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ABSTRACT: 
 
Over the last years lidar has become one of the major techniques to obtain spatial data in coastal areas. Due to the fact that lidar 
systems can provide several 3D points per square meter and high height accuracy, lidar data is suitable for several applications in the 
field of coastmonitoring and coastprotection. Generally, a digital terrain model (DTM) is used as basic spatial information for 
applications like morphologic change detection and hydrological modelling. In order to generate a DTM in coastal areas from lidar 
data, a classification process has to be performed to separate the lidar points into water and land points. Only land points, 
representing the coastsurface, are used to calculate the DTM.  
In this paper, we present a new method to classify lidar data in water points and land points. The original points of each flight strip 
are classified scan line by scan line. Several parameters which are directly related to each point as well as the point distribution 
within one scan line are used for the classification method. A fuzzy logic concept is applied to determine a membership value for 
every point belonging to the class water. Then, a threshold method is employed to classify the points of every scan line. Afterwards, 
classification discrepancies are detected and corrected by comparing height differences between neighboured water and non-water 
points. In order to achieve a more realistic classification result small isolated point groups of a certain class are removed. To 
illustrate the ability of the algorithm two examples with different characteristics (lidar scanner system, point density, point 
distribution etc.) are presented. The results are promising and constitute a proof-of-concept for the suggested method. 
 

1. INTRODUCTION 

 
Lidar has become one of the major techniques to obtain high 
accurate spatial data in coastal areas. The method delivers, 
depending on the lidar system and flight parameters, several 
laser points per square meter with high height accuracy. Large 
areas can be registered fast (e.g. Brügelmann and Bollweg 
2002) and digital terrain models (DTMs) can then be 
interpolated from the individual 3D points. Generally, a DTM is 
used as basic spatial information for applications like 
morphologic change detection and hydrologic modelling. In 
order to calculate a DTM, a filtering process has to be 
performed to separate lidar points into terrain points and off 
terrain points (Sithole and Vosselman, 2004).  
Within coastal areas, several regions are covered by water. 
Typically the lidar beam does not penetrate water. Hence, lidar 
points measured in water regions describe the water surface but 
not the DTM lying underneath. In order to obtain a DTM of 
high accuracy, another process must be included to identify 
water points and exclude them from the DTM calculation.  
Depending on the available data sources different approaches 
are possible. Two general cases can be distinguished. In the first 
case simultaneous acquisition of lidar and multispectral data is 
assumed. In this case, the images can be used to classify water 
with common classification methods. Lecki et al. (2005) 
pointed out that high-resolution multispectral imagery and 
appropriate automatic classification technique offer a viable 
tool for stream mapping. Within their analysis, especially water 
was classified accurately. Mundt et al. (2006) demonstrated that 
the accuracy of classification significantly increases by 
combining images and height data. However, multicspectral 
images are not always acquired during lidar data capture. Thus, 
in the second case, only the lidar data is assumed to be 
available. Typically, lidar data providers deliver the original 3D 

points and an intensity value, which corresponds with the 
strength of the backscattered beam echo. Up to now, only a few 
approaches to use the intensity of lidar data for classification 
were published. Katzenbeisser and Kurz (2004) emphasized the 
fact that classification methods used for remote sensing images 
need to be adapted to intensity data. They pointed out that the 
intensity has only a useful information value within open areas 
where only one echo was detected. Hence, other criteria’s have 
to be considered in order to filter water points from lidar data. 
In this paper, we first summarize important physical 
characteristics of lidar data and previous approaches, which 
were carried out to separate water points in lidar data. Then, a 
new method is presented to classify lidar data into water and 
land points. Starting from original irregularly distributed lidar 
points, several parameters are derived and rated using a fuzzy 
logic concept. Several steps are taken after classification in 
order to detect discrepancies and enhance the classification 
result.  
To illustrate the ability of the algorithm, two examples with 
different characteristics (lidar scanner system, point density, 
point distribution etc) are presented. Finally, this paper 
concludes with a summary and an outlook on further 
development issues. 
 
