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Abstract. Evolutionary car racing (ECR) is extended to the case of two
cars racing on the same track. A sensor representation is devised, and
various methods of evolving car controllers for competitive racing are
explored. ECR can be combined with co-evolution in a wide variety of
ways, and one aspect which is explored here is the relative-absolute fit-
ness continuum. Systematical behavioural differences are found along this
continuum; further, a tendency to specialization and the reactive nature
of the controller architecture are found to limit evolutionary progress.

1 Introduction

Evolutionary car racing (ECR) is about using evolutionary algorithms to create
and tune controllers, sensors or other parameters for racing cars, in simulation
or physical reality. Only a few attempts to evolve controllers or aspects of con-
trollers have so far been made, all quite recently [1][2][3][4]; see [5] for a complete
review. Our own work has focused on investigating various controller architec-
tures and sensor representations, and finding ways of developing neurocontrollers
with general driving skills that can proficiently race a variety of tracks, as well
as specialized controllers that perform very well on particular tracks. We have
also argued that car racing is a promising environment for evolving complex and
relatively general intelligence, as the task of navigating a basic track is relatively
simple to learn, but gradually can be made more and more complex almost
without limits, requiring path planning, anticipation, opponent modelling, etc.
All published research on ECR so far has dealt with the case of a solo-racing,

or one car on a track a time. This paper addresses the more complex case of
two cars competing against each other on the same track at the same time, and
includes the possibility of car-car collisions. We will explore different methods of
evolving neurocontrollers and sensor setups for successfully competing against
another car, and we hope that our results will be useful both for game developers
looking to automatically create racing game AI, and computational intelligence
researchers seeking to use games and game-like environments to evolve ever more
general and complex intelligence.

1.1 Co-evolution

In our previous research, a controller’s fitness was defined as the progress a con-
trolled car had made around a track within a pre-specified time, and so depended
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only on the controller itself and a few small random factors. Competing against
another controller fundamentally changes the problem, so that fitness becomes
dependent on the behaviour of both the assessed controller and its competitor.
Evolution with such fitness functions is commonly called co-evolution, and has
been used in evolutionary computation both to improve evolvability and to study
evolutionary dynamics [6][7].
ECR allows the application and exploration of several uncommon forms of

co-evolution. According to Dawkins and Krebs, biological co-evolution can be
either intraspecific or interspecific and either symmetric or asymmetric [8]; in
evolutionary computation terms, the co-evolution can be either between two
populations, or individuals in one population, and between contestants using the
same or different fitness functions. ECR allows all these types of co-evolution,
which is interesting since most competitive co-evolutionary robotics experiments
we know of build on predator-prey scenarios, and thus fall in the asymmetric
interspecific category [9][10][11].
A second way in which ECR allows uncommon modes of co-evolution is

through the existence of a well defined solo fitness function: any controller can
be tested both for absolute solo fitness, which means the distance covered when
racing without competition, absolute competitive fitness, which is the same thing
when having to take the behaviour of another car into account (including the
possibility of collisions), and relative fitness, which is defined as how far in front of
or behind the competitor a controlled car finishes. Further, absolute competitive
fitness and relative fitness can be blended seamlessly. We believe that these
characteristics make ECR ideal for exploring co-evolution.

1.2 Scope of this paper

The first set of questions we will try to answer concern the extension of the car
racing model and evolutionary approach to two cars: how well will controllers
evolved for solo racing do with competition? Will it be possible to co-evolve
controllers that do better? Is our controller architecture and sensor setup appro-
priate for this? Will we be able to evolve human-competitive drivers, and if not,
what are the problems with our method?
The second set of questions address co-evolution. Will there be a difference

in fitness, and in behaviour, if we evolve for absolute, relative or mixed absolute
and relative fitness? What sort of difference will be observed? For example, will
controllers evolved for relative fitness turn out to drive more aggressively? Will
there be a difference in sensor setups?

