grey values depending on its parameter, 
mainly on the set thresholds. In this range of contrast the 
occurrence of Annihilation depends on the operator. We use for 
the upper limit of this range a grey value of 15 as a realistic 
value from which a reliable feature extraction operator should 
be able to detect a line. However, this upper limit can be set 
according to the individual character of the operators extracting 
the objects. Here again, the operator is applied to a simulating 
synthetic image and the result of the operator is used to 
determine the scale event, if the calculated response of the 
convolution integral is below the upper range limit. 
 
Attributes 
 
The attributes for the nodes in the semantic net of the target 
scale can also be found analytically. The attribute “Grey Value” 
is given by the grey value of the hierarchically higher node (in 
our example the pavement) plus the contrast of the line centre, 
which can be calculated by solving the convolution integrals for 
the object in the target scale.  
 
The attribute “Extent” is expressed by the width of the line, 
which is the distance of the edges delineating the line. The 
edges could be found by the inflection point of the line profile 
in the target scale, which can be determined using differential 
geometry. The gradient in the direction perpendicular to the line 
has its largest absolute value at the site of the edge. However, 
the scale space analysis for this problem cannot be solved 
straight forward [Steger98a]. Therefore, the edge positions are 
in the adaptation algorithm determined by using the gradient 
image with the corresponding target scale smoothing factor σt 
of the simulated line or line group with its attributes.  
 
The value of the attribute “Periodicity” can only change for 
periodic lines (p<1). The periodicity can alter, if the gap 
between the line parts is subject to interaction, which can be 
determined by a similar comparison of filter width and gap 
length as already used in the decomposition module. In the case 
of interaction, the change of gap length between the line parts is 
determined by a similar procedure like the line width from the 
gradient image. From this value, the proportion of the line 
length and the gap, i.e. the periodicity of the line, can be 
derived.  
 

4.3 Fusion of the Object Model 

At last, all the object parts, whose appearance in the target scale 
was predicted, have to be fused back to a complete semantic net 
describing the object in the target scale (cf. Fig.5) considering 
the scale events and new attributes. In the case of Annihilation, 
the affected nodes do not reappear in the target scale net, and all 
relations to other nodes will be dissolved. For a Merging event 
the remaining number of objects is also reduced. 
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Figure 5. Fusion of the Object Model for Target Scale 
 
The hierarchical and spatial relations of the other nodes do not 
change to the original net. Only the distances of the objects 
dδLi,Lj in the target scale need to be adapted, if the object’s width 
has changed and the line position has shifted due to Merging: 
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where    
 

:,LjLit
dσ   distance of line i and line j in target scale 

  :,LjLid   distance of line i and line j in initial scale 

:Lit
wσ∆   change of width of line i 

        :it   translation of position of line i  
 
 

5. EXAMPLE FOR SCALE ADAPTATION 

In this section, results of the automatic adaptation process 
described in section 4 for an exemplarily created object model 
for roads are presented. The methodology is applied to the 
slightly simplified object model for a dual carriageway 
introduced in [Pakzad&Heller04] suitable for images of high 
resolution (3.3-7cm), fulfilling the developed constraints for the 
creation of automatically adaptable semantic nets. The 
simplification is done due to representation reasons. The road 
model used in this example is depicted in Fig.6. 
 
To demonstrate the capability of the developed methodology, 
the automatic adaptation is carried out for 2 target scales. As 
target scales σt1=25 and σt2=100, corresponding to a spatial 
resolution of about 2.6m and 10.4m respectively, were chosen 
exemplarily, because they represent middle to strong scale 
change. The methods were implemented using the image 
processing system HALCON 7.0. 
 
A synthetic image simulating the object parts with its attributes 
and spatial relations in the original scale was created for the 
empirical analysis of the scale events and determination of the 
attributes (Fig.7). The image simulating the lines was created 
using the attributes from the nodes of the original semantic net. 
The contrast of the lines was deduced from the difference of the 
grey values of the road markings and the hierarchically higher 
pavement. 
 



 

 

 
 

Figure 7. The Simulated Object Parts in the Original Scale 
 
Target scale σt1 = 25 
 
In the decomposition phase every pair of adjacent line-type 
object parts in the lowest hierarchy level is investigated 
concerning interaction in the target scale. In case of interaction, 
the respective pair of lines is combined to a group of lines and 
those neighbouring lines are handled simultaneously and jointly 
in the scale change models. Otherwise, the object part is 
handled as a single line in the scale behaviour prediction phase.  
 
For the scale parameter σt1=25 there is interaction between all 
neighbouring road markings in the target scale. Therefore, all 
object parts need to be combined to a group of lines formed by 
6 lines for the example net. The image simulating the object 
parts in target scale as illustrated in Fig. 8 is derived from the 
synthetic image in Fig.7. 
 