 

2. STATUS OF RESEARCH 

 
2.1 Physical characteristics of lidar data within coastal 

areas 

In order to develop a suitable algorithm which is capable of 
classifying the lidar data (raw 3D-lidar points and intensity 
values) the physical characteristics of common lidar systems as 
well as the reflection of water and land areas have to be 



 

considered. Generally, lidar systems operate in the near infrared 
range. Wolfe and Zissis (1989) describe the absorption of 
infrared radiation depending on the illuminated surface material 
and the wavelength. They pointed out that the absorption for 
water is significantly higher than the absorption for soil. This 
leads to the fact that the intensity of water points is regularly 
lower than the intensity of land points. 
Additionally, as a result of the Rayleigh Criteria, calm water 
surfaces behave like a mirror. Thus, specular reflexion occurs. 
Depending on the spatial orientation of the aircraft, the emitted 
laser pulse and the water surface with respect to each other, in 
general only a small part of the emitted radiation returns to the 
detector. Often, a distance measurement can not accomplished 
successfully because the received radiation energy is not 
distinguishable from background noise. This leads to the fact 
that the point density of lidar data within water areas is often 
significantly lower than within land areas. 
 
2.2 Filtering off terrain points and filtering water points 

respectively 

The filtering of off terrain points from lidar data is a common 
and necessary step in order to derive a DTM. Many different 
approaches (i.e. Sithole and Vosselman, 2005 or Tóvári and 
Pfeifer, 2005) were published and provide accurate results 
(Sithole and Vosselman, 2004). Neglecting differences of the 
approaches it can be stated that high points (or segments 
respectively) in the vicinity of lower points are generally 
labelled as off terrain points. 
In order to calculate an accurate DTM in coastal areas a 
filtering of water points is performed. Analogous to off terrain 
points water points do not belong to the surface and have to be 
removed from the data set. Water points have a lower height 
than the surrounding land points. Theoretically, an inverse 
strategy of filtering off terrain points is able to classify likely 
water points. However, the overall correctness of a 
classification using such an inverse filtering strategy is not 
satisfying due to the fact that common filter techniques use only 
geometrical relationships of neighboured lidar points or 
segments respectively. Hence, local minima like tidal trenches 
are detected, but they may be dry and thus the detected points 
actually belong to the DTM. Furthermore, completely filled 
tidal trenches or swales can not be detected because the water 
level height is nearly equal to the surrounding flat coastal area. 
 
2.3 Previous approaches to extract water areas from lidar 

data 

Brockmann and Mandlburger (2001) developed a technique to 
extract the boundary between land and water of rivers, and 
applied it to data from the German river “Oder”. Based on lidar 
data, the planimetric location of the river centre line as well as 
bathymetric measurements of the riverbed, the boundary was 
obtained within a two-stage approach. First, the height level of 
the water area was derived by averaging the lidar points in the 
vicinity of the river centre line. Afterwards, the DTM of all 
lidar points (including also points of the water surface) was 
calculated. Then, the 0 m contour line of the difference model 
of the lidar DTM and the water height level was derived. This 
contour line is called the preliminary borderline. Within step 
two, the bathymetric points of the preliminary water area are 
combined with all lidar points outside the preliminary water 
area. Then, a DTM representing the riverbeds instead of 
waterlevel was calculated. Afterwards, the final borderline was 
obtained by intersecting the DTM including the riverbeds and 
the height level of water area.  

Brzank and Lohmann (2004) (see also Brzank et al., 2005) 
proposed another algorithm which separates water regions from 
non water regions based on a DSM calculated from lidar data. 
The main idea was to detect reliable water regions and expand 
them with the use of height and intensity. For that purpose local 
height minima were extracted from the DSM, which represent 
the potential seed zones of the searched water areas. This was 
followed by region growing procedure using height and 
intensity data of the grid points.  
 