2 Methods

2.1 Simulation Environment

The experiments reported in this article were done in a slightly updated version
of the simulator used in [5]. The 2-dimensional simulator is intended to, quali-
tatively if not quantitatively, model a standard radio-controlled (R/C) toy car
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(approximately 17 centimeters long) in an arena with dimensions approximately
3*2 meters, where the track is delimited by solid walls. The simulation has the
dimensions 400*300 pixels, and the car measures 20*10 pixels.
A track consists of a set of walls, a chain of waypoints, and a set of starting

positions and directions. Cars are added to a track in one of the starting posi-
tions, with corresponding starting direction, both the position and angle being
subject to random alterations. The waypoints are used for fitness calculations.
The dynamics of the car are based on a reasonably accurate mechanical

model, taking into account the small size of the car and bad grip on the surface,
but is not based on any actual measurements [12][13]. While the dynamics of
the car itself are fairly straightforward, the collision handling has been subject
to much tuning and exception-handling in order to get a behaviour that feels
right for the human player and cannot easily be exploited in an unintended way
by the evolutionary algorithm. A collision between two cars is basically handled
as a fully elastic collision, but the orientations of the cars are also disturbed,
depending on which parts of the cars collided.

2.2 Sensors

The car experiences its environment through four types of sensors: the speed
sensor, the waypoint sensor, a number of wall sensors, and a number of car
sensors. The speed sensor is simply the speed of the car. The waypoint sensor
gives the difference between the car’s current orientation and the angle to the
next waypoint (but not the distance to the waypoint). When pointing straight
to a waypoint, this sensor thus outputs 0, when the waypoint is to the left of
the car it outputs a positive value, and vice versa.
The wall sensors are modelled on “range-finders” similar to sonars or IR

sensors, where each sensor has an angle (relative to the orientation of the car)
and a range, between 0 and 200 pixels. The output of the wall sensor is zero if
no wall is encountered along a line with the specified angle and range from the
centre of the car, otherwise it is a fraction of one, depending on how close to the
car the sensed wall is. The car sensors work exactly like the wall sensors, with
the crucial difference that the output depends on whether and how far along
the line another car is detected. A small amount of noise is applied to all sensor
readings, as it is to starting positions and orientations.

2.3 Controller Architecture

The controllers in the experiments below are based on neural networks. More
precisely, we are using multilayer perceptrons with three neuronal layers (two
adaptive layers) and tanh activation functions. A network has at least three
inputs: one fixed input with the value 1, one speed input in the approximate
range [0..3], and one input from the waypoint sensor, in the range [-Π..Π]. In
addition to this, it has eight inputs from wall and car sensors, in the range [0..1].
All networks have two outputs, which are interpreted as driving commands for
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the car. Both the neural network and sensor configuration of a controller are
directly encoded together in the genome as an array of real numbers.

2.4 Co-Evolutionary Algorithm

For the co-evolutionary algorithm, a modified (µ+λ) evolutionary strategy with
µ = 50 and λ = 50 without self-adaptation) was used. (This algorithm is based
on the EAs used in [3] and [5]. It is possible that the addition of crossover
and/or self-adaptation could make evolution more efficient, but we chose to leave
these out for the sake of conceptual simplicity and minimizing the number of
parameters to tune.) The difference between the co-evolutionary algorithm used
here and a standard evolutionary strategy is in the fitness calculation. There are
two types of primitive fitness defined: absolute and relative fitness. The absolute
fitness of a controller C is calculated as the number of waypoints it has passed,
divided by the number of waypoints in the track, plus an intermediate term
representing how far it is on its way to the next waypoint. An absolute fitness
of 1.0 thus means having completed one full track within the alloted time. In
the evolutionary experiments reported below, each car was allowed 700 time-
steps (enough to do two to three laps on most tracks in the test set). Relative
fitness is defined as the difference in absolute fitness between C and the car it
is competing against. Both the absolute and relative fitness values for a given
controller was calculated as the mean of three trials of the controller on each of
the tracks.
When the primitive fitnesses of all the controllers have been calculated, they

are normalized, so that they are all in the range [-1..1]. The final fitness value of
each controller is then calculated by blending the two primitive fitness values:
fitness = p∗absfit+(1−p)∗relfit where p is the proportion of absolute fitness,
a constant set at the beginning of the evolutionary run. It could be argued that
only evolution with completely relative fitness constitutes co-evolution.
There are three mutation operators: Gaussian mutation of all neural connec-

tion weights, Gaussian mutation of all sensor parameters (angles and lengths), or
sensor type mutation. Each time the mutation method of a controller is called,
numbers drawn from a Gaussian distribution with a standard deviation of 0.1
are added to both neural connection weights and sensor parameters. With a
probability of 0.4, a sensor type mutation is also performed, meaning that one
of the sensors has its type changed from car to wall or wall to car.
At the start of an evolutionary run, all controllers have four wall sensors and

four car sensors, pointing in random directions and with random ranges, and the
neural connection weights are initialized to small random values.