For this scale, Merging can possibly take place. Although 
interaction occurs for all line pairs, only for one line pair 
Merging can definitely be approved. The two central road 
markings are so close to each other that they exhibit a Merging 
in zone 3, as described in section 4.2, for this scale change. 
There is only a single maximum in the smoothed profile of this 
line pair left. For all other objects the test for Merging yields 
the “Domain of Uncertainty” (zone 2). For all these line pairs 
there are still two maxima isolating a single minimum 
detectable in the synthetic image simulating the target scale. 
Here, the operator is applied to the image to determine whether 
the other lines can be extracted separately in the target scale. In 
our example, for the extraction of all object parts the same 
feature extraction operator, the Steger operator [Steger98], is 

used, as all object parts are of 
line-type. We chose this 
operator because of its good 
performance and adaptability. 
The result shows no Merging of 
any of these line pairs with 
exception of the central line 
pair, since the operator is still 
able to detect all other lines 
separately. Note that the result 
depends strongly on the 
parameter set for the 
implementation of the operator, 
mainly on the hysteresis 
threshold values.  
 
The possibility of Annihilations 
is detected by the calculation of 
the contrast in the target scale 
and if this result is in a range of 
1 and 15, i.e. in the Uncertainty 
Zone for Annihilations, the 
feature extraction operator is 
applied to the synthetic image 

simulating the target scale. Definite Annihilations predicted by 
the calculated contrast below the smallest quantisation step 
were not found by the analytical analysis, but some of the 
predicted grey values fall in the interval for possible 
Annihilations depending on the feature extraction operator 
assigned in the initial net. Hence, the line extraction operator is 
to be applied again to the synthetic image simulating the 
respective combination of lines. From the result of the operator 
for this example, it can be derived that no Annihilations for the 
object parts have occurred.  
 
The extent of the resulting line and the contrast is determined 
according to section 4.2. The attribute “Extent” is calculated 
from the position of the edges, which are determined 
empirically from the simulating image by searching for the 
maximal value of the line cross-section in the gradient image. 
For the merged object pair a shift of position has appeared in 
direction to each other. Generally, for two parallel lines with 
the same width and same contrast, the value of this shift equals 
half the distance of those two objects in the original scale. The 
periodicity stays unchanged, because the proportion of the gap 
and the line for the lane markings of periodic type, determined 
from the position of the edges of the line parts, stays the same 
in this example. 
 

 
 

Figure 8. The Simulated Object Parts in the Target Scale σt1=25 
 
In the phase of the fusion to a new semantic net, the spatial 
relations with their attributes concerning the lines’ distances 
need to be adapted under consideration of the shift of position 
for the Merging pair. But the hierarchical relations and the 
spatial relations keep their type. The complete adapted semantic 
net for target scale σt = 25 is shown in Fig.9. 

Figure 6. Concept Net for Dual Carriageway at Largest Scale, Generated for Images with  
Ground Pixel Sizes of 3.3 - 7 cm/pel
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Figure 9. Adapted Semantic Net for the Target Scale σt1 = 25 

 
Target scale σt2 = 100 
 
The Gaussian filter used for the 
creation of the synthetic image 
of this scale is indeed very large 
with 500 pixels (about 5 times 
larger than the extent of a single 
lane of the road in the original 
resolution of 3.3cm). As can be 
expected interaction is predicted 
for all the object parts.  
                Fig.10. The Simulated Object  
     Parts in the Target Scale σt2=100 
 

In this scale all road markings are merged into 
one single remaining line (Fig.10). This object is 
barely visible due to its low contrast to the 
underlying pavement. In an image with only a bit 
stronger blurring, i.e. reduction of resolution, this 
object would disappear and only the road itself as 
one line will be left. This result is reasonable, 
since the road is only a little bit wider than the 
resulting merged line. The attributes are 
determined following the methodology of Section 
4.2. The resulting semantic net in the coarser 
scale of σt2 = 100 is illustrated in Fig. 11. 

 

  Fig.11 Adapted Semantic Net for the Target Scale σt1 = 100 
 
Due to representation reasons, the approach was demonstrated 
here only for fixed values of attributes in the nodes. Realistic 
object models would have ranges for the attribute values. If 
ranges are considered, the result has then possibly more than 
one semantic net as output in the target scale. 
 
 

6. CONCLUSIONS 

In this paper a methodology for the automatic adaptation of 
semantic nets composed of line-type object parts to any coarser 
scale was presented. The method enables the prediction of the 
appearance of object parts in small scale using means of 
differential geometry, while following the principles of linear 
scale space theory. In two examples for coarser scales the 
capability of the approach for the adaptation of a road model for 
a dual carriageway was demonstrated.  
 
The presented object model describes only a special road type. 
But, in the near future, the methodology is to be augmented to 
variable road models in order to be able to represent different 
road types with the same model. The methodology, so far, does 
incorporate line-type features (lines and stripes) only. Intended 
is also the modelling of other objects on the road, such as 
vehicles, but also other types of road markings, such as zebra 

crossings and symbols. For these objects the scale space 
behaviour of area-type objects and their interaction with line-
type features need to be examined. In addition, the 
implementation of this road model in the knowledge-based 
interpretation system GeoAIDA [Bückner01] is planned. 
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