2.4 Evaluation of previous approaches 

In order to classify water points within lidar data, only height 
information is not sufficient. At least one additional data source 
is necessary. Brockmann and Mandlburger (2001) used the 2D 
position of the river as prior information. Hence they knew 
approximately where water occurs. Assuming that a water area 
has lower height than the surrounding land, the border can be 
detected. Next to the 2D position and the lidar data, also 
bathymetric measurements are prior information of this method. 
Thus, this algorithm needs additional information which is not 
always available in our application, taking into account that 
form and position of tidal creeks are changing fast.  
Brzank and Lohmann (2004) tried to use the intensity as 
additional criteria to classify water. The algorithm provides 
accurate results if the intensity of water points differs 
significantly from land points. However, due to the fact that the 
intensity is generally very noisy and strongly influenced by the 
lidar scanner type and used wavelength, type and water ratio of 
the illuminated area, the classification accuracy can be 
unpredictable. Thus, at least one criterion has to be 
implemented in a new algorithm. Furthermore, this method does 
not work with the original lidar data but uses grid data. This is a 
crucial disadvantage because lidar data is obtained strip wise 
and generally, parts of several flight strips are combined in 
order to calculate a certain grid. Depending on the flight 
planning, a time shift occurs between neighboured flight strips. 
Taking into account that the water level in coastal area varies 
with time due to the tide, several water levels of the same water 
area may thus occur in a grid.  
 
2.5 Requirements of the algorithm to classify water points 

from lidar data 

Based on the physical characteristics of lidar data and the 
evaluation of the previous approaches, the following 
requirements for a successful algorithm are defined: 
 

1. The algorithm uses the original lidar data. 
2. No additional data sources such as images or vector 

GIS data are permissible.  
3. The point density is used as additional criterion. 
4. The classification is done for every flight strip. 

 
 
3. CLASSIFICATION OF WATER POINTS USING 1D-

LIDAR PROFILES 

 
The new classification method is based on the analysis of 1D- 
lidar profiles of the original raw data in combination with fuzzy 
logic. Each lidar strip is classified separately followed by a 
check across the scan lines. At first the lidar points of a strip are 
grouped into single scan lines. Then a membership value of 
class water (see equation 1) is calculated for each point of every 
scan line. The membership value depends on the parameters 



 

height, slope, intensity, segment length, point distribution and 
missed points (see section 3.1), the membership function and 
weight for every used parameter. Afterwards, the classification 
is done using a hysteresis-threshold-method. Finally, in order to 
detect and remove discrepancies, several steps are applied. 
They use the classification results of neighbouring scan lines to 
overcome the limitation of 1D profile classification. All 
classification steps are described in more detail in the 
following. 
 

(1) 
 

 
δi: weight parameter i 
µ(x) entire membership of class water for point x  

 µi(x) membership value water point x depending on 
parameter i 

 
3.1 Employed parameters and membership function 

For classification several parameters are used. The parameters 
are: 
 
Height: The higher a lidar point is situated the higher is the 
assumption that this point is not a water point. Thus with 
increasing height the membership value for class water 
decreases. 
 
Slope: The more the slope within the profile direction increases 
the more the assumption holds that the following point is not a 
water point. Thus, with increasing slope the membership value 
for class water decreases. 
 
Intensity: As pointed out earlier a low intensity value is an 
indication for a water point. Thus, with decreasing intensity the 
membership value for class water increases. 
 
Missed points: If holes occur from one profile point to next 
within the scan line, discrete point(s) are not measured. The 
appearance of holes is an indication for a water region. The 
bigger a hole between two neighboured points the higher is the 
assumption for the occurrence of water. In order to deal with 
points which are close to the border line between land and 
water the number of missed points is checked in both direction 
for every profile point. Only the membership value related to 
the smaller number of missed points is used further. 
 
Segment length: Based on the determination of the missed 
points the number of contiguous points within a profile can be 
derived. Thus, every profile point is a member of a certain 
segment with a certain segment length. With increasing 
segment length the indication increases that the segment points 
are land points.  
 
Point density: For every point the number of previous and 
following profile points within a certain distance s can be 
determined. The higher number is divided by the distance s. 
Thus, with increasing point density the membership value for 
class water decreases. 
 
It has to be pointed out, that the parameters missed points, 
segment length and point density are related to the fact that 
generally the number of points within the water area is smaller 
than within the land area. The usage of all parameters is 
possible, but existing correlation should be considered. 

In order to calculate the membership value for a certain 
parameter a membership function and thresholds are needed. 
Basically, every function which increases strictly monotonic (or 
decreases strictly monotonic) can be used. In our algorithm, a 
straight line is applied. The two resulting thresholds limit the 
application range of the membership function. Outside the 
application range the membership value is set to 0 or 1 
depending on the parameter. Figure 1 illustrates the calculation 
of the membership value of the parameter height for a scan line. 
After selecting the two thresholds the membership value can be 
calculated.  
 