2.5 Competition tracks

In order for the competitions to be more challenging, and to prevent the con-
trollers from adopting strategies that would only work on a single track, three
different tracks were used to evaluate every trial (see figure 1). While we have
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previously shown [5] that controllers can be evolved that proficiently race a di-
verse collection of tracks, this seems to require a lengthy process of incremental
evolution if the tracks are both clockwise and counter-clockwise. But if all the
tracks have the same direction, like the three tracks chosen for the present exper-
iments, it is possible to evolve a good controller for these tracks using standard
evolution.

Fig. 1. The three tracks used in the experiments, including waypoints. Each track also
shows a sample car with evolved sensors (discussed in section 3.2)

3 Experiments

3.1 Giving solo-evolved controllers some competition

10 separate solo-evolutionary runs were made according to the setup described
in the Methods section above. Each evolutionary run lasted for 200 genera-
tions. (The mean fitness was zero at generation 0 of every evolutionary or co-
evolutionary run in this paper; fitness growth graphs have been omitted to con-
serve space.)
On average, the best individual of the last generation of each of the evo-

lutionary runs had fitness 2.49 (with standard deviation σ = 0.23), and used
5.7 (σ = 0.67) wall sensors and 2.3 (σ=0.67) car sensors. The best run resulted
in a best controller with fitness 2.67, and the best controller of the worst run
had fitness 1.89. Most of the evolved sensor setups consisted in a relatively even
spread of medium-range wall sensors pointing forward and diagonally forward,
and the few car sensors pointing backward.
One of these controllers, with fitness 2.61 (0.13), was selected for further

testing. When put in a competition with another car controlled by a copy of the
same controller, average fitness dropped to 1.23 (0.6). Behavioural analysis shows
that the two cars collide repeatedly at the beginning of almost every trial, as
they don’t have any method of detecting and reacting to each other’s presence.
Depending on starting conditions, the outcome of the competitions vary, but
usually one or both of the cars is either driven to collide with the wall, or spun
around so that it starts driving the track the wrong way. A car that starts
going the wrong way is usually, but not always, unable to turn around and start
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driving in the correct direction again; a car that crashes into the wall usually
gets stuck. This is because of the controller design rather the game mechanics,
as it is perfectly possible for a human player to back away from the wall and
continue driving in the right direction. In many trials, however, one of the cars
managed to escape the collisions in the right direction and proceeded to make
its way smoothly around the track.
From this experiment, it can be seen that the problem of racing two cars

concurrently is sufficiently different from the problem of solo-racing that the
performance of a solo-evolved controller is catastrophically compromised when
tested in competition conditions.

3.2 Co-evolving controllers: The absolute-relative fitness continuum

50 evolutionary runs were made, each consisting of 200 generations. They were
divided into five groups, depending on the absolute/relative fitness mix used by
the selection operator of the co-evolutionary algorithm: ten evolutionary runs
were performed with absolute fitness proportions 0.0, 0.25, 0.5, 0.75 and 1.0
respectively. These were then tested in the following manner: the best individuals
from the last generation of each run were first tested for 50 trials on all three
tracks without competitors, and the results averaged for each group. Then, all
five controllers in each group were tested for 50 trials each in competition against
each controller of the group. Finally, the number of wall and car sensors were
averaged in each group. See table 1 for results.