 
Figure 1: Deriving the membership value of the parameter 
height for a 1D-profile 
 
After the calculation of the membership value for every scan 
line point using equation 1 the classification is done with a 
hysteresis-threshold-method. A low and a high threshold have 
to be defined. The classification of the actual point depends on 
the classification result of the previous point. If the previous 
point was classified as land the membership value of the actual 
point has to be higher than the high threshold to be classified as 
water. If the previous point was classified as water the 
membership value of the actual point has to be only higher than 
the low threshold to be classified as water. 

 
Figure 2: Classification of a 1D-profile with hysteresis-
threshold-method 
 
Figure 2 illustrates the classification process. The classification 
starts from the beginning (left side) of the profile. All of the 
first points have a membership value below the low threshold. 
They are classified as land points. Then, two points next to each 
other have a membership value above the high threshold, thus 
they are classified as water. The next four points of the profile 
are in between both thresholds. These four points are also 
classified as water points, because the previous point was 
classified as water and the membership value is higher than the 
low threshold. Thus, six points of the illustrated profile are 
classified as water points. It has to be mentioned that this 
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classification depends on the direction, in which the profile is 
processed. If the classification starts from the other side (the 
end of the profile) the result may be not the same. In case of 
Figure 2 only the two points above the high threshold are 
considered to be water points if the classification starts from the 
right side. 
 
3.2 Elimination of classification discrepancies and 

classification enhancement 
 
Typically, classification techniques do not output error-free 
classification results. In order to obtain a suitable result 
classification discrepancies have to be removed. To detect and 
remove these discrepancies several steps are performed. They 
are all based on the fact that a water point next to a land point 
must have a lower height. At first, every individual profile is 
checked. If a water point next to a land point is found, the mean 
height of all water points within a certain distance is compared 
with the height of the land point. This mean height of several 
neighboured water points is used to suppress the influence of 
occurring waves. If the mean water height is equal or higher 
than the land height, a classification discrepancy occurs. Then, 
the average of the mean membership value of the water points 
and the membership value of the land point is calculated and 
compared to the average of the two thresholds used for the 
hysteresis-threshold-classification (see Figure 2). All points are 
labelled as water/land if the average membership value is 
higher/lower than the average of both thresholds. 
Due to the fact that the algorithm is limited to 1D-profiles, the 
classification does not take neighboured points of the previous 
and next scan line into account. Therefore, in order to improve 
the result the second dimension is considered in the next step. 
Every scan line is compared to its left and right neighbour scan 
line. It is assumed that every correctly classified segment 
continues in the previous as well as the next scan line. A simple 
example may illustrate this assumption. Assuming a tidal trench 
which is filled with water is present in the lidar data. Several 
scan lines cross the water area. Assuming further that all scan 
lines are classified correctly, the classified water segment of the 
tidal trench for a certain line can be found next to this segment 
in the previous and the next scan line.  
To check all classified segments of every scan line we use the 
following approach. First, every scan line is split into classified 
segments of the same class (see figure 3). Then, a rectangle 
with a width of three scan lines is generated, which is limited 
by the first and last point of the considered segment. 
Afterwards, all points from the previous and next scan line 
which are inside the rectangle are extracted. If no point of the 
extracted previous scan line and also no point of the next scan 
line have the same classification as the considered segment, the 
classification is defined to be wrong. Then, the classification of 
the considered segment is changed. Figure 3 shows an example 
of the check. The segment in the centre of the figure is detected 
as an isolated segment and the classification is changed while 
the segment in the lower right remains.  
 

 
Figure 3: Check for isolated classified segments, crosses 
represent classified water points – circles represent classified 
land points, scan lines run from left to right  

Subsequently, another classification check is performed. Again 
we use the assumption that if the height of a water point is 
equal or higher than a neighboured land point a classification 
discrepancy occurs. At first a certain number of neighboured 
scan lines is selected (e.g. 10). Then, a cross section is created 
for every point of each scan line perpendicular to the azimuth of 
the scan line. For every scan line the point with the smallest 
distance to the cross section is determined. The point becomes a 
member of the cross section if the distance is smaller than a 
predefined distance. Then, every cross section is checked 
analogous to the control of every individual scan line (see 
above). 
After performing these checks the number of classification 
errors decreases. However, small classified segments may 
remain. Thus, the classification results may appear to be noisy. 
In order to enhance the classification further, small classified 
segments (of one scan line as well as perpendicular using 
several scan line) which are surrounded by classified segments 
of the other class are detected and removed. Finally, an almost 
consistent and smooth classification result can be obtained.  
 