Proportionabsolute 0.0 0.25 0.5 0.75 1.0

Absolute fitness solo 1.99 (0.31) 2.09 (0.33) 2.11 (0.35) 2.32 (0.23) 2.23 (0.23)
Absolute fitness duo 0.99 (0.53) 0.95 (0.44) 1.56 (0.45) 1.44 (0.44) 1.59 (0.45)
Relative fitness duo 0 (0.75) 0 (0.57) 0 (0.53) 0 (0.55) 0 (0.47)
Wall/car sensors 5.8 / 2.2 5.6 / 2.4 5.2 / 2.8 4.2 / 3.8 6.4 / 1.6
Table 1. The results of co-evolving controllers with various proportions of absolute
fitness. All numbers are the mean of testing the best controller of ten evolutionary runs
for 50 trials. Standard deviations in parentheses.

Analysis It is clear that, when driving without competitors, the co-evolved con-
trollers on average have lower absolute fitness than the solo-evolved controllers.
Behavioural inspection suggests that the co-evolved controllers drive more care-
fully, seldom accelerating to top speeds, and take corners more conservatively.
A similar but smaller difference in absolute solo-fitness seems to exist between
the groups of co-evolved controllers, with controllers evolved more for absolute
fitness performing better than controllers evolved more for relative fitness. The
controllers within a group perform similarly, and the lower fitness comes from
driving slower around the track rather than crashing into walls or losing direc-
tion.



7

The difference between controllers co-evolved with different fitness mixes be-
comes clearer when we measure performance in competition with other con-
trollers from the same group, where controllers evolved mostly for absolute fit-
ness generally get about half a lap farther than those evolved mostly for relative
fitness. Behavioural analysis confirms that this is because the cars more often
collide at the start of a trial, often forcing one or both of the cars to crash against
the wall or spin around and lose track of which direction it is going. Often, the
controllers evolved with low (0 or 0.25) proportions of absolute fitness actively
look for trouble by trying to collide. (See figure 2).
There seems to be little consistency in evolved sensor setups, samples of which

can be seen in figure 1 (wall sensors are blue; car sensors are pink; each car is
travelling forwards in direction of the waypoints). We found one controller in the
group evolved purely for relative fitness that had only wall sensors and no car
sensors, and another one in the group evolved for purely absolute fitness! There
is no obvious tendency towards fewer or more car sensors at either end of the
fitness mix, and the data is too scarce to prove any more subtle tendency. When
looking at all 50 controllers together, every controller has at least three wall
sensors, and there is always at least one pointing mostly forward. On average,
the cars have twice as many wall sensors as car sensors, and when car sensors
are present, there seems to be at least one pointing mostly backward; overall,
more car sensors point backward than forward.

Fig. 2. Traces of the first 100 or so time-steps of three runs that included early colli-
sions. From left to right: red car pushes blue car to collide with a wall; red car fools
blue car to turn around and drive the track backwards; red and blue car collide several
times along the course of half a lap, until they force each other into a corner and both
get stuck. Note that some trials see both cars completing 700 time-steps driving in the
right direction without getting stuck.

Fitness mix groups versus each other In order to find out how the con-
trollers evolved with various fitness mixtures performed against each other, we
tested all the five controller groups against each other. The slightly surprising re-
sults was that the groups performed on average equally well against each other,
though with considerable intra-group variation. The absolute fitnesses of the
controllers in these encounters were quite low, on average 0.96, which suggest
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that all controllers are quite ill prepared to race against controllers from another
fitness mix group.

3.3 Co-evolved versus solo-evolved controllers

The 50 controllers co-evolved with various fitness mixes in the section above
were now tested against the 10 solo-evolved controllers from section 3.1. For
each group, the ten co-evolved controllers competed for 10 trials with each of
the 10 solo-evolved controllers. See table 2 for results.

Proportionabsolute 0.0 0.25 0.5 0.75 1.0

Co-evolved 1.41 (0.52) 0.99 (0.44) 1.32 (0.58) 1.23 (0.65) 1.41 (0.45)
Solo-evolved 1.68 (0.56) 1.95 (0.62) 1.74 (0.57) 1.38 (0.65) 1.51 (0.63)

Table 2. Co-evolved versus solo-evolved controllers.