 
Figure 4: Elimination of classification discrepancies and 
enhancement, bright points represent land, dark points represent 
water. a) Orthophoto with digitized water-land-border, b) 
Classification result without further checks for discrepancies, c) 
Discrepancies within every scan line removed, d) Segments 
removed, which only occur in one scan line, e) discrepancies 
removed within perpendicular cross section, f) Small isolated 
segments removed 
 
Figure 4 illustrates the process of removing discrepancies and 
enhancing the classification. Figure 4 a) shows a small part of 
the coast line of the East Frisian Island Langeoog. The added 
black line represents the border between water and beach. 
Figure 4 b) shows the classification result without checking for 
discrepancies. Bright points are classified as land. Dark points 
are classified as water. Within the water area some points are 
classified incorrectly due to the fact that they are part of long 
segments, which leads to a low water membership value. 
Furthermore, waves are present. Points on waves are higher, 
thus they have a low water membership value. The following 
images show the stepwise process of enhancement and 
removing discrepancies: 4 c) – discrepancies within every scan 
line removed, 4 d) segments removed, which only occur in one 
scan line, 4 e) – discrepancies removed within perpendicular 
cross section, 4 f) – small isolated segments removed. Finally, a 
smooth classification result without isolated points is obtained. 
 



 

3.3  Automated Determination of used parameters in 
training areas 

 
It is obvious that the selection of the used parameters, the 
membership function, the weights as well as the thresholds have 
a crucial impact on the classification result. Depending on the 
data (lidar scanner type, weather conditions etc.) only 
parameters which differ between land and water should be used. 
Because the user has to make these selections, he has to know 
the data rather well. In order to assist the user with his choice, 
at least one training area for water and for land is selected 
interactively. In our approach, the mean value of every 
parameter within the training area is determined. Based on these 
values, the user can better decide, which parameters are suitable 
for the classification. 
 
3.4 Classic Fuzzy classification concepts vs. suggested 

approach 
 
The classification algorithm uses fuzzy logic. Based on the 
fundamentals introduced by Zadeh (1965) also classification 
algorithms containing fuzzy concepts were developed and 
widely used (Traeger, 1993). Although these fuzzy 
classification concepts deliver suitable results we adapt the 
classic concept to overcome some difficulties.  
In classic fuzzy classification concepts fuzzy sets (for example: 
low, medium, high) for every used parameter are defined. 
Based on membership functions exact values for certain 
parameters can be transformed into membership values for all 
defined fuzzy sets. Then, a rule base is defined which decribes 
how to combine all possible combinations of fuzzy sets of all 
used parameters. Finally, a defuzzification process is performed 
in order to allocate the result to a certain class. In our method 
we do not define fuzzy sets for the used parameters (for 
example: low height, medium height, high height) but transform 
sharp values of every used parameter in a membership value for 
the output class water by using two thresholds as well as the 
membership function. Thus, we do not have to define a rule 
base, which is a rather complex task. Assuming that we define 
three fuzzy sets for every used parameter (6) a total of 36 = 729 
rules have to be defined. Furthermore, the membership function 
of every fuzzy set has to be defined, too. According to the data, 
the membership functions have to be changed either in an 
automated process or by a human operator. Furthermore, 
practical tests with various lidar data pointed out, that the 
benefit of a parameter also depends on the used lidar scanner 
system. Thus, the rule base has to be designed taking the used 
lidar system into account. In our approach, it is easier to 
classify water areas, because the needed parameter values 
(thresholds and weights) can be derived by using training areas.  
 
 

4. EXAMPLES 

To show the capability of this approach two different examples 
are presented. The first example is taken from the lidar 
campaign “Langeoog 2005”. The East Frisian Island 
“Langeoog” was flown by the German company Milan using 
the LMS Q560 system of the company Riegl. The example 
contains a large see water area, mainly dry coast region and 
some water puddles. The second example contains a certain part 
of a flight strip of the campaign “Friedrichskoog 2005” which is 
situated at the coast of the North Sea next to the estuary of the 
river Elbe. The flight was carried out by the German company 
Toposys using their own lidar system Falcon II.  

Within the first example 361.280 points were classified (see 
Figure 5). The classification was mainly based on the fact that 
the point density of the lidar points within water was 
significantly lower than over land. Additionally, the height also 
had a major impact on the classification result.  
The second example (see figure 6) contains 998.029 lidar 
points. Due to the fact that the point density did not differ 
significantly between water and land, the classification was 
based on the parameters height, slope and intensity. 
 

 
Figure 5: Classification of a part of a flight strip of the 
campaign “Langeoog 2005” – left: lidar DTM, right: classified 
water points = white dots, classified land points = black dots  
 

 
Figure 6: Classification of a part of a flight strip of the 
campaign “Friedrichskoog 2005” – left: lidar DTM, right: 
classified water points = white dots, classified land points = 
black dots 
 
The used parameters, thresholds and weights are listed in Table 
1. The thresholds of the parameters were obtained from training 
areas (see section 3.3) while the weights and the hysteresis-
threshold-values were defined manually based on experience 
with the data set. 
 
Table 1: Classification parameter of Example “Langeoog 
2005” and “Friedrichskoog 2005” 

 Langeoog 2005 Friedrichskoog 2005 
Threshold Threshold  

 Water Land 
Weight 

Water Land 
Weight 

Height [m] -0.8 -0.4 2 1.4 2 3 
Slope [°] -10 10 1 -10 10 1 
Intensity --- --- 0 22 40 1 
Missed 
points 4 0 2 --- --- 0 

Segment 
length 2 10 2 --- --- 0 

Point 
density 

[point/m] 
0.722 1.5 5 --- --- 0 

 low high low high 
Water 

Threshold (35%) (50%) (40%) (50%) 



 

Table 2: Classification result of Example “Langeoog 2005” and 
“Friedrichskoog 2005” 

 Langeoog 2005 Friedrichskoog 
2005 

Number 
classified points 361.280 998.029 

Classified water 
points 121.399 86.991 

Classified land 
points 239.881 911.038 

 Water Land Water Land 

Classified water 
points 119.253 2.146 79.803 19.695 

Classified land 
points 990 238.891 7188 891.343 

Correctness [%] 99,2 99,1 91.7 97.8 

 
To check the reached correctness the simultaneously acquired 
image data was merged into an orthophoto mosaic. Based on 
this mosaic the water and land area was digitized and 
intersected with the classified points. The results of the check 
are listed in Table 2. It can be seen that for “Langeoog 2005”, 
the rate of correctly classified points within the land as well as 
the water is higher than 99%. The main border line between the 
sea and coast was nearly completely extracted. Only in the 
upper centre part of the flight strip the classification is not very 
accurate due to the fact that this part contains wet sand only 
slightly higher than the sea water level. The point density 
within the wet sand is significantly lower than in the 
neighboured dry sand area, thus the classification provides high 
water membership values for this part.  
Also for “Friedrichskoog 2005”, the results were very 
promising. 91.7% of the classified water points and 97.8% of 
the classified land points are correct. Analogous to the first 
example the algorithm has problems to classify wet land areas. 
Their intensity values are generally low and their height is only 
slightly higher than the neighboured water area.  
 
 

5. CONCLUSION AND OUTLOOK 

 
An approach to separate lidar points into the classes water and 
land based on 1D profile analysis of the raw lidar data has been 
introduced. The classification is based on the original lidar data 
and classifies for every flight strip. The algorithm uses several 
parameters which are derived from the lidar data. The 
classification is based on the fuzzy logic concept. Two different 
examples are shown to illustrate the capability of this algorithm. 
They point out that the classification algorithm is able to deliver 
accurate results for different lidar scanner types. However the 
classification lacks in accuracy if wet land area of low height 
occur.  
In order to increase the automation rate it will be part of the 
future work to determine meaningful weights of the used 
parameter as well as the two final water thresholds from 
training areas.  
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