Analysis Observe that there is a small (mostly) but consistent fitness advantage
for the solo-evolved controllers over the co-evolved ones. (Both co-evolved and
solo-evolved controllers performed significantly worse in these competitions than
when tested in solo racing conditions.) The cause of this fitness difference is
not completely obvious after looking at a large number of these competitions,
but it appears that the solo-evolved controllers (which gain higher fitness than
the co-evolved ones in solo trials) simply outrun the co-evolved controllers in
many cases, and so avoid many of the collisions, and further corroborate the
hypothesis that the controllers tend to be very specialized to compete against
controllers similar to themselves. This could be seen either as a shortcoming of
the evolutionary algorithm, or as the desired state of things; it could be argued
that the co-evolved controllers should have strategies general enough to take on
any opponent, or that a their more careful driving style should always make
them slower than a solo-evolved controller.

3.4 Evolution with a static target

To investigate whether the tendency to specialization in co-evolved controllers
could be used to create controllers that could out-compete the solo-evolved con-
trollers from section 3.1, we modified a copy of the co-evolutionary algorithm
to work with a static target. In this configuration, each controller is evaluated
by racing three races against randomly selected controllers out of the ten solo-
evolved controllers. It should be noted that this is not co-evolution at all, as the
target controllers do not evolve. The car controlled by the target controller could
instead be seen as an interactive feature of the environment.
The experiments we run with this configuration failed to generate any con-

trollers with better fitness than the target controller. This was despite attempts
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at evolving from scratch, starting from a general controller, or starting from a
clone of the target controller, and using various mixtures of absolute and rela-
tive fitness. Our interpretation of this is that the solo-evolved controller drives
the tracks as fast as can be done given its sensing and processing limitations,
and that the same limitations hinder the co-evolved controllers from doing any
better.

3.5 Human-competitiveness of evolved controllers

A random selection of controllers were tested by competing with a car controlled
by one of the authors via the keyboard. It was found that the solo-evolved
controllers were generally good contenders, driving at about the same skill level
or slightly better than the author, as long as collisions were avoided. However, it
was found to be quite easy to learn how to collide with the computer controlled
car in such a way that it got stuck on a wall, and then continue to win the race.
Most of the co-evolved controllers were pretty simple to beat by just accelerating
hard at the beginning of a race and keep driving, as their slower driving wouldn’t
allow them to catch up.

4 Conclusion

Our main positive finding concerns the effects of changing the type of fitness
function. A very clear effect was that controllers evolved more for relative fit-
ness acted more aggressively, but covered less distance both when running solo
and when competing with other controllers from the same population, than
controllers evolved more for absolute fitness. We could not find any systematic
difference between the sensor setups evolved with the various fitness mixtures,
but observed a general tendency to point car sensors backwards rather than for-
ward, and the opposite tendency for wall sensors - it seems to be more important
to watch your back than to know whats happening in front of you.
A finding that is relevant to the overarching quest to scale up ECR and

evolutionary robotics in general is that competitive ECR is a much more complex
problem than solo ECR. This can be seen both from the drastic degradation of
fitness when solo-evolved controllers are put in competitive environments, and
from our great difficulty in evolving controllers that can reliably outperform
the solo-evolved ones. It can also be seen from the total inability of all evolved
controllers to backtrack upon a frontal collision with a wall, and the relatively
poor ability of most evolved controllers to find the correct direction after having
been spun around. This points to the need for more complex sensors and neural
networks.
However we set up the evolutionary runs, they seem to suffer from over-

specialization, where the controllers in a population only learn to race each other.
This result is in broad agreement with what has been found in co-evolutionary
predator-prey experiments[9][10]. So even though ECR allows us to explore a
larger space of variants of competitive co-evolution, it seems that we at present
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are stuck with the same basic obstacles to evolving generally good competitive
behaviour.

4.1 Future research

One obvious extension of the controller architecture would be to add state to
the presently stateless controller; this could be done by adding recurrent connec-
tions to the network. The controller could also be given the ability to grow or
“complexify” itself as needed during the evolutionary run[11]. This could also be
the case for the sensors; we believe that either more sensors of the present kind
or some alternate sensor representation will be needed to give the controller the
information needed to compete well.
The evolutionary algorithm could be enhanced with the addition of a “hall

of fame”, where the controllers of a generation compete not only against each
other but also against the best controllers of previous generations[7][9][10]. It
would be interesting to use evolutionary multi-objective optimization to evolve
fronts of pareto-optimal tradeoffs between relative and absolute fitness.
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